CN1030350C - Measurement of dam flood-discharge atomizing concentration by nuclear method - Google Patents

Measurement of dam flood-discharge atomizing concentration by nuclear method Download PDF

Info

Publication number
CN1030350C
CN1030350C CN 93107797 CN93107797A CN1030350C CN 1030350 C CN1030350 C CN 1030350C CN 93107797 CN93107797 CN 93107797 CN 93107797 A CN93107797 A CN 93107797A CN 1030350 C CN1030350 C CN 1030350C
Authority
CN
China
Prior art keywords
ray
measuring
γ
β
detection system
Prior art date
Application number
CN 93107797
Other languages
Chinese (zh)
Other versions
CN1078804A (en
Inventor
曹更新
程和森
李樟苏
Original Assignee
水利部交通部能源部南京水利科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水利部交通部能源部南京水利科学研究院 filed Critical 水利部交通部能源部南京水利科学研究院
Priority to CN 93107797 priority Critical patent/CN1030350C/en
Publication of CN1078804A publication Critical patent/CN1078804A/en
Application granted granted Critical
Publication of CN1030350C publication Critical patent/CN1030350C/en

Links

Abstract

一种采用γ射线或β射线测量大坝泄洪雾化浓度的方法。 One kind of β rays or γ-ray measuring method using a dam spillway fog density. 其步骤是先在室内进行标定试验,测量γ射线与β射线的净水与净气计数率,找出含水量与计数率的关系,实测时在现场做好断面选择,将探测系统置入事先选定的位置及测点,进行γ、β射线的计数率测量,即可计算出各测点的雾化浓度。 Which is the first step in the test laboratory calibration, measurement of γ ray and the β ray with the net gas purification count rate, to identify the relationship between water content and count rates, good cross-section when measured at the site selected, advance into the detection system and measuring the position of the selected point, a γ, β ray count rate measurements, the fog density can be calculated for each measuring point.

Description

本发明属于利用核子技术进行测量以研究或分析材料,特别涉及一种用γ射线或β射线测量雾化场内水雾浓度的方法。 The present invention pertains to the use of nuclear technology for measuring or analyzing materials research, in particular, relates to a method of measuring γ-rays or β rays field atomized mist concentration used.

水电站大坝泄洪,在坝区附近会形成雾化场,雾化场内雨雾浓度分布不均,大到暴雨状和强暴雨状。 Dam spillway, dam formed around the spray field, uneven distribution of atomized fog field concentration, heavy rain and strong storm like shape. 这一现象对坝区周围环境会造成恶劣影响,严重的会使厂房倒塌、公路塌陷、电厂跳闸,甚至出现人身事故。 This phenomenon surrounding the dam will cause adverse effects, serious cause the plant collapsed, roads collapsed, tripping power plants, and even personal injury. 对于雾化场的研究,对雾化原因分析以及对雾化灾害的预防研究,均需对大坝泄洪形成雾化的机理加以研究,这就需要对泄洪形成的雾化场内的雨雾浓度进行观测。 For the research field of atomization, atomization cause analysis and research on the prevention of disasters atomization, atomization of the mechanism required to study the formation of the dam spillway, which requires concentration and fog spray spillway venue be formed observation. 由于雾化场的三维空间内各点的雾化浓度是不均匀的,更主要的是泄洪时水流的流速和流量十分巨大,雾化区域内危险性大,测量人员不能靠近观测点,因而迄今为止,尚无有效的技术和方法能很好地解决这一测试难题。 Since the fog density of each point in three-dimensional space is not uniform spray field, more important is the flow velocity and flow spillway very large, the atomization region dangerous, surveyors can not close observation point, so far So far, no effective techniques and methods can solve the problem of testing.

目前,水电站大坝泄洪雾化浓度的测量,仅限于采用常规雨量计,或者模拟雨量计的铁皮桶容器,固定安装在坝区附近地面或山崖上选择的若干测点,测定整个泄洪过程雾化的总水量。 Currently, discharge atomization dam concentration measured in a conventional vessel using the metal bucket rain gauge, or only the analog gauges fixedly mounted a plurality of measurement points on the ground near the dam area or cliff selected, the entire measurement process atomization Spillway the total amount of water. 因而它只能给出布置测点的总水量,而无法得知泄洪过程中水雾浓度及其变化情况,更不能得知雾化场三维空间其它所需测点的水雾浓度数据。 It can thus give a total water volume of the measuring point is arranged, and can not know the concentration of the mist during its spillway changes, but can not know other desired mist density data field measuring point atomization three-dimensional space. 在实际测量中,还会出现水桶(或雨量计)积水量远远超过水桶容积溢出容器,而无法测出水量,或者水桶被强暴雨冲翻、冲毁,而得不到测试资料。 In actual measurement, there will be a bucket (or rain gauge) the amount of water far exceeding the volume of the bucket overflow container, but can not measure the amount of water, or a bucket by torrential rain turned red, destroyed, and lack of test data.

而采用核子方法进行测量在其它领域尚有应用,如采用γ射线吸收法测量土壤密度、淤泥密度,采用β射线吸收法测量纸张厚度、玻璃厚度。 The use of nuclear measurement method still used in other fields, such as soil density measurement using γ-ray absorption method, mud density, measured using the sheet thickness, the thickness of the glass β-ray absorption method. 但它们的探测系统是不能应用于测量雾化浓度的。 But they can not be applied to the detection system of the measurement of the fog density.

本发明的目的就是要用核子方法测量大坝泄洪雾化浓度。 The object of the present invention is to use nuclear discharge atomization method for measuring the concentration of the dam.

本发明的构思是利用γ-射线吸收法及β-射线吸收法,通过测量水雾密度,测量雾化浓度数据。 The inventive concept is the use of β- and γ- rays absorption-ray absorption method, by measuring mist density, fog density measurement data. 其测量原理是:当γ射线或β射线穿透物质时,会被物质吸收,并遵循公式:I=IO·e-μmpo式中Io为γ(或β)射线的初始强度;I为被物质吸收以后的γ(或β)射线强度;μm为物质对γ(或β)射线的质量吸收系数;ρ为物质密度,对雾化水量来说也反映雾化浓度;d为探测器及与放射源距离,也称源距。 The measurement principle is: When gamma] rays or beta] rays penetrate the material, the material will be absorbed, and follows the formula: I = IO · e-μmpo wherein Io is gamma] (or beta]) initial intensity radiation; is a substance of the I after absorption of gamma] (or beta]) ray intensity; gamma] [mu] m for the quality (or beta]) radiation absorption coefficient of the material; [rho] is the density of the material, the atomization of water is also reflected in the fog density; d is the radiation detector, and source distance, also known as source distance. 由此,只要固定放射源(γ或β)、探测器及源距d,制成探测系统,并将探测系统置入测试雾化浓度的测点,就可以通过对γ(或β)射线强度的测量,得知该测点的雾化浓度数据。 Thus, as long as the fixed radiation source (gamma] or beta]), and a source detector distance d, the detection system is made, and the detection system into the fog density measurement test points, can by gamma] (or beta]) beam intensity measurement, the data that the fog density measurement points.

由于物质对β射线的吸收能力远大于对γ射线的吸收能力,因而在大坝泄洪雾化浓度测量中,在雾化浓度强的区域(暴雨区或强暴雨区),选用γ射线探测系统,而在薄雾区选用β射线探测系统。 Since the absorption capacity of the material is much greater than β radiation of γ-rays absorption capacity, thus measuring the concentration dam discharge atomization, the atomization strong concentration region (region or torrential rain storm area), the choice of γ ray detection system, in the selection region mist β ray detection system.

图1为本发明所采用的γ射线探测系统的结构形式示意图,探测系统为框架结构,其中框架1的一侧安装γ射线源2,采用镅-241点状源;另一侧安装γ射线探测器3,探测器3由碘化钠(或铊)晶体与光电倍增管组成;探测器3测量γ射线4所产生的信号,经信号电缆5送至记录仪器;探测器3接收的γ射线强度决定于进入框架1内的水雾6的浓度,因而探测器3的输出信号仅与测试框架1内的水雾浓度有关。 Structure γ ray detection system of Figure 1 employed in the present invention, a schematic diagram of the acquisition system frame structure, wherein one side of the frame 1 is mounted γ-ray source 2, americium-241 using point source; γ-ray detector mounted on the other side 3, the detector 3 by the sodium iodide (thallium) crystal and the photo multiplier tube composition; signal probe 3 measurement ray 4 generated gamma], 5 via the signal cable to the recording apparatus; gamma] ray intensity received by the detector 3 6 into the mist concentration determined in the frame 1, and thus the detector output signal 3 is only related to the mist concentration in a test frame.

图2为本发明所采用的β射线探测系统的结构示意图,探测系统仍为一框架结构,其中框架7一侧安装β射线源8,采用锶-90平面源,面积为7×7cm2;另一侧安装β探测器9,由塑料闪烁体与光电倍增管组成。 Structure diagram, β-ray detection system, the detection system used in the present invention. FIG. 2 is still a frame structure, wherein the side of the mounting frame 7 8 β-ray source, the use of strontium-90 source plane, an area of ​​7 × 7cm2; other side mounting β detector 9, a plastic scintillation body and the photo multiplier tubes. 同样,探测器9测量β射线10所产生的信号经跟随器13和信号电缆11送至记录仪器。 Similarly, β-ray detector 9 measures the signal 10 generated by the follower 13 and the signal cable 11 to the recording apparatus. 探测器9接收的β射线强度决定於进入框架1的水雾12的浓度。 Β-ray intensity received by the detector 9 is determined by the concentration of the mist into the frame 12 1. 因而探测器9的输出信号仅与测试框架1内的水雾浓度有关。 Thus the output signal from the detector 9 is only related to the mist concentration in a test frame.

本发明所述测量方法的具体步骤为:(1)校验仪器:将上述的探测系统配合常规射线记录仪,进行γ、β射线测试试验,以选定各探测器的工作点,即选定光电倍增管的工作电压和选定探测信号幅度的阀电压,並测定测试系统工作的稳定性能。 The measuring method of the present invention is the specific steps: (1) calibration equipment: The above-described conventional radiation detection system with recorder, for γ, β ray test trials, each at a selected operating point of the detector, i.e., the selected photomultiplier tube operating voltage and the selected voltage detection signal amplitude of a valve, and determining the stability of the test system.

(2)室内标定:用上述的探测系统测试不同水雾浓度条件下的射线计数率。 (2) laboratory calibration: Test ray count rate at different concentrations with the above-described mist detection system. γ射线计数率N与雾化浓度M的关系为M=(InN0-InN)/InN0-ImN水(公式1),由于探测的γ射线计数率随水雾浓度呈指数变化,故只需测出雾化浓度为0(净气)的计数率N0,与全部雾化,即雾化浓度为100%(净水)的计数率N水。 N relationship γ ray count rate and the fog density of M is M = (InN0-InN) / InN0-ImN water (Equation 1), since the detected γ ray count rate changes exponentially with concentration of the mist, so just measured the fog density is 0 (clean gas) N0 count rate, and atomization all, i.e. 100% concentration atomization (clean water) count rate N water. 对于β射线测量,其射线计数率N与雾化浓度M的关系为KM=InN0/N(公式2),首先测出雾化浓度为0(净气)的β射线计数率N0,再使用滤纸均匀吸附一定量水份,在上述β射线探测系统框架内改变浸水滤纸层厚,探测β射线计数率N的变化,以确定框架内水量与计数率关系曲线,得出曲线常数K。 For the β-ray measurements, which relationship ray count rate N and M fog density is KM = InN0 / N (Equation 2), first measured fog density is 0 (clean gas) N0 β ray count rate, then using a filter paper a uniform amount of adsorption of water, soaking the filter paper layer thickness change, detecting β ray count rate changes within said N β ray detection system framework, the framework to determine the amount of water and the count rate curve, the curve constants derived K.

(3)选择测点:根据泄洪现场水电站大坝、泄洪洞等水工建筑物的布置,分析泄洪落水点位置、浓雾区位置及雾化场范围。 (3) Select the measuring points: The arrangement of hydraulic structures dam spillway tunnel spillway other site station, of Release Dropping position, and the position of the spray mist zone field range. 在浓雾区域由于测量人员无法靠近现场,即采用固定绳索选择若干测量断面,用混凝土浇筑断面线的固定点,以便在断面线上安装γ射线探测系统,并在断面上选择测量垂线位置和在测线上选择测点位置。 Since the measurement area in the fog-site personnel can not close, i.e., to select a fixed number of measurement cable section, with a concreting section line fixed point, so that γ-ray detection system is mounted in the line section, and to select the measurement location on the vertical cross section and select the measuring point measured in line. 在薄雾区选择若干测点、并做好标记,实际测量时供观测人员携带仪器及β射线探测器在测试点用竹杆控制探测器高程进行雾化浓度测量。 Selecting a number of measurement points in the mist zone and marked to, apparatus for carrying observers β-ray detector and the test probe point height control bamboo poles atomizing concentration measurement time of actual measurement.

(4)现场空白试验:由於大坝泄洪时,水流量大,流急,十分危险,为保证泄洪时现场测量的安全,并可靠的取得测试资料,在正式泄洪放水以前,没有洪水的条件下,将所有测量装置按照正式泄洪时的测量要求安装好,进行探测器选点操作和γ射线、β射线的测量操作,检查各方面配合情况、探测系统运行情况,如发现问题即时解决,以保证正式泄洪测试时安全可靠准确无误。 Since the spillway at the dam, the water flow, current is swift, very dangerous, in order to ensure safety when flood field measurements and obtain reliable test data, turn on the water before the official flood, there is no flood conditions: (4) field blank , all measuring apparatus according to claim spillway formal measurement installed, and the operating point for the detector is selected from γ-rays, beta] ray measuring operation, checking the fit aspects of detection system operation, such as problem solving for real time, to ensure safe and reliable accuracy of the official flood test.

(5)实际泄洪观测:经过现场准备工作以后,水电站大坝泄洪放水时,核子方法即可正式投入雾化浓度测量。 (5) the actual flood observation: After site preparation work later, turn on the water when the dam spillway, nuclear methods can be put into the fog density measurement. 在浓雾区用绳索将γ射线探测系统送至测试区域,用专用绳索控制探测器的位置和高程,在选择的测量断面上的固定垂线上循迴选点进行雾化浓度测量。 In the fog-zone rope γ ray detection system to the test area, with a special rope and elevation position of the control probe, through the back fog density measurement points selected from the fixed vertical section on the selected measurement. 雾化浓度信号经电缆5(如图1所示)输送至雾区以外的记录仪,可以记录雾区内不同断面、不同垂线和不同测点在不同泄洪时间的雾化浓度。 Fog density signal is supplied via a cable 5 (Figure 1) to the recorder other than the fog area, the fog density can be recorded in different sections, and different vertical mist zone at different points of time different spillway. 在薄雾区,测试人员携带测试仪器及探测器,对选定的固定测点,循迴做不同高程位置的雾化浓度测量。 In the mist area, the test equipment and personnel to carry test probes, the selected fixed measuring point, the fog density measurement made through the back elevation different positions.

(6)数据整理分析:将实测得的γ射线和β射线计数率分别代入上述公式1或公式2,即可得知不同测点的雾化浓度,将各测点不同时间所测量的雾化浓度数据进行整理,用作标图表示,即可得泄洪过程中各个测点雾化浓度随泄洪时间的变化过程,及各测点的雾化浓度分布图。 (6) the data arrangement Analysis: Found obtained γ rays and β ray count rates are substituted into Equation 1 or Equation 2 described above, the fog density can know of different points, each measuring point is measured at different times of atomization sort concentration data, as represented by plot, to obtain the respective measuring point with fog density change process spillway time, the fog density profile and each measuring point during spillway.

图1为本发明所采用的γ射线雾化探测系统结构示意图。 Ray detection system structural diagram of atomization γ 1 of the present invention is employed.

图2为本发明所采用的β射线雾化探测系统结构示意图。 Β-ray structural diagram of FIG. 2 atomizer detection system employed in the present invention.

图3为本发明实施例1中所选测量断面上某测线上各测点雾化浓度分布图。 FIG 3 the measuring point measured fog density profile of a line of the selected measurement section in Example 1 of the present invention.

图4为本发明实施例1中所选测量断面上某测线上各测点在泄洪过程中雾化浓度随时间变化分布图。 FIG 4 embodiment a measuring line on the selected measurement section measuring point in one case atomizing concentration profile over time Discharge process of the present invention.

图5为本发明实施例2薄雾区中各测点雾化浓度分布图。 FIG 5 the measuring point atomized mist concentration profile region 2 in the embodiment of the present invention.

图6为为本发明实施例1中所选测量断面各测线及各测点布置图。 FIG 6 is a cross-section selected measurement in Example 1 and each line of measuring points each measuring arrangement of the invention embodiment of FIG.

实施例1.在浓雾区某一观测断面上,采用γ射线探测系统进行测量,如图1所示,探测器3选用碘化钠晶体与光电倍增管(GDB-23)相配合,应用镅-241点状源,通过室内标定测得γ射线净气计数率N0、净水计数率N水分别为N0=105492.4、N水=1843。 Example 1. In the observation of a cross section area fog, using γ-ray detection system is measured, shown in Figure 1, the choice of a sodium iodide crystal detector 3 and a photomultiplier tube (GDB-23) cooperating application americium -241 point source, the radiation count rate of net gas N0 measured by laboratory calibration gamma], water purification counting rate N are N0 = 105,492.4, water N = 1843. 在观测断面上选择若干测量垂线,可用绳索14固定断面两端,如图6所示,再用滑轮在绳索上运行至所定测线位置,再控制探测器高度至所要求的测点位置,在每个测量垂线上分别选择上、中、下3个测点,分别在泄洪闸门开度为1/5、3/5、5/5时对其进行测量,得知各测点的γ射线计数率N,将它们分别代入上述公式1,即可计算出各测点的雾化浓度M,例如某一测线的测量数据如下:闸门开度 1/5时间 15∶10测点 上 中 下计数率N 103788 103978 103871雾化浓度M 4‰ 3.6‰ 3.8‰ Selected on several measurement vertical cross-section observation, a rope 14 is fixed to both ends of the available cross section, as shown in FIG. 6, the pulley and then moves to a predetermined position of the measuring line on the rope, and then control the height of the probe to the desired measuring point, were selected on each vertical measurement, in the next three measuring points, respectively, in the sluice gate opening is 1 / 5,3 / 5,5 / 5:00 to measure it, that each measuring point γ ray count rate N, which are substituted into the above formula 1, the fog density can be calculated for each measuring point M, for example, measurement data for a survey line as follows: 1/5 of the gate opening time 15:10 on the measuring point the counting rate 103 788 103 978 103 871 fog density N M 4 ‰ 3.6 ‰ 3.8 ‰

闸门开度 3/5时间 15∶35测点 上 中 下计数率N 103436 103728 103251雾化浓度M 4.9‰ 4.2‰ 5.3‰闸门开度 5/5时间 15∶50测点 上 中 下计数率N 102888 102760 102510雾化浓度M 6.2‰ 6.5‰ 7.1‰将以上数据用坐标图表示,即得到该测线的雾化浓度随深度变化的分布图,如图3所示。 In the gate opening time 15:35 measuring points at 3/5 rate count under N 103436 103728 103251 N 102888 atomizing count rate concentration M 4.9 ‰ 4.2 ‰ 5.3 ‰ gate opening time 15:50 measuring point 5/5 fog density 102 760 102 510 M 6.2 ‰ 6.5 ‰ 7.1 ‰ data represented by the graph above, to obtain the fog density of the survey line changes with depth profile, as shown in FIG. 同样,将测量时间代入坐标图即得到该测线在泄洪过程中雾化浓度随时间T的变化情况,如图4所示,图中双点划线为上测点,虚线为中测点,实线为下测点。 Similarly, the measurement time is substituted into the graph to obtain the fog density variation over time of the measured process Discharge line T, as shown, the double-dashed line in FIG upper measuring point, the measuring point of the broken line 4, the solid line for the next measuring point.

实施例2.在薄雾区由测试人员携带β射线探测器到预定各测点进行测量。 2. Example of the measuring point measured to a predetermined region in the mist is carried by the β-ray detector testers. 如图2所示,β射线源采用β平面源锶-90,探测器9为塑料闪烁体与GDB-28光电倍增管相配合。 2, radiation source is beta] beta] plane of strontium-90 source, 9 is a plastic scintillator detector with a photomultiplier tube GDB-28 mate. 室内标定,测得β射线探测净水计数率N0=95728.7,利用滤纸湿水测得水雾浓度M与β射线计数率N关系曲线常数K=2.88。 Laboratory calibration, the measured count rate β ray detection purification N0 = 95728.7, measured using a filter paper wet water mist M and the curve of constant concentration of β ray count rate N relationship K = 2.88. 分别在闸门开度为1/5、3/5、5/5时在各预定测点进行测量,测得其β计数率N,代入上述公式2,即可得知各测点的雾化浓度,数据如表1,其中含水量即为雾化浓度。 1, respectively, the gate opening / 5,3 / 5,5 for / 5 measured at each predetermined measuring point, the count rate measured obtaining β N, into the above equation 2, the fog density can be learned for each measuring point The data in table 1, wherein the water content is the fog density. 制作坐标图(如图5所示),图中曲线即表示了薄雾区内沿各测点的雾化浓度变化,横坐标数字为各测点号。 Production graph (Figure 5), i.e., the curve represented in FIG mist atomizing zone in the concentration of the measuring point and the abscissa of each point of the digital number.

表1 β射线测量雨雾浓度工程名称:鲁布革水电站泄洪雾化原观 测量日期:92.9.30 天气:晴-雨-大雨仪器:FH-448能谱仪 测量方式:选点测量 仪器读数时间:30″序号时间测点号位置高度计数平均计数N0/N 含水量备注(米) NN(‰)1 15:00 9 5 95785 95412 1.003 0.1‰ 1/5开度950392 0.5 89600 89072 1.075 2.2‰885433 15:03 10 5 88325 88086 1.087 2.4‰878454 0.5 88954 88066 1.087 2.4‰871775 15:06 11 5 89822 89826 1.066 1.8‰898306 0.5 89780 89482 1.070 1.9‰891837 15:09 12 5 89067 88831 1.078 2.2‰885948 0.5 88816 88620 1.080 2.2‰884249 15:12 13 5 87014 85968 1.114 3.1‰8492110 0.5 85942 86800 1.103 2.8‰8665811 15:15 14 5 88630 88721 1.079 2.2‰8881112 0.5 87350 87415 Table 1 β-ray measurements of rain and fog concentration Project Name: Lubuge discharge atomization hydropower original observations Date: 92.9.30 weather: sunny - rain - rain Instrument: FH-448 spectrometer measurements: the choice of site measuring instrument reading time: 30 "serial No. time measuring point average height position counter counts N0 / N Notes moisture content (m) NN (‰) 1 15:00 9 5 95785 95412 1.003 0.1 ‰ 1/5 opening degree 950392 0.5 89600 89072 1.075 2.2 ‰ 885433 15 : 03 10 5 88325 88086 1.087 2.4 ‰ 878454 0.5 88954 88066 1.087 2.4 ‰ 871775 15:06 11 5 89822 89826 1.066 1.8 ‰ 898306 0.5 89780 89482 1.070 1.9 ‰ 891837 15:09 12 5 89067 88831 1.078 2.2 ‰ 885948 0.5 88816 88620 1.080 2.2 ‰ 884249 15:12 13 5 87014 85968 1.114 3.1 ‰ 8492110 0.5 85942 86800 1.103 2.8 ‰ 8665811 15:15 14 5 88630 88721 1.079 2.2 ‰ 8881112 0.5 87350 87415 1.095 2.6‰8748013 15:17 15 5 87404 87361 1.095 2.6‰8731814 0.5 86213 85862 1.114 3.1‰85511 1.095 2.6 ‰ 8748013 15:17 15 5 87404 87361 1.095 2.6 ‰ 8731814 0.5 86213 85862 1.114 3.1 ‰ 85511

序号时间测点号位置高度计数平均计数N0/N 含水量备注(米) NN(‰)1 15:22 15 5 84735 84534 1.132 3.6‰ 3/5开度843332 0.5 84157 82996 1.153 4.1‰818533 14 5 80671 80812 1.185 4.9‰809534 0.5 80470 79617 1.202 5.3‰787635 13 5 80810 80492 1.189 5.0‰801746 0.5 82551 82556 1.160 4.3‰825617 12 5 82452 82379 1.161 4.3‰823068 0.5 83646 83794 1.143 3.8‰839419 10 5 83753 83625 1.144 3.9‰8349610 0.5 85067 85146 1.124 3.4‰8522511 9 5 85407 85664 1.117 3.2‰8592012 0.5 85844 85753 1.116 3.2‰8566113 8 5 85933 85972 1.114 3.1‰8601114 0.5 85115 84871 1.127 3.5‰84627 No. Time measuring point height position count number average count N0 / N Notes moisture content (m) NN (‰) 1 15:22 15 5 84735 84534 1.132 3.6 ‰ 3/5 opening degree 843332 0.5 84157 82996 1.153 4.1 ‰ 818533 14 5 80671 80812 1.185 4.9 ‰ 809534 0.5 80470 79617 1.202 5.3 ‰ 787635 13 5 80810 80492 1.189 5.0 ‰ 801746 0.5 82551 82556 1.160 4.3 ‰ 825617 12 5 82452 82379 1.161 4.3 ‰ 823068 0.5 83646 83794 1.143 3.8 ‰ 839419 10 5 83753 83625 1.144 3.9 ‰ 8349610 0.5 85067 85146 1.124 3.4 ‰ 8522511 9 5 85407 85664 1.117 3.2 ‰ 8592012 0.5 85844 85753 1.116 3.2 ‰ 8566113 8 5 85933 85972 1.114 3.1 ‰ 8601114 0.5 85115 84871 1.127 3.5 ‰ 84627

序号时间测点号位置高度计数平均计数N0/N 含水量备注(米) NN(‰)1 15:44 8 5 84391 84245 1.136 3.7‰ 全开(5/5)840992 0.5 83643 83517 1.147 3.9‰833903 9 5 83912 83469 1.147 3.9‰830254 0.5 83765 83551 1.147 3.9‰833365 10 5 84431 83730 1.143 3.8‰830296 0.5 84756 84719 1.130 3.5‰846827 11 5 85774 85347 1.121 3.3‰849198 0.5 84628 84426 1.134 3.6‰842239 12 5 82035 82263 1.164 4.4‰8249110 0.5 82851 82405 1.161 4.3‰8195911 13 5 82075 81551 1.174 4.6‰8112712 0.5 80537 80714 1.186 4.9‰8089113 14 5 81357 81124 1.181 4.8‰8089114 0.5 79777 79624 1.202 5.3‰7947115 5 80707 80568 1.188 5.0‰804290.5 80095 79593 1.203 5.3‰79091 No. Time measuring point height position count number average count N0 / N Notes moisture content (m) NN (‰) 1 15:44 8 5 84391 84245 1.136 3.7 ‰ full (5/5) 840992 0.5 83643 83517 1.147 3.9 ‰ 833903 9 5 83912 83469 1.147 3.9 ‰ 830254 0.5 83765 83551 1.147 3.9 ‰ 833365 10 5 84431 83730 1.143 3.8 ‰ 830296 0.5 84756 84719 1.130 3.5 ‰ 846827 11 5 85774 85347 1.121 3.3 ‰ 849198 0.5 84628 84426 1.134 3.6 ‰ 842239 12 5 82035 82263 1.164 4.4 ‰ 8249110 0.5 82851 82405 1.161 4.3 ‰ 8195911 13 5 82075 81551 1.174 4.6 ‰ 8112712 0.5 80537 80714 1.186 4.9 ‰ 8089113 14 5 81357 81124 1.181 4.8 ‰ 8089114 0.5 79777 79624 1.202 5.3 ‰ 7947115 5 80707 80568 1.188 5.0 ‰ 804290.5 80095 79593 1.203 5.3 ‰ 79091

Claims (1)

1.一种用核子方法测量大坝泄洪雾化浓度的方法,其特征是它在雾化浓度强的区域采用γ射线探测系统进行测量,在薄雾区采用β射线探测系统,γ射线探测系统的结构为框架结构,其结构是框架(1)的一侧安装γ射线源(2),采用镅-241点状源,另一侧安装γ射线探测器(3),探测器(3)由碘化钠(或铊)晶体与光电倍增管组成,探测器(3)测量γ射线(4)所产生的信号,经信号电缆(5)送至记录仪器,β射线探测系统的结构仍为一框架结构,其结构是框架(7)一侧安装β射线源(8),采用锶-90平面源,另一侧安装β探测器(9),由塑料闪烁体与光电倍增管组成,探测器(9)测量β射线(10)所产生的信号,经跟随器(13)和信号电缆(11)送至记录仪器,本发明所述方法的具体测量步骤是:步骤一,校验仪器:将上述的探测系统配合常规射线记录仪,进行γ、β射线测试试验,即选定各探测 1. A method for measuring the concentration of the dam spillway by nuclear atomizing method, characterized in that it uses gamma] ray detection system is measured in a region of strong fog density, β ray detection system employed in the mist zone, gamma] ray detection system the structure is a frame structure, which is the side of the frame structure (1) is mounted γ-ray source (2), americium-241 using point source, γ-ray detector mounted on the other side (3), the detector (3) sodium iodide (thallium) crystal and photomultiplier tubes, the detector (3) the measurement signal γ rays (4) generated by the signal cable (5) to the recording apparatus, the structure of β ray detection system is still a frame structure is a frame structure (7) β-ray source side of the mounting (8), strontium-90 using a plane source, the other side of the mounting β detector (9), a plastic scintillator and photomultiplier tubes, detectors the generated signal (9) β ray measurement (10), via the follower (13) and signal cables (11) to the recording apparatus, particularly the method of the present invention the measuring step is: a step, calibration equipment of: with the above-described conventional radiation detection system logger, a γ, β ray test trials, i.e., each of the selected probe 的工作点,测定测试系统工作的稳定性能;步骤二,室内标定:用上述的探测系统测试不同水雾浓度条件下的射线计数率,采用γ射线测量时,测出雾化浓度为0时的γ射线计数率N0和雾化浓度为100%时的γ射线计数率N水,γ射线计数率N与雾化浓度M的关系为M=(InNO-InN)/InNo-ImN水,当采用β射线测量时,其射线计数率N与雾化浓度M的关系为KM=InNo/N,首先测出雾化浓度为O的β射线计数率No,再使用滤纸均匀吸附一定量水份,在上述β射线探测系统框架内改变浸水滤纸层厚,探测β射线计数率N的变化,得出曲线常数K;步骤三,选择测点:根据泄洪现场水电站大坝、泄洪洞等水工建筑物的布置,分析泄洪落水点位置、浓雾区位置及雾化场范围,在浓雾区域,采用固定绳索选择若干测量断面,用混凝土浇筑断面线的固定点,在断面线上安装γ射线探测系统,并在断面 Operating point, measuring the performance of the test system stability; step two, indoor calibration: ray count rate when tested at different concentrations using the above-described mist detection system that uses γ-ray measurements, measure the fog density is 0 γ ray count rate and the fog density N0 of γ ray count rate of 100% aqueous N, N relationship γ ray count rate and the fog density of M is M = (InNO-InN) / InNo-ImN water, when using β measuring radiation, its relationship with the atomizing ray count rate N M concentration of KM = InNo / N, first measure the concentration of β atomizing ray count rate of O No, then using a filter paper uniformly adsorbed moisture amount, in the β ray detection system within the framework of flooding the filter paper layer thickness change, detecting β ray count rate N changes, the constant K obtained curves; step three, selected measuring points: the arrangement of hydraulic structures dam spillway spillway dong Station site analysis Spillway Dropping position, and the position of the spray mist zone field range, in the fog area, select a number of fixed measuring rope section, with a concreting section line fixed point, γ-ray detection system mounted in the line section, and in section 选择测量垂线位置,在测线上选择测点位置,在薄雾区选择若干测点,做好标记,实际测量时观测人员携带仪器及β射线探测器在测试点用竹杆控制探测器高程进行雾化浓度测量;步骤四,现场空白试验:在正式泄洪放水以前,没有洪水的条件下,将所有测量装置按照正式泄洪时的测量要求安装好,进行探测器选点操作和γ射线、β射线的测量操作,检查各方面配合情况、探测系统运行情况,发现问题及时解决;步骤五,实际泄洪观测:在浓雾区,用绳索将γ射线探测系统送至测试区域,用专用绳索控制探测器的位置和高程,在选择的测量断面上的固定垂线上循迥选点进行雾化浓度测量,雾化浓度信号经电缆(5)输送至雾区以外的记录仪,记录雾区内不同断面、不同垂线和不同测点在不同泄洪时间的雾化浓度,在薄雾区测试人员携带测试仪器及探测器 Measuring selected vertical position, the position of the measuring point selected survey line, selecting a number of measuring points in the mist zone and marked to carry equipment and observers β-ray detector at the time of actual measurement test probe point height control bamboo poles atomization concentration measurement; step 4 field blank: before formal drainage spillway, the absence of flooding, all measuring apparatus according to claim spillway formal measurement installed, and the operating point for the detector is selected from γ-rays, beta] ray measuring operation, to check with the various aspects of the operation, the detection system, identify problems solved; step 5 spillway actual observation: in the fog area, with a rope to the γ-ray detection system test area, dedicated control rope probe the position and elevation, through the fixed section perpendicular to the measuring point is selected from the selected regression concentration measurement atomizing, fogging density signals via a cable (5) to the recorder other than the fog area, the recording area different fog section, and the different vertical fog density at different points of time different spillway, the mist carrying region tester and test equipment probes ,对选定的固定测点,循迥做不同高程位置的雾化浓度测量;步骤六,数据整理分析:将实测得的γ射线和β射线计数率分别代入公式M=(InNo-InN)/InNo-ImN水,式公式KM=InNo/N中,即可得知不同测点的雾化浓度,将各测点不同时间所测量的雾化浓度数据进行整理,用作标图表示,即可得泄洪过程中各个测点雾化浓度随泄洪时间的变化过程,及各测点的雾化浓度分布图。 , The selected fixed measuring point, follow utterly different height positions do fog density measurement; six step, the data arrangement Analysis: Found obtained γ rays and β ray count rates are substituted into the formula M = (InNo-InN) / InNo-ImN water, formulas for KM = InNo / N, the fog density can be informed of different points, the fog density of the measuring data measured at different time points were sorted as represented by plot, to have respective measuring point with fog density change process atomization Discharge time concentration profile and each measuring point spillway process.
CN 93107797 1993-07-12 1993-07-12 Measurement of dam flood-discharge atomizing concentration by nuclear method CN1030350C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 93107797 CN1030350C (en) 1993-07-12 1993-07-12 Measurement of dam flood-discharge atomizing concentration by nuclear method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 93107797 CN1030350C (en) 1993-07-12 1993-07-12 Measurement of dam flood-discharge atomizing concentration by nuclear method

Publications (2)

Publication Number Publication Date
CN1078804A CN1078804A (en) 1993-11-24
CN1030350C true CN1030350C (en) 1995-11-22

Family

ID=4986860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 93107797 CN1030350C (en) 1993-07-12 1993-07-12 Measurement of dam flood-discharge atomizing concentration by nuclear method

Country Status (1)

Country Link
CN (1) CN1030350C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773268B (en) * 2004-11-10 2011-04-13 国际商业机器公司 Ionbeam system and system for detecting ion beam
CN101666881B (en) * 2008-09-04 2012-07-25 核工业航测遥感中心 Large-sized artificial nuclide plane source calibration device and gamma ray spectrometer calibration method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0800767D0 (en) * 2008-01-16 2008-02-27 Nec Corp A method for controlling access to a mobile communications network
CN101975786B (en) * 2010-10-12 2012-07-25 丹东东方测控技术有限公司 Instrument for detecting concentration of potassium in brine in laboratory and detecting method thereof
CN102758416A (en) * 2012-07-25 2012-10-31 长江水利委员会长江科学院 Device for researching flood discharge atomization spray source distributing regularity
CN108458955A (en) * 2018-03-01 2018-08-28 四川大学 The method for measuring dam flood-discharge atomizing concentration by extracting air
CN109060297B (en) * 2018-09-24 2020-02-04 天津大学 Method for testing surge model of dam work leakage flow impact area in variable air pressure environment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773268B (en) * 2004-11-10 2011-04-13 国际商业机器公司 Ionbeam system and system for detecting ion beam
CN101666881B (en) * 2008-09-04 2012-07-25 核工业航测遥感中心 Large-sized artificial nuclide plane source calibration device and gamma ray spectrometer calibration method thereof

Also Published As

Publication number Publication date
CN1078804A (en) 1993-11-24

Similar Documents

Publication Publication Date Title
Wren et al. Field techniques for suspended-sediment measurement
Tidwell et al. X ray and visible light transmission for laboratory measurement of two‐dimensional saturation fields in thin‐slab systems
Crawford et al. Determining suspended sand size and concentration from multifrequency acoustic backscatter
Bateman et al. Investigations into the potential effects of pedoturbation on luminescence dating
US4525854A (en) Radiation scatter apparatus and method
US4267446A (en) Dual scintillation detector for determining grade of uranium ore
Killeen Killeen, PG, Gamma ray spectrometric methods in uranium exploration–application and interpretation; in Geophysics and Geochemistry in the Search for Metallic Ores; Peter J. Hood, editor; Geological Survey of Canada, Economic Geology Report 31, p. 163-229, 1979.
US4209695A (en) Detection of impurities in fluid flowing in refinery pipeline or oil production operations using nuclear techniques
RU2199010C2 (en) Method and device for measurement of well characteristics and properties of formations
Lynch et al. Recent accretion in mangrove ecosystems based on 137 Cs and 210 Pb
US2781453A (en) Methods and apparatus for determination of characteristics of matter in a surface layer
US6663012B2 (en) Method for detecting moisture in soils using secondary cosmic radiation
CA2413733C (en) Apparatus and method for gamma-ray determination of bulk density of samples
CA1062042A (en) Method of quantifying fugitive emission rates from pollution sources
US4777367A (en) Method and apparatus for measuring the distribution of radioactivity
CA1205581A (en) Apparatus and method for determining the hydrogen content of a substance
CA1084173A (en) Method and apparatus for stabilizing signals in radioactive well logging tools
Manglos et al. Experimentally measured scatter fractions and energy spectra as a test of Monte Carlo simulations
US4228351A (en) Method for measuring the density of lightweight materials
Gardner et al. Systematic and random errors in dual gamma energy soil bulk density and water content measurements
Khan et al. Calibration of a CR-39 plastic track detector for the measurement of radon and its daughters in dwellings
KR101666688B1 (en) Device for nondestructively examining composite structure and nondestructive examination method
Quindos et al. Conversion factors for external gamma dose derived from natural radionuclides in soils
Hosoda et al. Simultaneous measurements of radon and thoron exhalation rates and comparison with values calculated by UNSCEAR equation
US10539415B2 (en) Conveyer system and measuring device for determining water content of a construction material

Legal Events

Date Code Title Description
C10 Request of examination as to substance
C06 Publication
C14 Granted
C19 Cessation of patent right (cessation of patent right due to non-paymentof the annual fee)