CN103041813A - Preparation method of titanium dioxide coated iron trioxide hollow sphere - Google Patents
Preparation method of titanium dioxide coated iron trioxide hollow sphere Download PDFInfo
- Publication number
- CN103041813A CN103041813A CN2012105250165A CN201210525016A CN103041813A CN 103041813 A CN103041813 A CN 103041813A CN 2012105250165 A CN2012105250165 A CN 2012105250165A CN 201210525016 A CN201210525016 A CN 201210525016A CN 103041813 A CN103041813 A CN 103041813A
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- coated
- preparation
- solution
- deionized water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 title description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 15
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- 239000000243 solution Substances 0.000 claims description 23
- 239000008367 deionised water Substances 0.000 claims description 19
- 229910021641 deionized water Inorganic materials 0.000 claims description 19
- -1 titanium dioxide di-iron trioxide Chemical compound 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 15
- 239000011259 mixed solution Substances 0.000 claims description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 6
- 239000004202 carbamide Substances 0.000 claims description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 4
- 239000008103 glucose Substances 0.000 claims description 4
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 2
- LCKIEQZJEYYRIY-UHFFFAOYSA-N Titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 claims 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims 1
- 238000004090 dissolution Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract description 16
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 abstract description 16
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 abstract description 6
- 229910021578 Iron(III) chloride Inorganic materials 0.000 abstract description 4
- 239000011247 coating layer Substances 0.000 abstract description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 239000010936 titanium Substances 0.000 abstract description 4
- 229910052719 titanium Inorganic materials 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 10
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开一种二氧化钛包覆三氧化二铁空心球的制备方法。制备过程采用碳球为模板,在较低温度条件下以氯化高铁为铁源合成三氧化二铁;再以钛酸四丁酯为钛源,合成二氧化钛包覆三氧化二铁空心球。本发明所提供的方法简单温和,反应温度低,可以通过改变钛酸四丁酯的加入量来调节二氧化钛包覆层的厚度。
The invention discloses a preparation method of titanium dioxide-coated ferric oxide hollow spheres. In the preparation process, carbon spheres are used as templates, ferric chloride is used as an iron source to synthesize ferric oxide at a relatively low temperature, and tetrabutyl titanate is used as a titanium source to synthesize titanium dioxide-coated ferric oxide hollow spheres. The method provided by the invention is simple and mild, and the reaction temperature is low, and the thickness of the titanium dioxide coating layer can be adjusted by changing the added amount of tetrabutyl titanate.
Description
技术领域 technical field
本发明涉及无机半导体复合材料,具体的是一种二氧化钛包覆三氧化二铁空心球的制备方法。 The invention relates to an inorganic semiconductor composite material, in particular to a preparation method of titanium dioxide-coated ferric oxide hollow spheres.
背景技术 Background technique
由于纳米TiO2具有良好的化学稳定性、抗磨损性、低成本以及可直接利用太阳光等优点,而在光电转换、化学合成以及光催化氧化环境污染物等方面具有广阔的应用前景,但由于TiO2光催化剂带隙较宽 (Eg=3.2 eV,λ=387 nm),只有在λ<387 nm的紫外线激发下,价带电子才能跃迁到导带上形成光生电子和空穴,而且,由于光激发产生的电子和空穴的复合,导致光量子效率很低,为克服这些缺点,人们在提高其可见光催化活性和催化效率、有效利用太阳能等方面进行了大量的深入研究,采取多种手段对TiO2进行改性,使TiO2的响应光谱向可见光扩展,并且有效抑制电子-空穴的复合,提高纳米TiO2的光催化效率。 Due to the advantages of good chemical stability, wear resistance, low cost, and direct use of sunlight, nano-TiO 2 has broad application prospects in photoelectric conversion, chemical synthesis, and photocatalytic oxidation of environmental pollutants. TiO 2 photocatalyst has a wide band gap (Eg=3.2 eV, λ=387 nm), and only under the excitation of ultraviolet rays with λ<387 nm, electrons in the valence band can transition to the conduction band to form photogenerated electrons and holes. The recombination of electrons and holes generated by light excitation leads to very low photon quantum efficiency. In order to overcome these shortcomings, people have conducted a lot of in-depth research on improving its visible light catalytic activity and catalytic efficiency, and effectively using solar energy. TiO 2 is modified to extend the response spectrum of TiO 2 to visible light, effectively inhibit the recombination of electrons and holes, and improve the photocatalytic efficiency of nano-TiO 2 .
过渡金属离子掺杂可在TiO2晶格中引入缺陷位置或者改变结晶度,从而影响电子与空穴的复合,同时可能形成掺杂能级而扩展光吸收波长的范围,Fe2O3作为一种半导体材料,具有较窄的禁带宽度(Eg=2.2 eV,λ=563 nm),其吸收光谱与太阳能光谱较为匹配,可以直接利用太阳能;但是,Fe2O3空穴的寿命短,易发生光腐蚀,因此将Fe2O3和TiO2优点相结合,用Fe3+或者Fe2O3改性TiO2成为近年来的研究热点。 Transition metal ion doping can introduce defect positions in the TiO 2 lattice or change the crystallinity, thereby affecting the recombination of electrons and holes, and at the same time may form doping energy levels to expand the range of light absorption wavelengths. Fe 2 O 3 as a It is a semiconductor material with a narrow bandgap (Eg=2.2 eV, λ=563 nm), its absorption spectrum matches the solar spectrum, and it can directly use solar energy; however, the lifetime of Fe 2 O 3 holes is short, and it is easy to Photocorrosion occurs, so combining the advantages of Fe 2 O 3 and TiO 2 , modifying TiO 2 with Fe 3+ or Fe 2 O 3 has become a research hotspot in recent years.
发明内容 Contents of the invention
本发明的目的在于提供一种二氧化钛包覆三氧化二铁空心球的制备方法,通过改变钛酸四丁酯的加入量可以调节二氧化钛包覆层的厚度,本方法所制备的二氧化钛包覆三氧化二铁空心球尺寸均匀,直径在850~1100 nm,二氧化钛包覆的壳层厚度在50~100 nm之间。 The object of the present invention is to provide a method for preparing titanium dioxide-coated ferric oxide hollow spheres. The thickness of the titanium dioxide coating layer can be adjusted by changing the amount of tetrabutyl titanate added. The titanium dioxide-coated ferric oxide prepared by this method The diiron hollow spheres are uniform in size, with a diameter of 850-1100 nm, and the thickness of the titanium dioxide-coated shell is between 50-100 nm.
本发明所提供的二氧化钛包覆三氧化二铁空心球的制备方法,具体的,包括以下步骤: The preparation method of titanium dioxide-coated ferric oxide hollow spheres provided by the present invention specifically comprises the following steps:
(1)将葡萄糖溶于去离子水中,形成质量浓度为0.15~0.20 g/mL的溶液,将该溶液移入反应釜中进行水热反应,温度为160~180℃,反应时间为6~8 h,离心干燥,得到碳球模板; (1) Dissolve glucose in deionized water to form a solution with a mass concentration of 0.15–0.20 g/mL, and transfer the solution into a reactor for hydrothermal reaction at a temperature of 160–180°C and a reaction time of 6–8 h , centrifuged and dried to obtain a carbon sphere template;
(2)将氯化高铁溶解在无水乙醇和去离子水的混合溶液中,其中无水乙醇和去离子水的体积比为6: 1,铁离子的浓度为0.05~0.1 mol/L; (2) Ferric chloride is dissolved in the mixed solution of absolute ethanol and deionized water, wherein the volume ratio of absolute ethanol and deionized water is 6: 1, and the concentration of iron ions is 0.05 ~ 0.1 mol/L;
(3)将尿素溶解在上述溶液中,搅拌至溶解,其中尿素与铁离子的摩尔比为10: 1; (3) urea is dissolved in the above solution, stirred to dissolve, wherein the mol ratio of urea to iron ion is 10: 1;
(4)将步骤(1)所得的碳球模板加入步骤(3)所得的溶液中,碳球与铁离子的摩尔比为8: 1,混合均匀后转移到烘箱中60~80℃保温48小时,离心干燥; (4) Add the carbon sphere template obtained in step (1) into the solution obtained in step (3), the molar ratio of carbon spheres to iron ions is 8: 1, mix well and transfer to an oven at 60~80°C for 48 hours , centrifugal drying;
(5) 将步骤(4)所得的样品溶解在无水乙醇和去离子水的混合溶液中,其中无水乙醇和去离子水的体积比为6: 1,将钛酸四丁酯加入上述溶液中,搅拌均匀,其中钛离子与铁离子的摩尔比为1: 1~1: 2; (5) Dissolve the sample obtained in step (4) in a mixed solution of absolute ethanol and deionized water, wherein the volume ratio of absolute ethanol and deionized water is 6: 1, and tetrabutyl titanate is added to the above solution , stir evenly, wherein the molar ratio of titanium ions to iron ions is 1: 1 ~ 1: 2;
(6)将步骤(5)所得的样品在450~500℃焙烧2小时,得到二氧化钛包覆三氧化二铁空心球。 (6) Calcining the sample obtained in step (5) at 450-500° C. for 2 hours to obtain titanium dioxide-coated ferric oxide hollow spheres.
附图说明 Description of drawings
图1为实施例1所制备的三氧化二铁空心球的TEM图。 Fig. 1 is the TEM figure of the ferric oxide hollow sphere prepared in Example 1.
图2为实施例2所制备的二氧化钛包覆三氧化二铁空心球的XRD图,图中标志*为二氧化钛的特征峰,♦为三氧化二铁的特征峰。 Figure 2 is the XRD pattern of the TiO2-coated Fe2O3 hollow spheres prepared in Example 2, in which the mark * is the characteristic peak of TiO2 and ♦ is the characteristic peak of Fe2O3.
图3为实施例2所制备的二氧化钛包覆三氧化二铁空心球的TEM图。 FIG. 3 is a TEM image of titanium dioxide-coated ferric oxide hollow spheres prepared in Example 2. FIG.
图4为实施例3所制备的二氧化钛包覆三氧化二铁空心球的TEM图。 FIG. 4 is a TEM image of titanium dioxide-coated ferric oxide hollow spheres prepared in Example 3. FIG.
具体实施方式 Detailed ways
以下通过具体实施方式进一步描述本发明,由技术常识可知,本发明也可通过其它的不脱离本发明技术特征的方案来描述,因此所有在本发明范围内或等同本发明范围内的改变均被本发明包含。 The present invention will be further described below through specific embodiments. It can be seen from technical knowledge that the present invention can also be described by other solutions that do not depart from the technical features of the present invention. Therefore, all changes within the scope of the present invention or equivalent to the scope of the present invention are accepted. The present invention includes.
实施例Example 11
将6 g葡萄糖溶于40 mL去离子水中,形成质量浓度为0.15 g/mL的溶液,将该溶液移入反应釜中进行水热反应,温度为180℃,反应时间为6 h,离心干燥,得到碳球模板;将0.82 g氯化高铁溶解在56 mL无水乙醇和去离子水的混合溶液中,其中无水乙醇和去离子水的体积比为6: 1,将1.8 g尿素溶解在上述溶液中,搅拌至溶解,将0.3 g碳球模板加入上述溶液中,混合均匀后转移到烘箱中60℃保温48小时,离心干燥。所得的样品在450℃焙烧2小时去除碳球模板,得到Fe2O3空心球,对本实施例产物(Fe2O3空心球)进行透射电镜以观察其微观形貌,结果如图1所示,所制备的Fe2O3样品为尺寸均匀,直径在800~1000 nm左右的空心球形结构。 Dissolve 6 g of glucose in 40 mL of deionized water to form a solution with a mass concentration of 0.15 g/mL, transfer the solution into a reaction kettle for hydrothermal reaction at a temperature of 180 °C, and a reaction time of 6 h, then centrifuge and dry to obtain Carbon sphere template; Dissolve 0.82 g of ferric chloride in a mixed solution of 56 mL of absolute ethanol and deionized water, wherein the volume ratio of absolute ethanol and deionized water is 6: 1, and dissolve 1.8 g of urea in the above solution , stirred until dissolved, added 0.3 g carbon sphere template to the above solution, mixed evenly, transferred to an oven at 60°C for 48 hours, and was centrifuged and dried. The obtained sample was calcined at 450°C for 2 hours to remove the carbon sphere template, and Fe 2 O 3 hollow spheres were obtained. The product of this example (Fe 2 O 3 hollow spheres) was subjected to transmission electron microscopy to observe its microscopic morphology, and the results are shown in Figure 1 , the prepared Fe 2 O 3 sample is a hollow spherical structure with a uniform size and a diameter of about 800-1000 nm.
实施例Example 22
将8 g葡萄糖溶于40 mL去离子水中,形成质量浓度为0.2 g/mL的溶液,将该溶液移入反应釜中进行水热反应,温度为160℃,反应时间为8 h,离心干燥,得到碳球模板;将0.82 g氯化高铁溶解在56 mL无水乙醇和去离子水的混合溶液中,其中无水乙醇和去离子水的体积比为6: 1,将1.8 g尿素溶解在上述溶液中,搅拌至溶解,将0.3 g碳球模板加入上述溶液中,混合均匀后转移到烘箱中60℃保温48小时,离心干燥,所得的样品在500℃焙烧2小时去除碳球模板,得到Fe2O3空心球,尺寸与结构与实施例1所得的结果相似。 Dissolve 8 g of glucose in 40 mL of deionized water to form a solution with a mass concentration of 0.2 g/mL, transfer the solution into a reactor for hydrothermal reaction at a temperature of 160 °C, and a reaction time of 8 h, then centrifuge and dry to obtain Carbon sphere template; Dissolve 0.82 g of ferric chloride in a mixed solution of 56 mL of absolute ethanol and deionized water, wherein the volume ratio of absolute ethanol and deionized water is 6: 1, and dissolve 1.8 g of urea in the above solution , stirred until dissolved, added 0.3 g of carbon sphere templates to the above solution, mixed evenly, transferred to an oven at 60°C for 48 hours, and centrifuged to dry. The obtained samples were calcined at 500°C for 2 hours to remove the carbon sphere templates to obtain Fe 2 O 3 hollow spheres, the size and structure are similar to the results obtained in Example 1.
实施例Example 33
将0.48 g实施例1中所制备的未进行热处理的样品分散在56 mL无水乙醇和去离子水的混合溶液中,其中无水乙醇和去离子水的体积比为6: 1;将0.35 mL的钛酸四丁酯加入上述溶液中,使钛离子与铁离子的摩尔比为1: 2,搅拌均匀,将溶液在烘箱中60℃保温48小时,离心干燥,所得的样品在450℃焙烧2小时,得到二氧化钛包覆三氧化二铁空心球,对本实施例产物(二氧化钛包覆三氧化二铁空心球)进行X-射线粉末衍射结果如图2所示,图中标志*为二氧化钛的特征峰,♦为三氧化二铁的特征峰,所制备的样品同时出现Fe2O3 和 TiO2的特征峰,且与标准PDF卡片一致,产物为Fe2O3 和 TiO2的复合结构,对产物进行透射电镜以观察其微观形貌,结果如图3所示,产物为核-壳空心结构,且二氧化钛包覆层的厚度约为50 nm左右。 0.48 g of the sample prepared in Example 1 without heat treatment was dispersed in a mixed solution of 56 mL of absolute ethanol and deionized water, wherein the volume ratio of absolute ethanol and deionized water was 6: 1; 0.35 mL Tetrabutyl titanate was added to the above solution, so that the molar ratio of titanium ions to iron ions was 1: 2, stirred evenly, the solution was kept in an oven at 60°C for 48 hours, and dried by centrifugation, and the obtained sample was roasted at 450°C for 2 Hours, titanium dioxide-coated ferric oxide hollow spheres were obtained, and the X-ray powder diffraction results of the product of this example (titanium dioxide-coated ferric oxide hollow spheres) were shown in Figure 2. The mark * in the figure is the characteristic peak of titanium dioxide , ♦ is the characteristic peak of ferric oxide. The prepared sample has the characteristic peaks of Fe 2 O 3 and TiO 2 at the same time, which is consistent with the standard PDF card. The product is a composite structure of Fe 2 O 3 and TiO 2 . Transmission electron microscopy was carried out to observe its microscopic morphology. As shown in Figure 3, the product is a core-shell hollow structure, and the thickness of the titanium dioxide coating layer is about 50 nm.
实施例Example 44
将0.48 g实施例2中所制备的未进行热处理的样品分散在56 mL无水乙醇和去离子水的混合溶液中,其中无水乙醇和去离子水的体积比为6: 1;将0.7 mL的钛酸四丁酯加入上述溶液中,使钛离子与铁离子的摩尔比为1: 1,搅拌均匀,将溶液在烘箱中60℃保温48小时,离心干燥,所得的样品在450℃焙烧2小时,得到二氧化钛包覆三氧化二铁空心球,对本实施例产物(二氧化钛包覆三氧化二铁空心球)进行透射电镜以观察其微观形貌,结果如图4所示,产物为核-壳空心球结构,且二氧化钛包覆层的厚度约为100 nm左右。 0.48 g of the sample prepared in Example 2 without heat treatment was dispersed in a mixed solution of 56 mL of absolute ethanol and deionized water, wherein the volume ratio of absolute ethanol and deionized water was 6: 1; 0.7 mL Tetrabutyl titanate was added to the above solution, so that the molar ratio of titanium ions to iron ions was 1: 1, stirred evenly, the solution was kept in an oven at 60°C for 48 hours, and dried by centrifugation, and the obtained sample was roasted at 450°C for 2 Hours, titanium dioxide-coated ferric oxide hollow spheres were obtained, and the product of this example (titanium dioxide-coated ferric oxide hollow spheres) was subjected to a transmission electron microscope to observe its microscopic morphology. As shown in Figure 4, the product is a core-shell It has a hollow spherical structure, and the thickness of the titanium dioxide coating layer is about 100 nm.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105250165A CN103041813A (en) | 2012-12-10 | 2012-12-10 | Preparation method of titanium dioxide coated iron trioxide hollow sphere |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105250165A CN103041813A (en) | 2012-12-10 | 2012-12-10 | Preparation method of titanium dioxide coated iron trioxide hollow sphere |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103041813A true CN103041813A (en) | 2013-04-17 |
Family
ID=48054810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012105250165A Pending CN103041813A (en) | 2012-12-10 | 2012-12-10 | Preparation method of titanium dioxide coated iron trioxide hollow sphere |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103041813A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108816212A (en) * | 2018-07-10 | 2018-11-16 | 中国计量大学 | A kind of preparation method of optically catalytic TiO 2 composite material |
CN110624548A (en) * | 2019-09-26 | 2019-12-31 | 中国矿业大学(北京) | Preparation method of multistage iron oxide catalyst for removing heteroatoms in coal liquefied oil |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101628236A (en) * | 2009-08-03 | 2010-01-20 | 浙江理工大学 | Preparation method of kieselguhr load type compound photocatalyst with iron ions doped titanium dioxide |
CN101890350A (en) * | 2010-07-21 | 2010-11-24 | 江苏大学 | Preparation method and application of Fe3+ doped TiO2 hollow sphere catalyst |
-
2012
- 2012-12-10 CN CN2012105250165A patent/CN103041813A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101628236A (en) * | 2009-08-03 | 2010-01-20 | 浙江理工大学 | Preparation method of kieselguhr load type compound photocatalyst with iron ions doped titanium dioxide |
CN101890350A (en) * | 2010-07-21 | 2010-11-24 | 江苏大学 | Preparation method and application of Fe3+ doped TiO2 hollow sphere catalyst |
Non-Patent Citations (1)
Title |
---|
龚潇等: "TiO2/α-Fe2O3复合光催化剂的制备及表征", 《硅酸盐学报》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108816212A (en) * | 2018-07-10 | 2018-11-16 | 中国计量大学 | A kind of preparation method of optically catalytic TiO 2 composite material |
CN110624548A (en) * | 2019-09-26 | 2019-12-31 | 中国矿业大学(北京) | Preparation method of multistage iron oxide catalyst for removing heteroatoms in coal liquefied oil |
CN110624548B (en) * | 2019-09-26 | 2020-09-08 | 中国矿业大学(北京) | Preparation method of multistage iron oxide catalyst for removing heteroatoms in coal liquefied oil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102974373B (en) | Preparation method of visible-light photocatalytic material | |
CN109762562A (en) | A kind of CsPbX3@TiO2 nanomaterial and its preparation method and application | |
CN106914264A (en) | Preparation method of composite visible light catalyst | |
CN110203972A (en) | The preparation method of phase-M vanadium dioxide nanometre powder | |
CN105797753A (en) | A kind of MoS2/TiO2 two-dimensional composite nano photocatalyst and its preparation method and application | |
CN105417507A (en) | Preparing method for carbon nitride nano particles and obtained product | |
CN103395837B (en) | Preparation method of Bi12TiO20 powder | |
CN103191721A (en) | Method for preparing tungsten trioxide/titanium dioxide nanocomposite with core-shell structure | |
CN107115884A (en) | A kind of g C3N4/TiO2Nano wire package assembly photochemical catalyst and preparation method thereof | |
CN108889324A (en) | A kind of synthetic method of molybdenum disulfide-carbonitride optic catalytic composite material | |
CN108435176A (en) | A kind of Fe2O3 doping TiO2Octahedron nanometer particle and preparation method thereof | |
CN104310466B (en) | A kind of hollow titanium dioxide microballoon based on gel ball presoma and preparation method thereof | |
CN106925304A (en) | Bi24O31Br10/ ZnO composite visible light catalysts and preparation method thereof | |
CN104772136A (en) | Pucherite as well as preparation method and application of pucherite | |
CN108144623A (en) | A kind of nanometer cobalt acid lanthanum material and preparation method thereof | |
CN103816897B (en) | Titanium dioxide-Yin complex nucleus shell structure ball and its production and use | |
CN106622293A (en) | A kind of preparation method of H-TiO2/CdS/Cu2-xS nanobelt | |
CN105478153B (en) | A kind of CeVO4/Ag/g‑C3N4Composite photo-catalyst and preparation method thereof | |
CN108212187B (en) | Preparation method of Fe-doped Bi2O2CO3 photocatalyst and Fe-doped Bi2O2CO3 photocatalyst | |
CN108772094A (en) | A kind of nitridation carbon quantum dot/TiO 2 sol and preparation method thereof | |
CN108579773B (en) | A kind of perovskite-based composite nano materials and preparation method and purposes | |
CN106881118B (en) | A kind of method of ion-exchange synthesis heterojunction photocatalyst | |
CN103041813A (en) | Preparation method of titanium dioxide coated iron trioxide hollow sphere | |
CN100453165C (en) | Nano titanium dioxide/selenium dioxide composite and its preparation method | |
CN101696109B (en) | Method for preparing mesoporous titanium dioxide microspheres |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130417 |