CN103048671A - New RTD (Relative Time Difference), MEMS-IMU (Micro-electromechanical Systems-Inertial Measurement Unit) and ZigBee combined high-precision seamless navigation method for global navigation satellite system - Google Patents

New RTD (Relative Time Difference), MEMS-IMU (Micro-electromechanical Systems-Inertial Measurement Unit) and ZigBee combined high-precision seamless navigation method for global navigation satellite system Download PDF

Info

Publication number
CN103048671A
CN103048671A CN201110362341XA CN201110362341A CN103048671A CN 103048671 A CN103048671 A CN 103048671A CN 201110362341X A CN201110362341X A CN 201110362341XA CN 201110362341 A CN201110362341 A CN 201110362341A CN 103048671 A CN103048671 A CN 103048671A
Authority
CN
China
Prior art keywords
zigbee
positioning
gnss
mems
imu
Prior art date
Application number
CN201110362341XA
Other languages
Chinese (zh)
Inventor
不公告发明人
Original Assignee
郭杭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郭杭 filed Critical 郭杭
Priority to CN201110362341XA priority Critical patent/CN103048671A/en
Publication of CN103048671A publication Critical patent/CN103048671A/en

Links

Abstract

The invention provides a seamless location method based on combination of multiple sensors, which is applicable to various application fields. An optimal combination strategy is structured by utilizing a global satellite navigation system, an inertial device and other multiple sensors, and the availability selection of seamless location can be performed by reasonably using the inertial device and other wireless sensors and auxiliary sensors in an environment free from GNSS(Global Navigation Satellite System) signals and simultaneously setting up comprehensive criterions on the availability, abnormality and the like of the GNSS signals; and on the basis, an expanded Kalman filter is adopted for processing so as to realize the optimal estimation output of the seamless location.

Description

全球导航卫星系统RTD、MEMS-1 MU,Zi gBee组合高精度无缝 GNSS RTD, MEMS-1 MU, Zi gBee precision seamless combination

导航新方法 The new navigation method

技术领域 FIELD

[0001] “GNSS RTD/MEMS MU/ZIGBEE组合高精度无缝导航新方法”(简称AnyPos),综合利用GNSS卫星网络RTD技术、无线电定位技术、基于MEMS的惯性导航组件进行有效组合;在室外充分利用GNSS地面增强设施获取差分电文进行高精度实时定位解算,在室内外场合通过预先布设的ZIGBEE传感器基站进行无导航卫星信号覆盖场合的高精度实时定位解算,同时利用基于MEMS的惯性模块,提供定位盲区下辅助的姿态、速度、加速度信息。 [0001] "GNSS RTD / MEMS MU / ZIGBEE combination precision seamless navigation new approach" (abbreviated AnyPos), RTD utilization GNSS satellite network technology, wireless positioning technology, effective based on a combination of MEMS inertial navigation component; full outdoor using differential GNSS ground enhancement facility message acquiring high precision position resolution in real time, in the case of indoor navigation satellite signals with high accuracy without cover case by previously laid base ZIGBEE real-time sensor position resolution, while using a MEMS-based inertial module, providing the positioning auxiliary blind attitude, velocity, acceleration information.

[0002] 本发明的主要创造点是提供一种高精度无缝定位方法,可以有效的将室内定位,室外定位,和定位盲区下辅助姿态信息结合在一起。 [0002] The main point of the present invention is created to provide a seamless precision positioning method can effectively combine positioned indoor, outdoor positioning, and the positioning auxiliary blind posture information. 组合的方式是两两绑定,即“RTD+MEMS”及“MEMS + ZIGBEE”,应用场景包括:1)贵重物品或者设备如文物、珍藏艺术品等的实时监控、引导过程,当被监测对象从出发地前往某一展览馆博物馆的时候,在现场GNSS信号往往无法接收,此时则需要使用到MU/ZIGBEE信号进行室内定位,并且被监测对象的位置往往需要精确已知,才能提高监测方的判断决策的效率。 Pairwise combination of binding, i.e. "RTD + MEMS" and "MEMS + ZIGBEE", including scenarios: 1) artifacts such valuables or device, such as real-time monitoring collection art, the boot process, when the target object from the time of departure of the visit of a museum exhibition, are often unable to receive GNSS signals in the field, then you need to use to MU / ZIGBEE indoor positioning signal, and is the object of position often requires precisely known, in order to improve the monitoring party the efficiency judgment decisions. 2)老人、儿童、病人的监护,一旦发生迷路、走失等现象时可得到实时的救助。 Available real-time relief 2) the elderly, children, the patient's care, once lost happen, and so lost. 3)矿工井下安全监测,为矿山实时救护提供技术支持。 3) miner mine safety monitoring, providing real-time technical support for the mine rescue. 根据这些需求,便提出此方法。 According to these requirements, we propose this method.

[0003] 对以上信息进行融合处理,从而在任何场合的应用情景下,实时地获取用户所关心的高精度位置、速度、姿态等参数,该种技术尤其适用于在室内外任何切换过渡的高精度实时定位场合,如精密设备移动的智能引导、贵重资产的移动管理等。 [0003] The above information fusion process, so that in any case the application scenario, acquired in real time with high precision the position of the user of interest, speed, attitude and other parameters, this kind of technique is especially suitable for indoor and outdoor high transition of any switching precision real-time location applications, such as smart guide precision equipment to move, move valuable asset management.

背景技术 Background technique

[0004] 高精度无缝定位技术的实现前提是在有/无导航卫星信号的环境、场合下,充分利用广泛存在的无线电信号如GNSS、W1-F1、ZIGBEE等,并以MEMS的惯性器件所提供的速度、加速度、姿态等信息为基础,综合进行融合处理,从而在任何场合的应用情景下,实时地获取用户所关心的高精度位置、速度、姿态等参数;其背景技术主要分为以下几类。 [0004] The prerequisite for achieving the seamless high-precision positioning technology is the presence / absence ambient navigation satellite signals, where the radio signals take advantage of the widespread as GNSS, W1-F1, ZIGBEE, etc., and the device is a MEMS inertial provide speed, acceleration, attitude and other information based on the integrated fusion process, so that in any situation of application scenarios, real-time access to high-precision location of the user of interest, speed, attitude and other parameters; the background art is divided into the following Several categories.

[0005] I)室外定位(GNSS RTD)技术: [0005] I) outdoors positioning (GNSS RTD) technology:

在室外定位场合,通过已经固化的GNSS手持机模块,充分依托全球覆盖的导航卫星信号,联合GNSS地面增强系统如连续运行参考站提供的高精度卫星差分改正信号,基于精密测量的载波相位测量值,利用差分技术,实现高达厘米量级的定位结果的输出。 Positioned outside the case, has been cured by the GNSS handset module, fully rely on global navigation satellite signal coverage, combined GNSS ground-based augmentation systems such as satellite differential correction precision continuous operation signal provided by the reference station, carrier phase measurements based on precise measurements using differential technology, up to the order of centimeters positioning results output.

[0006] 2)室内定位(ZIGBEE RSSI)技术: [0006] 2) indoor positioning (ZIGBEE RSSI) techniques:

在室内定位场合,通过广泛布设的ZigBee基站,在设备充分同步的基础上,基于信号强度衰减观测-距离关系模型,获得的距离值,结合预先精确标定的传感器基站坐标,通过距离交会的计算方法,实现米级的定位结果输出。 In the indoor positioning applications, through extensive laid ZigBee base station, on the basis of the device fully synchronized on the basis of the signal strength degradation observed - distance relationship model, from the value obtained, in conjunction with the sensor base coordinate in advance precisely calibrated by the calculated distance intersection , the positioning result output level meter to achieve.

[0007] 3)辅助定位(MEMS IMU)技术: [0007] 3) auxiliary locating (MEMS IMU) technology:

在室内外无线电信号受限制的定位盲区,利用嵌入的MEMS器件加以辅助,一般利用IMU组件,通过惯性测量的原理,输出短时高精度的三维位置、加速度/速度、姿态等参数。 Indoor and outdoor positioning blind limited radio signal, embedded MEMS devices make use of an auxiliary, generally using IMU assembly, measured through the principle of inertia, short-term high-precision three-dimensional position output, the acceleration / speed, posture and other parameters. 该种辅助定位技术,可在室内定位和/或室外定位处于盲区的情况下,帮助室内定位和室外定位执行定位操作。 This kind of auxiliary positioning technology, indoor positioning may be positioned and / or a blind spot in the case of outdoor, outdoor and indoor positioning positioning help perform positioning operations.

[0008] 4)数据融合技术: [0008] 4) Data fusion:

利用计算机对按时序获得的若干观测信息如GNSS、IMU、ZIGBEE等,在一定准则下加以自动分析、综合,以完成所需的决策和评估任务而进行的信息处理。 Several observations chronological information obtained as GNSS, IMU, ZIGBEE, etc., to be automatic analysis, synthesis, decision-making and to complete the required assessment tasks carried out by the information processing under certain guidelines for the use of computer. 包括对各种信息源给出的有用信息的采集、传输、综合、过滤、相关及合成。 The acquisition of useful information including various information sources is given, the transmission, integrated, filtered, and related synthetic.

发明内容 SUMMARY

[0009]目前,室外定位的场合及应用越发普遍且手段不多,主要集中在卫星导航、惯性设备等,从简单的个人/大众电子消费品,如GNSS/DR/COMPASS组合的移动电话、PDA等手持终端,到复杂的专业定位设备,如RTD接收机终端、多功能专业GNSS手持机等。 [0009] Currently, the outdoor positioning application occasions and much more widespread and means, mainly in satellite navigation, inertial equipment, from simple personal / mass consumer electronics, such as GNSS / DR / COMPASS combination mobile phone, PDA, etc. handheld terminal, to complex professional positioning device, such as an RTD receiver terminal, multi-GNSS professional handset like.

[0010] 而在室内定位场景方面,主要是HS-GNSS、CDMA、W1-F1、RFID、ZigBee等无线电技术,在相关的基础设施依托下,室内定位的设备尚未专门制定相应的标准及产品,常见的主要是WhereNet、Ekahau> Ubisense等公司根据单一无线电信号制定的产品,且定位精度不闻。 [0010] In the indoor positioning scene, mainly to HS-GNSS, CDMA, W1-F1, RFID, ZigBee and other wireless technologies, under the relevant infrastructure support, indoor positioning device has not been specially formulated relevant standards and products, common mainly WhereNet, Ekahau> Ubisense and other companies to develop products based on a single radio signal, and the positioning accuracy is not heard.

[0011] 该发明瞄准室内/室外任意切换、无缝过渡的高精度定位应用、生产服务场合。 [0011] The invention is aimed at the indoor / outdoor arbitrary switching, high precision positioning applications seamless transition, where production services. 在上述场景中,如精密设备移动的智能引导、贵重资产的移动管理等,目标载体的位置信息尤为至关重要,因此对定位的精确度提出了很高的要求,一般均达到了分米量级;同时,定位的场景往往需要在室内/室外之间任意切换及无缝过渡。 In the above scenario, precision equipment such as mobile smart boot, valuable assets like mobility management, location information of the target carrier is particularly critical, so the positioning accuracy requirements made high, an amount of generally reached decimeter level; the same time, the positioning of the scene often need to move between the indoor / outdoor and seamless transition. 这里的过渡是指在无信号覆盖的盲区里,利用辅助MEMS进行短暂过渡的过程。 Herein refers to the process of transition is in the blind spot of no coverage, the auxiliary MEMS brief transition.

[0012] 综上,单一地依靠导航卫星信号或者某一种室内定位信号,难以满足以上需求;并且,在某些短暂的定位盲区,任何无线电信号都无法发挥作用的时候,往往需要自主定位的手段来加以辅助,以实现定位过程的过渡,从而实现室内外的无缝定位。 [0012] In summary, solely rely on satellite navigation signal or a certain kind of indoor positioning signal, it is difficult to meet the above requirements; and, in some short positioning blind, any radio signals can not play a role, they often need autonomous positioning means to be assisted to locate the transition process, in order to achieve seamless indoor and outdoor positioning. 因此还需引入MEMS器件,如IMU等,提供必要的三维位置、加速度/速度、姿态等参数。 MEMS devices need thus introduced, such as IMU, to provide the necessary three-dimensional position, the acceleration / speed, posture and other parameters.

[0013] 为了克服上述不足之处,本发明的主要目的旨在通过RTD、MU、ZigBee各自实时采集的数据基础上,提供一种多传感器组合的融合算法,这种算法可以有效地将导航卫星定位中的实时伪距差分算法,和ZigBee定位中RSSI的算法以及辅助的惯性姿态方位测量结果紧密结合在一起,从而实现实时无缝高精度高可靠导航定位。 [0013] In order to overcome the above deficiencies, the main object of the present invention is intended by the data base RTD, MU, ZigBee on each real-time acquisition, there is provided a multi-sensor fusion algorithm combined, the algorithm can be efficiently navigation satellite positioning closely pseudorange difference algorithm in real time, and the RSSI algorithm ZigBee positioning and orientation of the auxiliary inertial attitude measurement results together in order to achieve high precision and high reliability seamless real-time navigation.

[0014] 本发明的另一目的旨在提供一种灵活的定位模式切换方法,通过可见卫星数阈值、强弱信号的跟踪与否这两种条件的判断,来执行无缝定位的模式,该判断方法简单、可靠、有效。 [0014] Another object of the present invention to provide a flexible positioning mode switching method, a threshold number of visible satellites by tracking the signal strength is determined whether or not these two conditions, performing seamless positioning mode, the Analyzing method is simple, reliable and effective.

[0015] 一般来说,进行GNSS定位的必要条件是卫星数目不少于4颗,以完成导航定位计算,当卫星数少于4颗时候,GNSS定位精度明显下降;而另一种情况是即便卫星数大于4颗当由于受到遮挡屏蔽等环境影响使得卫星信噪比很弱,一般在20dB-Hz以下的时候,需采用MEMS辅助定位模式;而当卫星信号完全失去的时候,即进入室内定位场合,就需执行ZigBee/IMU定位模式。 [0015] In general, the necessary condition for the number of satellites of GNSS positioning is less than 4, in order to complete the navigation positioning calculation, when the number of satellites is less than four times, GNSS positioning accuracy decreased; and the other is that even when the number is greater than four satellites due to environmental influences such occlusion shielding weak satellite signal to noise ratio, typically when the 20dB-Hz or less, requires the use of MEMS assisted positioning mode; when the satellite signal is completely lost when positioned into the interior i.e. the occasion should be performed if ZigBee / IMU positioning mode.

[0016] 本发明还提出了一种针对不同传感器种类的高精度时空基准统一方法,主要是在无缝定位基础设施建设过程中实施的,在ZigBee基站布设的时候,需要对其坐标进行标定,作为先验信息;另外在数据融合过程中,ZigBee & MEMS以及RTD & MEMS两种模式下定位结果数据的坐标系也不一致,因此需要进行坐标转换。 [0016] The present invention further provides a method of accurately uniform temporal reference for different types of sensors, mainly implemented in a seamless locating infrastructure construction process, when laid ZigBee base station, it should be calibrated its coordinates, as a priori information; additional data fusion process, ZigBee & MEMS positioning result data and the RTD & MEMS modes are not consistent coordinate system, the coordinate conversion is required. [0017] 由于全球导航卫星系统使用的是地心地固空间坐标系,而ZigBee系统使用的是自定义坐标系,同时IMU是惯性坐标系,因此将GNSS世界坐标系作为这些空间坐标系的唯一坐标系,即将其他坐标系统坐标转换到WGS 84坐标系下面。 [0017] Since the GNSS using the ECEF space coordinate system, and ZigBee system using a defined coordinate system, while the IMU is the inertial coordinate system, thus the GNSS world coordinate system as the only coordinate the space coordinate system Department, is about to switch to other coordinate system coordinates WGS 84 coordinate system below. 这里通过精密测量仪器如全站仪的手段,将传感器位置坐标推算转换至全球导航卫星系统的坐标中,从而实现了两种室内外定位信号源的空间基准一致,而惯性坐标系归化至地心地固坐标系的方法,主要是基于姿态转换的方法。 Here precision measuring instruments such as by means of the total station, the estimated sensor position coordinates to convert the coordinates of the global navigation satellite system in order to achieve a consistent spatial reference two kinds of indoor positioning signal source, and the inertial coordinate system to be naturalized ECEF coordinate system, a method, the method is primarily based on the posture conversion.

[0018] 对于时间基准,由于全球导航卫星信号是基于自定义的一套时间系统,主要参数为周数及周秒,而ZigBee系统使用的是不同的时间基准,因此两种时间系统需要作一种互相归化的推算方法,本发明使用的是:先将GNSS信号的时间标记进行连续记录,在对采样平滑的基础上,将平滑的时间结果归化为UTC时间格式,同时与ZigBee上的时间进行互差判断,在连续采样100个时间标记的前提上,对其100个互差数值进行平均,最后结果纳入到时间同步输出上。 [0018] For the time reference, since the global navigation satellite system time signal is based on a customized, the main parameters for the second weeks and weeks, and ZigBee system uses a different time base, and therefore two kinds of time required to make a system another kind of normalized calculation method used for the present invention are: first GNSS time mark signal recording continuous, smooth on the basis of sampling, the results were normalized into a smooth time in UTC time, simultaneously with the ZigBee mutual time difference determination, on the premise of continuous sampling time stamp 100, 100 to their mutual difference values ​​are averaged, the final result into the output time synchronization.

[0019] 时间同步在于从室外到室内的过渡场合中,以及辅助定位模式中的时间信息校准,当运动载体从室外进入室内的时候,此时需要使用之前的GNSS定位信息,定位信息往往是具有时间标记的,并且GNSS时间系统要比ZigBee时间系统精确,因此需要将ZigBee时间归化至GNSS时间上,以实现同步。 [0019] The time synchronization wherein a transition from outdoors to indoors occasions, the time information and positioning the auxiliary calibration mode, when the motion vector from the outside into the interior, at this time requires the use of GNSS positioning before information having location information is often time stamp, the system time and GNSS system time accurate than ZigBee, ZigBee time is required to naturalization onto GNSS time to achieve synchronization.

[0020] 在上述工作的基础上,本发明提供了一种有效的数据融合算法,通过使用扩展卡尔曼滤波等技术,将多种传感器的数据首先进行判断及匹配,如在室外环境下仅使用GNSS/IMU的组合,在室内环境下仅使用ZigBee/MU的组合,本发明仅限于上述两种组合方式。 [0020] Based on the foregoing the present invention provides an effective data fusion algorithm, by using the extended Kalman filtering techniques, the various sensors data and determines the first match for the exclusive use in outdoor environments combination of GNSS / IMU using a combination ZigBee / MU only in the indoor environment, the present invention is limited to combinations of two ways. 在此基础上,进行具体的数据融合,利用各自传感器输出的三维地理坐标参数、速度、方位角等姿态参数,进行可扩展的卡尔曼滤波器处理,使得最后输出的定位参数稳定、可靠、有效。 On this basis, the specific data fusion, three-dimensional parameters of the respective geographic coordinates of the sensor output, velocity, azimuth pose parameters, can be extended Kalman filter process so that the positioning parameters of the final output stable, reliable and effective .

[0021] 另外,本发明提供了一种基于服务器的计算处理工作模式,及用户设备本身不进行基于某种传感器的计算,而是通过发送计算请求及计算所需的观测数据至服务器,服务器通过计算类型进行具体的计算引擎选择进行处理,再将计算结果发送至用户,用户结合各种计算结果进行具体的数据融合处理。 [0021] Further, the present invention provides a calculation processing based on the operation mode of the server, and the user device itself is not calculated based on some kind of a sensor, but by sending a request and calculation needed to calculate the observed data to the server, the server calculation type specific calculation engine selected for processing, and then send the calculation result to the user, the user in connection with various specific calculation results of processing data fusion.

[0022] 该发明的主要技术流程图如下。 [0022] The main technical flow diagram of the invention. 图1 figure 1

[0023] 定位模式匹配判断:在用户终端中通过相关设置启动,判断此时GNSS信号是否可以,若不可用(即GNSS信号完全无法接收,可用卫星数为零),则默认为室内定位模式,转入步骤2.,执行ZigBee定位计算。 [0023] Location determination pattern matching: Start provided by the relevant user terminal can be determined at this time whether the GNSS signals, if not available (i.e., not completely received GNSS signals, the number of available satellites is zero), the default mode is the indoor positioning, proceeds to step 2., ZigBee performing positioning calculation.

[0024] 启动ZIGBEE定位计算引擎:此时启动终端中ZigBee定位标签,标签将其ID信息发送至ZigBee计算服务器中,服务器将对其进行识别,并同步确定其邻近基站的信息,使得ZigBee定位计算引擎就绪。 [0024] ZIGBEE positioning calculation engine start: ZigBee terminal then initiates a local label, tag sends its ID information to the ZigBee server computing, the server will be identified and information about its neighboring base stations the synchronization determination, so positioning calculation ZigBee engine ready.

[0025] 启动GNSS定位计算引擎:在GNSS信号可用的情况下,终端通过无线通信链路,将其伪距观测值、概略坐标通过RTCM差分电文格式,发送至RTD计算服务器,服务器将对其进行辨别,并同步向CORS网服务器下载网络RTD数据。 [0025] Start GNSS positioning calculation engine: in case of a GNSS signal is available, a terminal through a wireless communication link, which pseudorange observations, outline coordinates by RTCM message format difference, RTD calculation is sent to the server, the server will be identify and synchronize data to the RTD server to download the network CORS network.

[0026] 工作状态激活:当ZigBee信号不可用,或者GNSS信号不可用的情况下,激活MEMS模块进行工作,进行辅助定位计算。 [0026] The activated operating state: when the ZigBee signal is not available, unavailable or GNSS signals, activating a MEMS module work, assisted positioning calculation.

[0027] 执行RSSI计算:ZigBee主要定位算法是RSSI模式,此时ZigBee计算服务器将判断接收端与发射端之间的信号功率衰减,根据功率-距离模型计算出几何距离,按加权质心算法和RSSI位置指纹定位计算,并将结果发送至用户终端。 [0027] RSSI calculation performed: ZigBee algorithm is mainly located RSSI pattern, the determination at this time calculation server ZigBee signal power between the receiving end and the transmitting side attenuation, according to the power - the calculated distance geometry model, the weighted centroid algorithm and RSSI location fingerprinting positioning calculation, and send the results to the user terminal.

[0028] 执行RTD定位计算:此时RTD计算服务器,将用户终端以及CORS服务器两者数据进行同步以及匹配,从而执行RTD差分计算,并将结果发送至用户终端。 [0028] RTD performing positioning calculation: calculating case RTD server, user terminal and a server CORS matching both the synchronization and data, thereby performing a difference RTD calculation, and send the results to the user terminal.

[0029] 执行MEMS辅助定位:此时通过配置命令,将ZigBee定位信息或者GNSS定位信息作为初始化输入,通过峰值探测以及方位角推估等,获得定位盲区下的定位信息。 [0029] MEMS auxiliary locating performed: At this time, the corresponding command, the ZigBee GNSS positioning information or position information as initialization input, the peak detection, and the like azimuth conjecture, to obtain location information when a positioning blind.

[0030] 数据融合计算:用户终端将各种定位结果数据输入汇总,启动卡尔曼滤波器,进行数据融合计算过程。 [0030] Data Fusion calculated: various user terminal location result summarized data input, starting a Kalman filter calculation data fusion process.

[0031] 本发明技术方案的详细阐述。 It elaborated aspect of [0031] the present invention.

[0032] I)该发明的工作基础主要依托于RTD、MU、ZigBee各模块的高度组合上,主要组成有GNSS-RTD模块、ZigBee定位标签、IMU模块、信号转接电路板、主控版、GPRS无线通信模块、计算服务器等。 [0032] I) of the invention is based primarily work relies on a combination of highly RTD, MU, ZigBee modules, the main components have GNSS-RTD module, ZigBee positioning tab, an IMU module, a signal switching circuit board, the master plate, GPRS wireless communications module, the server calculates the like. 对于主控板,其主要组成有:微控制单元、电源转换电力、信号指示电路等。 For the control board, which has main components: a micro control unit, a power converter power circuit signal indicating. 以下详述。 Detailed below.

[0033] 2)上电后,设备进行初始化工作,GNSS模块将进行搜星、捕获、跟踪等工作,ZigBee定位标签将自动搜索附近的传感器基站信号,而MEMS模块将进行自检。 After [0033] 2) power on, device initialization, the GNSS satellite module will search, acquisition, tracking, etc., ZigBee tag automatically searches for positioning the sensor near the base station signal, the MEMS module self test. 自检就是初始化,检查模块的工作状态等。 Is the initialization self-test, check the working status of the module and so on.

[0034] 3)初始化结束后,GNSS模块将给出具体的可视卫星数量,以及对应的卫星信号接收功率,并对信号进行一系列的处理及计算,得到用户大致的GNSS坐标值,并转换成为N/E/U的本地坐标系形式,此时用以判断定位环境的具体状态。 After the [0034] 3) initialization, GNSS module will be given of a specific number, and the satellite signal reception power corresponding to visible satellites, and a series of signal processing and calculation, to give substantially a GNSS user coordinate values, and converts becomes N / E / U form the local coordinate system, in which case the positioning is used to determine the specific environmental state.

[0035] 4)若导航卫星信号可用,观测到4颗以上GNSS卫星,并且卫星信号信噪比强度不低于20dBHz,则执行室外定位计算模式(否则跳转是第7)步),此时模块利用RTCM定义的Type 17/18/19电文标准进行编码,通过GNSS模块的串行通信接口(该串口符合RS-232电平标准)输出实时的卫星伪距观测值、载噪比等有用内容,并通过GPRS无线通信模块发送基于以上观测值的RTCM电文至计算服务器。 [0035] 4) If the navigation satellite signals are available, more than 4 is observed GNSS satellites, and the strength of the satellite signal to noise ratio is not less than 20dBHz, outdoor positioning calculation mode is performed (or the first jump 7) step), then module using RTCM Type 17/18/19 message defined coding standard, via the serial communication interface GNSS module (the RS-232 serial line with the standard level) in real-time output of the satellite pseudorange observations, carrier to noise ratio of the content helpful and transmission based on the above observations RTCM message to the computing server via GPRS wireless communication module.

[0036] 5)计算服务器在收到用户RTCM电文请求后,根据用户的位置向网络差分服务发送授权请求,自动生成一个基于参考站网络的高精度伪距差分改正数据,同时基于RTD的特定定位模型进行处理计算,从而计算出该用户的高精度位置,并将定位结果发送至用户,该坐标数据包含在按照NMEA-0183定义的$GPGGA语句中,$GPGGA语句是一个以逗号为分隔符的字符串。 [0036] 5) Calculate the RTCM server receives a user request message, sending the user's position to the differentiated services network authorization request, automatically generated based on a pseudo-precision reference station network from the differential corrections, while the RTD specific targeting model calculation processing to calculate the location of the user with high precision, and the positioning result to the user, the coordinate data in accordance with the statement contained in the $ GPGGA defined NMEA-0183, $ GPGGA statement is a comma-delimited string.

[0037] 6)用户在收到计算服务器精确处理的定位结果后,启动数据融合计算引擎,连同MEMS输出的姿态、速度、步长等有用信息,最终输出用户可靠、精确、全面的定位信息。 [0037] 6) After receiving the user location result accurate calculation processing server, data fusion calculation engine start, along with the output MEMS attitude, speed, step size and other useful information, the final output users reliable, accurate and comprehensive positioning information.

[0038] 7)在导航卫星信号不可用时,用户设备通过GPRS通信链路向计算服务器发送具体状态请求,此时计算服务器将启动超宽带计算处理引擎,该引擎将查询授权用户上的ZigBee定位标签身份状态,并连同定位标签附近可用的传感器基站数据,进行时间同步处理,继而进行距离计算处理,同时判断标签与基站之间的通视状态,若可用,输出精确的N/E/U三维坐标值,并发送至用户设备上。 [0038] 7) when the navigation satellite signal is not available, the user equipment sends through the GPRS communication link to the computing server requests a particular state, when the server starts calculating ultra wideband calculation processing engine, which will check on the authorization of the user on the label positioned ZigBee identity state, and along with the sensor data is available in the vicinity of the base station positioning labels, time synchronization, then the distance calculation processing, and judges depending on the state between the tag and the base station, if available, accurate output N / E / U three-dimensional coordinate values, and sends it to the user device.

[0039] 8)用户在收到计算服务器精确处理的定位结果后,启动数据融合计算引擎,连同MEMS输出的姿态、速度、步长等有用信息,最终输出用户可靠、精确、全面的定位信息。 After [0039] 8) the user receives the positioning result of the calculation server precise processing data fusion calculation engine start, along with the output MEMS attitude, speed, step size and other useful information, the final output users reliable, accurate and comprehensive positioning information.

[0040] 系统工作原理图图2具体工作流程,见以上步骤。 [0040] System Diagram FIG. 2 specific workflow, see above step.

Claims (6)

1.导航定位模式的判断方法。 A method for determining a navigation mode.
2.导航系统定位计算中数据同步方法。 2. The data synchronization method in a navigation system position calculations.
3. ZigBee实时定位算法。 3. ZigBee real-time positioning algorithms.
4.不同传感器的高精度时空基准统一方法。 4. The method of precision uniform temporal reference different sensors.
5. 一种基于服务器的计算处理工作模式。 A calculation processing mode based on the server.
6 GNSS RTD/MEMS MU/ZIGBEE组合系统数据融合计算。 6 GNSS RTD / MEMS MU / ZIGBEE system data fusion calculation combinations.
CN201110362341XA 2011-11-16 2011-11-16 New RTD (Relative Time Difference), MEMS-IMU (Micro-electromechanical Systems-Inertial Measurement Unit) and ZigBee combined high-precision seamless navigation method for global navigation satellite system CN103048671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110362341XA CN103048671A (en) 2011-11-16 2011-11-16 New RTD (Relative Time Difference), MEMS-IMU (Micro-electromechanical Systems-Inertial Measurement Unit) and ZigBee combined high-precision seamless navigation method for global navigation satellite system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110362341XA CN103048671A (en) 2011-11-16 2011-11-16 New RTD (Relative Time Difference), MEMS-IMU (Micro-electromechanical Systems-Inertial Measurement Unit) and ZigBee combined high-precision seamless navigation method for global navigation satellite system

Publications (1)

Publication Number Publication Date
CN103048671A true CN103048671A (en) 2013-04-17

Family

ID=48061377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110362341XA CN103048671A (en) 2011-11-16 2011-11-16 New RTD (Relative Time Difference), MEMS-IMU (Micro-electromechanical Systems-Inertial Measurement Unit) and ZigBee combined high-precision seamless navigation method for global navigation satellite system

Country Status (1)

Country Link
CN (1) CN103048671A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499826A (en) * 2013-09-09 2014-01-08 中国船舶重工集团公司第七0九研究所 Graded seamless switching method used for GPS / BeiDou-2 double-system satellite navigation receiver
CN103517361A (en) * 2013-10-25 2014-01-15 北京航空航天大学 Seamless indoor and outdoor positioning switching method
CN104507045A (en) * 2014-11-26 2015-04-08 成都智信优创科技有限公司 A communication system for special crowds
CN105157707A (en) * 2015-09-30 2015-12-16 努比亚技术有限公司 Navigation device and method
CN105973242A (en) * 2016-06-14 2016-09-28 夏烬楚 High-precision outdoor and indoor combined navigation and positioning system
CN106612544A (en) * 2015-10-22 2017-05-03 北京金坤科创技术有限公司 Embedded intelligent microcell design
CN106610498A (en) * 2015-10-22 2017-05-03 北京金坤科创技术有限公司 Embedded intelligent positioning terminal design

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100094554A1 (en) * 2008-10-13 2010-04-15 Qualcomm Incorporated Systems and Methods for Accessing Data Over a Short-range Data Link to Enhance the Performance of a Navigational Unit
US7899648B2 (en) * 2006-12-01 2011-03-01 GMV Aerospace and Defense S.A. System and a method for determining the region searched by a moving scent detector (organ or apparatus) in the presence of wind

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7899648B2 (en) * 2006-12-01 2011-03-01 GMV Aerospace and Defense S.A. System and a method for determining the region searched by a moving scent detector (organ or apparatus) in the presence of wind
US20100094554A1 (en) * 2008-10-13 2010-04-15 Qualcomm Incorporated Systems and Methods for Accessing Data Over a Short-range Data Link to Enhance the Performance of a Navigational Unit

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
THOMAS PANY ET AL.: "Experimental Results from an Ultra-Tightly Coupled GPS/Galileo/WiFi/ZigBee/MEMS-IMU Indoor Navigation Test System Featuring Coherent Integration Times of Several Seconds", 《2010 IEEE》 *
唐康华等: "MEMS IMU 辅助的高性能GPS接收机设计", 《测绘学报》 *
安亮等: "GPS与MEMS-IMU组合导航技术发展现状", 《GNSS WORLD OF CHINA》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499826A (en) * 2013-09-09 2014-01-08 中国船舶重工集团公司第七0九研究所 Graded seamless switching method used for GPS / BeiDou-2 double-system satellite navigation receiver
CN103517361A (en) * 2013-10-25 2014-01-15 北京航空航天大学 Seamless indoor and outdoor positioning switching method
CN103517361B (en) * 2013-10-25 2016-07-06 北京航空航天大学 A kind of indoor and outdoor seamless location changing method
CN104507045A (en) * 2014-11-26 2015-04-08 成都智信优创科技有限公司 A communication system for special crowds
CN104507045B (en) * 2014-11-26 2018-11-23 东阳市启创知识产权运营有限公司 A kind of communication system for special population
CN105157707A (en) * 2015-09-30 2015-12-16 努比亚技术有限公司 Navigation device and method
CN106612544A (en) * 2015-10-22 2017-05-03 北京金坤科创技术有限公司 Embedded intelligent microcell design
CN106610498A (en) * 2015-10-22 2017-05-03 北京金坤科创技术有限公司 Embedded intelligent positioning terminal design
CN105973242A (en) * 2016-06-14 2016-09-28 夏烬楚 High-precision outdoor and indoor combined navigation and positioning system

Similar Documents

Publication Publication Date Title
Mautz Indoor positioning technologies
Rantakokko et al. Accurate and reliable soldier and first responder indoor positioning: multisensor systems and cooperative localization
CN102778685B (en) Co-positioned
ES2511190T3 (en) Wireless position determination using the adjusted round trip time measurements
JP5518894B2 (en) Post-deployment calibration for wireless positioning
US7039421B2 (en) System for determining the position of an object
US7592909B2 (en) Location and tracking system using wireless technology
Koyuncu et al. A survey of indoor positioning and object locating systems
US9291704B2 (en) Wireless-based positioning adjustments using a motion sensor
CN101715639B (en) Method for measuring location of radio frequency identification reader by using beacon
JP5026086B2 (en) TDOA / GPS hybrid wireless position detection system
Ijaz et al. Indoor positioning: A review of indoor ultrasonic positioning systems
Hol et al. Tightly coupled UWB/IMU pose estimation
KR100532589B1 (en) Apparatus and method determining the position by integrating rfid, gps, and ins
KR20100120225A (en) Tracking implementing geopositioning and local modes
KR101750469B1 (en) Hybrid photo navigation and mapping
US7142872B2 (en) System and method for providing position information of mobile communication terminal
KR20150130988A (en) Systems and methods for using three-dimensional location information to improve location services
EP2604569B1 (en) RFID for location of the load on a tower crane
CN103363988B (en) A kind of method utilizing intelligent mobile phone sensor to realize the navigation of earth magnetism indoor positioning
Fuchs et al. Indoor tracking for mission critical scenarios: A survey
Deng et al. Situation and development tendency of indoor positioning
EP2502089A2 (en) Position determination using a wireless signal
US9494432B2 (en) Collaborative navigation techniques for mobile devices
US9239376B2 (en) Doppler aided inertial navigation

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)