CN103033188A - Navigation satellite autonomous time synchronization method based on synthetic aperture observation - Google Patents
Navigation satellite autonomous time synchronization method based on synthetic aperture observation Download PDFInfo
- Publication number
- CN103033188A CN103033188A CN2012105669022A CN201210566902A CN103033188A CN 103033188 A CN103033188 A CN 103033188A CN 2012105669022 A CN2012105669022 A CN 2012105669022A CN 201210566902 A CN201210566902 A CN 201210566902A CN 103033188 A CN103033188 A CN 103033188A
- Authority
- CN
- China
- Prior art keywords
- satellite
- observation
- time
- navigation
- clock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000012937 correction Methods 0.000 claims abstract description 34
- 238000005259 measurement Methods 0.000 claims abstract description 32
- 230000000694 effects Effects 0.000 claims abstract description 18
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 238000004904 shortening Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 9
- 230000007774 longterm Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- 238000009825 accumulation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 241000475481 Nebula Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
本发明提供了一种基于综合孔径观测的导航卫星自主时间同步方法,所有的协同观测卫星与基准卫星同时对同一颗毫秒脉冲星开展计时观测,基准卫星利用不同时刻星间相对位置测量数据,来完成各协同观测卫星至基准卫星处的时延改正,对完成时延改正的各组观测数据进行叠加处理以得到综合孔径计时观测系统的观测波形;对基准卫星星载钟的钟差进行测量,计算导航星座各卫星与标准时间TCB的钟差并在每颗卫星各自的广播星历中将钟差改正值播发出去,即完成了导航卫星的自主时间同步。本发明达到了减小导航卫星的X射线探测器载荷、缩短观测时间、提高导航卫星自主时间同步精度与实时性的技术效果。
The invention provides an autonomous time synchronization method for navigation satellites based on comprehensive aperture observation. All cooperative observation satellites and reference satellites carry out timing observations on the same millisecond pulsar at the same time. The reference satellites use the relative position measurement data between satellites at different times to determine Complete the time delay correction from each coordinated observation satellite to the reference satellite, and superpose and process each group of observation data that has completed the time delay correction to obtain the observation waveform of the comprehensive aperture timing observation system; measure the clock error of the reference satellite satellite clock, Calculate the clock difference between each satellite in the navigation constellation and the standard time TCB and broadcast the clock difference correction value in the broadcast ephemeris of each satellite, that is, the autonomous time synchronization of the navigation satellite is completed. The invention achieves the technical effects of reducing the X-ray detector load of the navigation satellite, shortening the observation time, and improving the autonomous time synchronization accuracy and real-time performance of the navigation satellite.
Description
技术领域 technical field
本发明属于航天器自主导航技术领域,涉及一种利用脉冲星辐射的x射线信号为导航卫星进行高精度时间同步的方法。The invention belongs to the technical field of autonomous navigation of spacecraft, and relates to a method for performing high-precision time synchronization for navigation satellites by using X-ray signals radiated by pulsars.
背景技术 Background technique
卫星导航系统是一种天基的无线电导航定位与时间传递系统,是实时获取高精度测量信息的空间基础设施,能够为地球表面和近地空间的广大用户提供全天候、全天时、高精度的位置、速度和时间等导航信息服务。完整的卫星导航系统包括三大组成部分,即空间星座部分(导航星座)、地面控制部分和用户终端部分。其中,地面控制部分由分布在全球的多个监测站和注入站,以及1个主控制中心站组成,负责对导航卫星进行跟踪观测,精密确定卫星轨道和星载钟参数,编制导航电文和控制指令,并经由上行数据链路注入到导航卫星。导航卫星提取上行注入信息,将导航电文播发至用户终端接收机使用。也就是说,目前导航星座的运行、管理和维持都是由地面控制系统负责完成的,每日需要做一次上行信息注入(如GPS系统)。The satellite navigation system is a space-based radio navigation positioning and time transfer system. It is a space infrastructure for real-time acquisition of high-precision measurement information. It can provide all-weather, all-time, high-precision Navigation information services such as position, speed and time. A complete satellite navigation system includes three major components, namely the space constellation part (navigation constellation), the ground control part and the user terminal part. Among them, the ground control part consists of multiple monitoring stations and injection stations distributed around the world, as well as a main control center station, which is responsible for tracking and observing navigation satellites, precisely determining satellite orbits and on-board clock parameters, compiling navigation messages and controlling Commands are injected into the navigation satellites via the uplink data link. The navigation satellite extracts the uplink injection information, and broadcasts the navigation message to the user terminal receiver for use. That is to say, the operation, management and maintenance of the current navigation constellation are all completed by the ground control system, and uplink information needs to be injected once a day (such as the GPS system).
若导航卫星能够实现较长时间的自主导航和运行管理,将有效地减少地面测控站的布设数量,减轻地面控制系统工作负担,降低导航星座运行管理和长期维持费用;能够实时监测导航信息完好性,大大缩短故障报警时间,提高导航信息的连续性和可用性性能;减少地面站至卫星的上行信息注入次数,降低导航星座对地面测控系统的依赖程度,增强卫星导航系统在特殊时期的自主生存能力。可见,导航星座自主导航具有极其重要的实际工程应用价值。If the navigation satellite can realize autonomous navigation and operation management for a long time, it will effectively reduce the number of ground measurement and control stations, reduce the workload of the ground control system, reduce the operation management and long-term maintenance costs of the navigation constellation; it can monitor the integrity of navigation information in real time , greatly shorten the fault alarm time, improve the continuity and availability of navigation information; reduce the number of uplink information injections from the ground station to the satellite, reduce the dependence of the navigation constellation on the ground measurement and control system, and enhance the autonomous survivability of the satellite navigation system in special periods . It can be seen that the autonomous navigation of the navigation constellation has extremely important practical engineering application value.
为此美国对其GPS系统进行了现代化改造,在GPS Block II R/II R-M、Block II F等系列卫星上增加了星间通信/测距链路,通过星间双向测距、数据交换以及星载计算机滤波处理,不断修正卫星长期预报星历和时钟参数并自主生成导航电文和控制指令,维持星座基本构形的稳定,以满足用户连续高精度导航定位应用需求。For this reason, the United States has modernized its GPS system, adding inter-satellite communication/ranging links to GPS Block II R/II R-M, Block II F and other series of satellites, through inter-satellite two-way ranging, data exchange and satellite Carrying computer filtering processing, constantly correcting satellite long-term forecast ephemeris and clock parameters, and independently generating navigation messages and control commands, maintaining the stability of the basic configuration of the constellation to meet the needs of users for continuous high-precision navigation and positioning applications.
然而,这种基于星间链路测距信息的导航星座自主导航方式,缺乏外部时空基准数据,难以解决两类不可观测性误差随时间积累问题。一类是星座整体旋转误差,这种误差会造成星座整体相对于惯性坐标系漂移;另一类是地球非均匀自转误差,造成地心固联坐标系相对于惯性坐标系漂移。尤其是星座整体旋转误差积累,将导致卫星星历和时钟参数误差逐渐增大,用户导航定位精度严重下降。However, this autonomous navigation method of navigation constellation based on inter-satellite link ranging information lacks external space-time reference data, and it is difficult to solve the problem of accumulation of two types of unobservable errors over time. One is the overall rotation error of the constellation, which will cause the overall constellation to drift relative to the inertial coordinate system; the other is the non-uniform rotation error of the earth, which will cause the earth-centered fixed coordinate system to drift relative to the inertial coordinate system. In particular, the accumulation of the overall rotation error of the constellation will lead to a gradual increase in the error of satellite ephemeris and clock parameters, and a serious decline in the accuracy of user navigation and positioning.
目前,解决上述问题有两种基本途径:⑴通过建立星座整体旋转和地球自转的长期预报模型,抑制误差积累(如GPS卫星自主导航方式)。但是这种方法从实际应用效果来看,并未彻底解决这一技术难题,不能满足星座长时间自主导航技术指标要求;⑵采用导航星座“抛锚”技术,通过地面站定期向星座卫星发射测距信号和调制地球自转参数信息,星上进行信息处理,抑制星座不可观测性误差随时间积累。但是这种通过建立星地链路的解决方式,违背了导航卫星长时间自主运行的原则。At present, there are two basic ways to solve the above problems: (1) By establishing a long-term forecast model for the overall rotation of the constellation and the earth's rotation, to suppress the accumulation of errors (such as the GPS satellite autonomous navigation method). However, from the perspective of practical application effect, this method does not completely solve this technical problem, and cannot meet the technical index requirements of long-term autonomous navigation of the constellation; Signal and modulate the information of the Earth's rotation parameters, and the information is processed on the star to suppress the accumulation of constellation unobservable errors over time. However, this solution by establishing a satellite-ground link violates the principle of long-term autonomous operation of navigation satellites.
近年来,随着国内、外对基于X射线毫秒脉冲星计时观测的航天器自主导航技术的广泛研究,为导航卫星自主导航提供了一种新的思路和可行途径,尤其是为导航星座提供一种独立的外部绝对时空基准,能够解决星座长时间自主运行问题。基于X射线毫秒脉冲星计时观测的航天器自主导航是实现真正意义上的航天器高精度自主导航的有效模式。将脉冲星自主导航技术应用于全球导航卫星系统(Global NavigationSatellite System,GNSS),能够实现导航卫星的自主时间同步和卫星星历的自主测量与更新。这种自主导航是以脉冲星惯性时空参考架为参考的,脉冲星时空参考架相对于惯性参考架不存在旋转和时间漂移,因而能够抑制或消除星座自身旋转误差和导航卫星时间基准的长期漂移误差。应用脉冲星导航技术也能够精确测量GNSS自主导航存在的星座平均时间误差和星座整体旋转误差。In recent years, with the extensive research on spacecraft autonomous navigation technology based on X-ray millisecond pulsar timing observation at home and abroad, it provides a new idea and feasible way for navigation satellite autonomous navigation, especially for navigation constellations. An independent external absolute space-time reference can solve the problem of long-term autonomous operation of constellations. The autonomous navigation of spacecraft based on X-ray millisecond pulsar timing observation is an effective mode to realize the high-precision autonomous navigation of spacecraft in the true sense. Applying pulsar autonomous navigation technology to the Global Navigation Satellite System (GNSS) can realize autonomous time synchronization of navigation satellites and autonomous measurement and update of satellite ephemeris. This kind of autonomous navigation is based on the pulsar inertial space-time reference frame. The pulsar space-time reference frame has no rotation and time drift relative to the inertial reference frame, so it can suppress or eliminate the rotation error of the constellation itself and the long-term drift of the navigation satellite time reference. error. The application of pulsar navigation technology can also accurately measure the constellation average time error and constellation overall rotation error existing in GNSS autonomous navigation.
在导航应用时,利用导航卫星上装备的X射线计时观测设备,对一组事先选定的毫秒脉冲星进行脉冲到达时间测量,测得每颗脉冲星的脉冲到达导航卫星的时刻,同时利用脉冲星钟模型可以预报出同一个脉冲到达太阳系质心的时刻,通过同一个脉冲到达导航卫星与太阳系质心时刻的比较,再结合这一组脉冲星的空间位置参数,就能解算出观测时刻导航卫星相对于太阳系质心的位置矢量(三维坐标)和星载钟相对于标准时间(太阳系质心坐标时,TCB)的钟差。其基本原理如图1所示。在图1中,导航卫星利用搭载的X射线脉冲星自主导航系统测量出导航卫星相对于太阳系质心的位置以及星载钟相对于标准时间的钟差,实现自主定位与定时。X射线脉冲星自主导航系统主要包括以下几部分:4个X射线探测器,用于探测来自脉冲星的X射线脉冲信号,并在一定的积分时间内获得具有满意信噪比的积分脉冲轮廓;星载原子钟,为TOA的测量提供参考时间;X射线脉冲星和太阳系天体历表数据库,提供脉冲星时空参考架和导航算法需要的基础数据;TOA测量和处理模块,采用合适算法,利用积分脉冲轮廓,获得观测得到的脉冲到达时间;导航卫星位置、速度和时间算法模块,利用观测得到的TOA建立脉冲星导航观测方程,采用合适算法实现航天器状态参数(位置、速度、时间)的测量和预报。In navigation applications, use the X-ray timing observation equipment equipped on the navigation satellite to measure the pulse arrival time of a group of pre-selected millisecond pulsars, and measure the time when the pulse of each pulsar arrives at the navigation satellite. The star clock model can predict the time when the same pulse arrives at the center of mass of the solar system. By comparing the time when the same pulse arrives at the navigation satellite and the time of the center of mass of the solar system, combined with the spatial position parameters of this group of pulsars, the relative time of the navigation satellite at the observation time can be calculated. The position vector (three-dimensional coordinates) at the barycenter of the solar system and the clock difference of the on-board clock relative to the standard time (coordinate time at the barycenter of the solar system, TCB). Its basic principle is shown in Fig. 1. In Figure 1, the navigation satellite uses the X-ray pulsar autonomous navigation system to measure the position of the navigation satellite relative to the center of mass of the solar system and the clock difference of the on-board clock relative to the standard time to achieve autonomous positioning and timing. The X-ray pulsar autonomous navigation system mainly includes the following parts: 4 X-ray detectors, used to detect the X-ray pulse signal from the pulsar, and obtain the integrated pulse profile with a satisfactory signal-to-noise ratio within a certain integration time; The space-borne atomic clock provides reference time for TOA measurement; the X-ray pulsar and solar system ephemeris database provides the basic data needed for pulsar space-time reference frames and navigation algorithms; the TOA measurement and processing module adopts appropriate algorithms and uses integral pulses contour, to obtain the observed pulse arrival time; the navigation satellite position, velocity and time algorithm module, use the observed TOA to establish the pulsar navigation observation equation, and use the appropriate algorithm to realize the measurement and calculation of the spacecraft state parameters (position, velocity, time) forecast.
X射线脉冲星计时观测是脉冲星自主导航技术的基础。X射线计时观测系统的基本结构如图2所示,航天器将所搭载的X射线探测器对准目标源,观测并记录下来自目标源及其背景天区的X射线光子的到达时间(Time of Arrival,TOA),到达时间的测量是以星载原子钟提供的时间信号为参考的,然后由数据记录系统记录下原始的观测数据。由于航天器的高速运动会导致观测信号产生明显的多普勒效应;由于狭义相对论效应的影响,星载原子钟的实际振动频率相对于其标称频率也会发生变化;而且目前已发现的适用于航天器自主导航的毫秒脉冲星多处于双星系统,导致所观测脉冲星绕双星系统质心的公转运动也会对观测信号产生额外的影响;除此之外,还需考虑Shapiro延迟等多项误差源的影响。因此原始的观测数据要经过观测数据预处理系统的进一步处理,以消除各种误差源对观测数据的影响。在完成各项误差源的改正之后,按照所观测脉冲星的自转周期对观测序列进行叠加处理,以获得具有满意信噪比的积分脉冲轮廓。将积分脉冲轮廓与数据库中记录的标准脉冲轮廓进行比较后再加上本次观测的起始时刻,就得到本次观测的TOA。X-ray pulsar timing observation is the basis of pulsar autonomous navigation technology. The basic structure of the X-ray timing observation system is shown in Figure 2. The spacecraft aligns the X-ray detector mounted on the target source, observes and records the arrival time (Time of Arrival, TOA), the measurement of the arrival time is based on the time signal provided by the satellite-borne atomic clock, and then the original observation data is recorded by the data recording system. Due to the high-speed motion of the spacecraft, the observation signal will produce obvious Doppler effect; due to the influence of the special relativity effect, the actual vibration frequency of the space-borne atomic clock will also change relative to its nominal frequency; Most of the millisecond pulsars autonomously navigated by the sensor are in the binary star system, so the orbital movement of the observed pulsar around the center of mass of the binary star system will also have an additional impact on the observed signal; in addition, the Shapiro delay and other multiple error sources need to be considered Influence. Therefore, the original observation data must be further processed by the observation data preprocessing system to eliminate the influence of various error sources on the observation data. After completing the correction of various error sources, the observation sequence is superimposed according to the rotation period of the observed pulsar to obtain an integrated pulse profile with a satisfactory signal-to-noise ratio. The TOA of this observation is obtained by comparing the integrated pulse profile with the standard pulse profile recorded in the database and adding the starting time of this observation.
大量的观测数据表明:对于X射线波段辐射最强的Crab(J0534+2200)脉冲星,用一个有效面积为1m2的X射线探测器,每秒可接收约7800个来自脉冲星的X射线光子(信号)和约78000个来自所在星云的光子(噪声),即一个脉冲周期的信号光子数是260个左右,噪声光子数是2600个左右。而其他X射线脉冲星的X射线流量强度仅仅是Crab脉冲星的千分之一甚至更低,也就是说每1m2的探测器每秒只能探测到10个左右的信号光子甚至更少,而本底光子数目在100个左右。若要获得一个清晰的脉冲轮廓,至少需要十几个小时的连线观测时间。A large number of observational data show that: for the Crab (J0534+2200) pulsar with the strongest radiation in the X-ray band, an X-ray detector with an effective area of 1m2 can receive about 7800 X-ray photons from the pulsar per second (signal ) and about 78,000 photons (noise) from the nebula, that is, the number of signal photons in one pulse period is about 260, and the number of noise photons is about 2,600. The X-ray flux intensity of other X-ray pulsars is only one-thousandth or even lower than that of Crab pulsars, which means that every 1m2 detector can only detect about 10 signal photons or even less per second, The number of background photons is around 100. To obtain a clear pulse profile, at least ten hours of connected observation time is required.
信噪比如此之低的观测信号,成为了限制脉冲星自主导航技术实际应用的主要原因之一。若要将其用于导航卫星的自主导航,就必须采取措施以提高信噪比,目前有两种解决方案:一种是延长观测时间;另一种是使用大面积的探测器。但两种方案均具有其局限性,对于第一种方案,观测时间的延长会降低导航解的实时性,无法实现对导航信息完整性的准实时监测,并延长故障报警时间;对于第二种方案,由于导航卫星的有效载荷有限,因此大面积的X射线探测器是难以搭载上去的。The observation signal with such a low signal-to-noise ratio has become one of the main reasons that limit the practical application of pulsar autonomous navigation technology. If it is used for autonomous navigation of navigation satellites, measures must be taken to improve the signal-to-noise ratio. At present, there are two solutions: one is to extend the observation time; the other is to use a large-area detector. However, both schemes have their limitations. For the first scheme, the prolongation of the observation time will reduce the real-time performance of the navigation solution, which cannot realize the quasi-real-time monitoring of the integrity of the navigation information, and prolong the fault alarm time; for the second scheme However, due to the limited payload of navigation satellites, it is difficult to carry large-area X-ray detectors.
对于导航卫星位置坐标的自主测量,目前有一种较为可行的技术方案,即利用两颗导航卫星上装备X射线探测器同时观测同一颗X射线变源,这两颗卫星之间的连线构成动态星间测量基线,同一信号到达两颗卫星的时间之差即反映了星间基线相对于脉冲星的方向,通过对多颗X射线变源信号的同步观测便可以测定星间基线在惯性时空参考架中的方向。同时测量多条星间基线在惯性时空参考架中的方向,并结合星间测距/通信链路的测量结果与轨道动力学方程,便可实现导航卫星位置坐标的自主测定。X射线变源的流量比X射线毫秒脉冲星的流量通常高5~6个量级,因此不需要使用大面积的探测器也不需要很长的观测时间,便可获得较高的测量精度。但利用X射线变源无法实现导航卫星自主时间同步,只有利用X射线毫秒脉冲星才可以实现导航卫星自主时间同步。For the autonomous measurement of the position coordinates of navigation satellites, there is currently a more feasible technical solution, that is, to use two navigation satellites equipped with X-ray detectors to observe the same X-ray variable source at the same time, and the connection between the two satellites constitutes a dynamic The inter-satellite measurement baseline, the time difference between the same signal arriving at two satellites reflects the direction of the inter-satellite baseline relative to the pulsar, and the inter-satellite baseline can be determined in the inertial space-time reference by synchronous observation of multiple X-ray variable source signals. orientation in the shelf. Simultaneously measure the directions of multiple inter-satellite baselines in the inertial space-time reference frame, and combine the measurement results of inter-satellite ranging/communication links with orbital dynamics equations to realize the autonomous determination of the position coordinates of navigation satellites. The flux of X-ray variable sources is usually 5-6 orders of magnitude higher than that of X-ray millisecond pulsars, so high measurement accuracy can be obtained without using a large-area detector or a long observation time. However, autonomous time synchronization of navigation satellites cannot be achieved by using X-ray variable sources, and autonomous time synchronization of navigation satellites can only be achieved by using X-ray millisecond pulsars.
综上所述,若要将X射线脉冲星自主导航技术应用于导航卫星以实现导航星座的自主时间同步,就必须解决观测信号信噪比过低的问题。现有的提高观测信号信噪比的方法主要有两种:增大探测器的有效面积或延长观测时间,两种方法分别存在以下问题:To sum up, if X-ray pulsar autonomous navigation technology is to be applied to navigation satellites to realize autonomous time synchronization of navigation constellations, the problem of low signal-to-noise ratio of observation signals must be solved. There are two main methods for improving the signal-to-noise ratio of the observation signal: increasing the effective area of the detector or prolonging the observation time. The two methods have the following problems respectively:
对于导航卫星而言,其上要搭载原子钟组、时频信号产生与保持系统、天线、太阳能电池等大量用于导航信号产生、保持与发射的设备。可分配给X射线探测器系统的有效载荷是很有限的,而大面积的X射线探测器体积大、质量大、功耗高,必定会占用较多的卫星有效载荷,难以实施。而且,现有的脉冲星自主导航技术通常要求在卫星上搭载4个X射线探测器,这就使得在导航卫星上搭载大面积X射线探测器的方案变的更不可行。For navigation satellites, a large number of equipment for generating, maintaining and transmitting navigation signals, such as atomic clocks, time-frequency signal generation and maintenance systems, antennas, and solar cells, must be mounted on them. The payload that can be assigned to the X-ray detector system is very limited, and the large-area X-ray detector has a large volume, high mass, and high power consumption, which will definitely occupy more satellite payloads and is difficult to implement. Moreover, the existing pulsar autonomous navigation technology usually requires four X-ray detectors to be carried on the satellite, which makes it even more unfeasible to carry a large-area X-ray detector on the navigation satellite.
在探测器尺寸受限的情况下,还可以采用延长观测时间的办法来提高信噪比。但除了Crab脉冲星外,通常用于导航的毫秒脉冲星X射线辐射流量都非常低,即使对于有效面积为1m2的大面积X射线探测器而言,在1秒钟的时间间隔内所能接收到的光子信号也仅为10个左右甚至更少,若要获得一个清晰的脉冲轮廓,至少需要十几个小时的连续观测时间。在如此长的观测时间内,导航卫星已沿轨道飞行了很长的一个弧段甚至是一周,而脉冲星自主导航系统给出的还是观测开始时卫星的运动状态参数与钟差参数。因此观测时间的延长会大大降低导航解的实时性,无法实现对星载钟状态的准实时监测,并会延长故障报警时间。In the case of limited detector size, the method of extending the observation time can also be used to improve the signal-to-noise ratio. But except for Crab pulsars, the X-ray radiation flux of millisecond pulsars usually used for navigation is very low, even for a large-area X-ray detector with an effective area of 1m 2 , within a time interval of 1 second. The received photon signals are only about 10 or even less. To obtain a clear pulse profile, at least ten hours of continuous observation time is required. During such a long observation period, the navigation satellite has already flown a long arc or even a week along the orbit, but the pulsar autonomous navigation system still gives the satellite's motion state parameters and clock error parameters at the beginning of the observation. Therefore, the prolongation of the observation time will greatly reduce the real-time performance of the navigation solution, making it impossible to realize the quasi-real-time monitoring of the state of the on-board clock, and prolonging the fault alarm time.
发明专利200710005043.9提出了一种基于X射线脉冲星的导航卫星自主轨道确定、时间同步和姿态测量的系统与方法。该专利仍然是利用传统的X射线脉冲星自主导航方法来实现导航卫星的自主时间同步,无法彻底解决X射线脉冲星导航中所存在的弱信号观测问题。Invention patent 200710005043.9 proposes a system and method for autonomous orbit determination, time synchronization and attitude measurement of navigation satellites based on X-ray pulsars. This patent still uses the traditional X-ray pulsar autonomous navigation method to realize the autonomous time synchronization of navigation satellites, which cannot completely solve the problem of weak signal observation in X-ray pulsar navigation.
发明内容 Contents of the invention
为了克服现有脉冲星自主导航技术中存在的观测信号信噪比过低而且难以辨识的不足,本发明提出了一种X射线波段的综合孔径观测方案,在不增大探测器面积、不延长观测时间的情况下,很好的解决了基于脉冲星的导航星座自主时间同步中所存在的弱信号检测问题,测量精度高且易于实施。In order to overcome the shortcomings of low signal-to-noise ratio and difficult identification of observation signals in the existing pulsar autonomous navigation technology, the present invention proposes a comprehensive aperture observation scheme in the X-ray band, without increasing the detector area and extending the In the case of observation time, it solves the problem of weak signal detection in the autonomous time synchronization of pulsar-based navigation constellations, and has high measurement accuracy and is easy to implement.
本发明解决其技术问题所采用的技术方案包括以下步骤:The technical solution adopted by the present invention to solve its technical problems comprises the following steps:
步骤一,根据各颗导航卫星的星历和毫秒脉冲星的位置参数,选定一组可同时观测到同一颗毫秒脉冲星的导航卫星,并从中任选一颗作为基准卫星,其余的导航卫星作为协同观测卫星,协同观测卫星的观测数据要归算至基准卫星处;Step 1: According to the ephemeris of each navigation satellite and the position parameters of the millisecond pulsar, select a group of navigation satellites that can observe the same millisecond pulsar at the same time, and select one of them as the reference satellite, and the remaining navigation satellites As a coordinated observation satellite, the observation data of the coordinated observation satellite should be attributed to the reference satellite;
步骤二,所有的协同观测卫星与基准卫星同时对同一颗毫秒脉冲星开展计时观测,并将各自的原始观测数据进行保存;同时协同观测卫星与基准卫星根据各自的的位置与速度参数完成原始观测信号的多普勒效应、狭义相对论效应与Shapiro延迟改正;Step 2: All the coordinated observation satellites and reference satellites conduct timing observations on the same millisecond pulsar at the same time, and save their original observation data; at the same time, the coordinated observation satellites and reference satellites complete the original observations according to their respective position and speed parameters Signal Doppler effect, special relativity effect and Shapiro delay correction;
步骤三,在每次计时观测完成后,各协同观测卫星将各自的观测数据传送至基准卫星;Step 3, after each timing observation is completed, each coordinated observation satellite transmits its own observation data to the reference satellite;
步骤四,基准卫星利用不同时刻星间相对位置测量数据,来完成各协同观测卫星至基准卫星处的时延改正,具体方法为:Step 4: The reference satellite uses the inter-satellite relative position measurement data at different times to complete the time delay correction from each coordinated observation satellite to the reference satellite. The specific method is:
在t时刻,第i颗协同观测卫星在惯性空间中相对于基准卫星的位置矢量为所观测毫秒脉冲星的方向矢量为则t时刻协同观测卫星至基准卫星的TOA测量数据时延改正值为其中c为光速;协同观测卫星i所观测到的光子到达时间序列toaij进行逐一改正,得到一组新的到达时间观测序列,即等效于将协同卫星i的探测器放置在基准卫星上所得到的TOA观测序列;At time t, the position vector of the i-th cooperative observation satellite relative to the reference satellite in inertial space is The direction vector of the observed millisecond pulsar is Then the time delay correction value of the TOA measurement data from the coordinated observation satellite to the reference satellite at time t is where c is the speed of light; the photon arrival time sequence toa ij observed by the coordinated observation satellite i is corrected one by one to obtain a new set of arrival time observation sequences, which is equivalent to the result of placing the detector of the coordinated satellite i on the reference satellite Obtained TOA observation sequence;
步骤五,对完成时延改正的各组观测数据进行叠加处理以得到综合孔径计时观测系统的观测波形;Step 5, performing superposition processing on each group of observation data that has completed the time delay correction to obtain the observation waveform of the comprehensive aperture timing observation system;
步骤六,对基准卫星星载钟的钟差进行测量,具体方法为:Step 6, measure the clock error of the reference satellite on-board clock, the specific method is:
设所观测毫秒脉冲星在太阳系质心坐标系中的单位方向矢量为其中分别为所观测毫秒脉冲星的单位方向矢量在太阳系质心坐标系中的三个坐标分量,基准卫星在观测历元时的太阳系质心坐标系位置矢量为其中分别为基准卫星的位置矢量在太阳系质心坐标系中的三个坐标分量,综合孔径计时观测系统观测得到的脉冲到达时间为toasat,由该颗毫秒脉冲星的钟模型预报得到的同一脉冲到达太阳系质心的时刻为toaSSB,则观测方程为Suppose the unit direction vector of the observed millisecond pulsar in the barycentric coordinate system of the solar system is in are the three coordinate components of the unit direction vector of the observed millisecond pulsar in the barycentric coordinate system of the solar system, and the position vector of the barycentric coordinate system of the reference satellite in the observation epoch is in are the three coordinate components of the position vector of the reference satellite in the barycentric coordinate system of the solar system, the arrival time of the pulse observed by the synthetic aperture timing observation system is toa sat , and the same pulse predicted by the clock model of the millisecond pulsar reaches the solar system The moment of the centroid is toa SSB , then the observation equation is
式中,Δtc为基准卫星星载钟与标准时间TCB的偏差,δ为其余计时观测误差的总和;In the formula, Δt c is the deviation between the reference satellite on-board clock and the standard time TCB, and δ is the sum of other timing observation errors;
步骤七,计算导航星座各卫星与标准时间TCB的钟差,将各导航卫星星载钟相对于TCB的钟差转换为相对于地球时的钟差,并在每颗卫星各自的广播星历中将钟差改正值播发出去,就可保证用户的导航与授时服务精度,即完成了导航卫星的自主时间同步。Step 7: Calculate the clock difference between each satellite of the navigation constellation and the standard time TCB, convert the clock difference of each navigation satellite satellite clock relative to the TCB into a clock difference relative to the earth time, and record it in the respective broadcast ephemeris of each satellite By broadcasting the clock correction value, the user's navigation and timing service accuracy can be guaranteed, that is, the autonomous time synchronization of navigation satellites is completed.
本发明的有益效果是:将多台小探测器的观测结果进行时延改正后综合在一起,形成一台大探测器的观测效果。达到了减小导航卫星的X射线探测器载荷、缩短观测时间、提高导航卫星自主时间同步精度与实时性的技术效果。本发明也适用于近地轨道、深空和行星际飞行航天器编队,以及无稠密大气天体着陆器编队及其表面巡游器编队的高精度时间同步应用领域。The beneficial effect of the invention is that the observation results of multiple small detectors are combined after time-delay correction to form the observation effect of one large detector. The technical effect of reducing the X-ray detector load of the navigation satellite, shortening the observation time, and improving the autonomous time synchronization accuracy and real-time performance of the navigation satellite is achieved. The invention is also applicable to the application field of high-precision time synchronization of low-earth orbit, deep space and interplanetary flying spacecraft formations, as well as non-dense atmosphere celestial body lander formations and surface roving formations.
附图说明 Description of drawings
图1是脉冲星自主定位定时原理图;Figure 1 is a schematic diagram of pulsar autonomous positioning and timing;
图2是X射线脉冲星计时观测系统图;Figure 2 is a diagram of the X-ray pulsar timing observation system;
图3是协同观测卫星至基准卫星时延改正示意图;Figure 3 is a schematic diagram of time delay correction from the coordinated observation satellite to the reference satellite;
图4是综合孔径观测方案流程图。Figure 4 is a flow chart of the comprehensive aperture observation scheme.
具体实施方式 Detailed ways
本发明包括以下步骤:The present invention comprises the following steps:
首先,根据长期的地面计时观测选定一组适用于导航卫星时间同步的毫秒脉冲星,建立时间同步用毫秒脉冲星数据库(包括每颗毫秒脉冲星的钟模型参数和天体测量参数),并将其存储于每一颗导航卫星的星载计算机中。在实际应用时,根据各颗导航卫星的星历和毫秒脉冲星的位置参数,选定一组可同时观测到同一颗毫秒脉冲星的导航卫星,从其中选定一颗导航卫星作为基准卫星,其余的导航卫星作为协同观测卫星,协同观测卫星的观测数据要归算至基准卫星处。所有的协同观测卫星与基准卫星同时对同一颗毫秒脉冲星开展计时观测,并将各自的原始观测数据进行保存。同时协同观测卫星与基准卫星根据各自的的位置与速度参数完成原始观测信号的多普勒效应、狭义相对论效应与Shapiro延迟改正。在每次计时观测完成后,各协同观测卫星将各自的观测数据通过星间测距/通信链路传送至基准卫星。由基准卫星利用星间链路自主导航系统给出的不同时刻星间相对位置测量数据,来完成各协同观测卫星至基准卫星处的时延改正。时延改正的的过程如图3所示:First, a group of millisecond pulsars suitable for time synchronization of navigation satellites is selected according to long-term ground timing observations, and a database of millisecond pulsars for time synchronization (including clock model parameters and astrometric parameters of each millisecond pulsar) is established, and It is stored in the onboard computer of each navigation satellite. In practical application, according to the ephemeris of each navigation satellite and the position parameters of the millisecond pulsar, a group of navigation satellites that can observe the same millisecond pulsar at the same time is selected, and one navigation satellite is selected as the reference satellite. The rest of the navigation satellites are used as coordinated observation satellites, and the observation data of the coordinated observation satellites should be attributed to the reference satellites. All coordinated observation satellites and reference satellites conduct timing observations on the same millisecond pulsar at the same time, and save their original observation data. At the same time, the cooperative observation satellite and the reference satellite complete the Doppler effect, special relativity effect and Shapiro delay correction of the original observation signal according to their respective position and velocity parameters. After each timing observation is completed, each cooperative observation satellite transmits its own observation data to the reference satellite through the inter-satellite ranging/communication link. The reference satellite uses the inter-satellite relative position measurement data at different times given by the inter-satellite link autonomous navigation system to complete the time delay correction from each coordinated observation satellite to the reference satellite. The process of delay correction is shown in Figure 3:
在t时刻,第i颗协同观测卫星在惯性空间中相对于基准卫星的位置矢量为所观测脉冲星的方向矢量为则t时刻协同卫星至基准卫星的TOA测量数据时延改正值为其中c为光速。由于第i颗协同观测卫星相对于基准卫星的动态位置矢量是连续变化的,所以协同观测卫星i所观测到的光子到达时间序列(toaij)要一一进行相应的改正。得到一组新的到达时间观测序列,即等效于将协同卫星i的探测器放置在基准卫星上所得到的TOA观测序列。At time t, the position vector of the i-th cooperative observation satellite relative to the reference satellite in inertial space is The direction vector of the observed pulsar is Then the time delay correction value of the TOA measurement data from the coordinated satellite to the reference satellite at time t is where c is the speed of light. Since the dynamic position vector of the i-th cooperative observation satellite relative to the reference satellite is continuously changing, the photon arrival time series (toa ij ) observed by the cooperative observation satellite i must be corrected accordingly. A new set of time-of-arrival observation sequences is obtained, which is equivalent to the TOA observation sequence obtained by placing the detector of cooperative satellite i on the reference satellite.
其次,对完成时延改正的各组观测数据进行叠加处理以得到综合孔径计时观测系统的观测波形。Secondly, each group of observation data that has been corrected for time delay is superimposed to obtain the observation waveform of the synthetic aperture timing observation system.
在得到综合孔径计时观测系统的观测波形之后,首先需要对基准卫星星载钟的钟差进行测量,测量原理如下:After obtaining the observation waveform of the synthetic aperture timing observation system, it is first necessary to measure the clock error of the reference satellite on-board clock. The measurement principle is as follows:
设所观测毫秒脉冲星在太阳系质心坐标系中的单位方向矢量为(其中分别为所观测毫秒脉冲星的单位方向矢量在太阳系质心坐标系中的三个坐标分量),基准卫星在观测历元时的太阳系质心坐标系位置矢量为(其中分别为基准卫星的位置矢量在太阳系质心坐标系中的三个坐标分量),综合孔径计时观测系统观测得到的脉冲到达时间为toasat,由该颗毫秒脉冲星的钟模型预报得到的同一脉冲到达太阳系质心的时刻为toaSSB,我们可建立如下观测方程。Suppose the unit direction vector of the observed millisecond pulsar in the barycentric coordinate system of the solar system is (in are the three coordinate components of the unit direction vector of the observed millisecond pulsar in the barycentric coordinate system of the solar system), and the position vector of the barycentric coordinate system of the solar system when the reference satellite observes the epoch is (in are the three coordinate components of the position vector of the reference satellite in the barycentric coordinate system of the solar system), the pulse arrival time observed by the synthetic aperture timing observation system is toa sat , and the same pulse arrival time predicted by the clock model of the millisecond pulsar The moment of the barycenter of the solar system is toa SSB , we can establish the following observation equation.
式中,c为光速,Δtc为基准卫星星载钟与标准时间TCB的偏差,δ为其余计时观测误差的总和。In the formula, c is the speed of light, Δt c is the deviation between the reference satellite on-board clock and the standard time TCB, and δ is the sum of other timing observation errors.
在完成基准卫星星载钟钟差的测量之后,由于导航星座内各卫星已完成了相对时间同步,因此可计算出导航星座各卫星与标准时间TCB的钟差。将各导航卫星星载钟相对于TCB的钟差转换为相对于地球时的钟差,并在每颗卫星各自的广播星历中将钟差改正值播发出去,就可保证用户的导航与授时服务精度,即完成了导航卫星的自主时间同步。After the measurement of the on-board clock error of the reference satellite is completed, since the relative time synchronization of each satellite in the navigation constellation has been completed, the clock error of each satellite in the navigation constellation and the standard time TCB can be calculated. Convert the clock difference of each navigation satellite satellite clock relative to TCB to the clock difference relative to the earth time, and broadcast the clock difference correction value in the broadcast ephemeris of each satellite, so as to ensure the user's navigation and timing Service accuracy, that is, the autonomous time synchronization of navigation satellites is completed.
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
本发明提供一种基于X射线综合孔径观测方案的导航星座时间同步方法,具有观测时间短,观测精度高,易于实施的优点。The invention provides a navigation constellation time synchronization method based on an X-ray comprehensive aperture observation scheme, which has the advantages of short observation time, high observation accuracy and easy implementation.
本发明以X射线毫秒脉冲星作为外部测量基准,利用其辐射的X射线信号作为自主导航系统的输入信息,结合太阳系行星历表数据库、X射线脉冲星钟模型及特征参数数据库、捷联惯性导航系统(SINS)、自主导航算法模块、星间通信/测距链路等,解决了导航星座高精度自主时间同步的问题。The invention uses X-ray millisecond pulsar as the external measurement reference, uses the X-ray signal radiated by it as the input information of the autonomous navigation system, combines the solar system planetary ephemeris database, X-ray pulsar clock model and characteristic parameter database, strapdown inertial navigation System (SINS), autonomous navigation algorithm module, inter-satellite communication/ranging link, etc., solve the problem of high-precision autonomous time synchronization of navigation constellations.
关键点1.X射线波段的综合孔径观测。即在每颗卫星上搭载一台X射线探测器,多颗卫星通过基准卫星的协调同时对同一颗脉冲星进行计时观测,并记录下各自的观测数据。在观测完成后,每颗卫星通过星间通信/测距链路将各自的观测数据传送至基准卫星,基准卫星在完成来自不同卫星的观测数据的时延修正后,将所有的观测数据进行综合,得到基准卫星的综合孔径计时观测数据。达到了减小导航卫星的X射线探测器载荷、缩短观测时间、提高导航卫星自主时间同步精度与实时性的技术效果。Key points 1. Synthetic aperture observation in the X-ray band. That is, each satellite is equipped with an X-ray detector, and multiple satellites conduct timing observations on the same pulsar at the same time through the coordination of the reference satellite, and record their respective observation data. After the observation is completed, each satellite transmits its observation data to the reference satellite through the inter-satellite communication/ranging link. After the reference satellite completes the time delay correction of the observation data from different satellites, it integrates all the observation data , to obtain the synthetic aperture timing observation data of the reference satellite. The technical effect of reducing the X-ray detector load of the navigation satellite, shortening the observation time, and improving the autonomous time synchronization accuracy and real-time performance of the navigation satellite is achieved.
关键点2.基准卫星钟差参数的解算。在获得基准卫星综合孔径观测数据的基础上,利用合适的算法,解算出基准卫星星载钟相对于标准时间的钟差。并利用星间测距/通信链路,实现其他卫星星载钟与基准卫星星载钟之间的同步,进而实现导航星座的自主时间同步。到达了导航卫星星座高精度自主时间同步的技术效果。Key point 2. Calculation of reference satellite clock error parameters. On the basis of obtaining the synthetic aperture observation data of the reference satellite, using a suitable algorithm, the clock error of the reference satellite on-board clock relative to the standard time is calculated. And use the inter-satellite ranging/communication link to realize the synchronization between other satellite on-board clocks and the reference satellite on-board clock, and then realize the autonomous time synchronization of the navigation constellation. The technical effect of high-precision autonomous time synchronization of the navigation satellite constellation has been achieved.
导航卫星一经定型之后,每颗卫星上所搭载的设备都是一样的。根据这一特点,本发明技术方案的实施首先需要在每颗卫星上搭载一台X射线探测器。当利用其它技术完成导航卫星位置坐标的自主测量之后,由基准卫星利用星间测距/通信链路协调其它多颗卫星(协同卫星)对预先选定的X射线毫秒脉冲星进行计时观测,即基准卫星与协同卫星都将X射线探测器指向被测脉冲星,并记录各自接收到的X射线光子到达时间。同时,所有参与观测的卫星利用各自的位置、速度、姿态参数完成多普勒效应、狭义相对论效应的改正,如果所观测的毫秒脉冲星处于双星系统,则还需要考虑脉冲星绕双星系统质心公转所引起的视周期的变化。当观测完成后,各协同卫星将观测数据通过星间测距/通信链路传送至基准卫星。Once the navigation satellites are finalized, the equipment carried on each satellite is the same. According to this feature, the implementation of the technical solution of the present invention first needs to carry an X-ray detector on each satellite. After using other technologies to complete the autonomous measurement of the position coordinates of the navigation satellite, the reference satellite uses the inter-satellite ranging/communication link to coordinate other satellites (coordinated satellites) to perform timing observations on the pre-selected X-ray millisecond pulsar, that is Both the reference satellite and the coordinated satellite point the X-ray detector to the measured pulsar, and record the arrival time of the X-ray photons they receive. At the same time, all satellites participating in the observation use their respective position, velocity, and attitude parameters to complete the correction of the Doppler effect and the special relativity effect. If the observed millisecond pulsar is in a binary star system, it is also necessary to consider that the pulsar revolves around the center of mass of the binary star system The resulting change in the apparent period. After the observation is completed, each cooperative satellite transmits the observation data to the reference satellite through the inter-satellite ranging/communication link.
基准卫星首先完成来自于不同协同卫星的观测数据的时延改正,时延改正的的过程如图3所示:The reference satellite first completes the time delay correction of the observation data from different cooperative satellites, and the process of time delay correction is shown in Figure 3:
在t时刻,第i颗协同卫星在惯性空间中相对于基准卫星的位置矢量为所观测脉冲星的方向矢量为则t时刻协同卫星至基准卫星的TOA测量数据时延改正值为由于第i颗协同观测卫星相对于基准卫星的动态位置矢量是连线变化的,所以协同观测卫星i所观测到的光子到达时间序列(toaij)要一一进行相应的改正。得到一组新的到达时间观测序列,即等效于将协同卫星i的探测器放置在基准卫星上所得到的TOA观测序列。At time t, the position vector of the i-th coordinated satellite relative to the reference satellite in inertial space is The direction vector of the observed pulsar is Then the time delay correction value of the TOA measurement data from the coordinated satellite to the reference satellite at time t is Since the dynamic position vector of the i-th cooperative observation satellite relative to the reference satellite changes linearly, the photon arrival time series (toa ij ) observed by the cooperative observation satellite i must be corrected accordingly. A new set of time-of-arrival observation sequences is obtained, which is equivalent to the TOA observation sequence obtained by placing the detector of cooperative satellite i on the reference satellite.
当所有n颗协同观测卫星的TOA观测序列完成了从协同卫星至基准卫星的时延改正之后,便等效于将这n台探测器都放置于基准卫星处,并得到了各自的TOA观测序列。加上基准卫星探测器的观测序列,便得到n+1个独立探测器在基准卫星处的TOA观测序列,将这n+1个探测器的观测序列叠加在一起就可得出综合孔径探测器的等效观测序列。When the TOA observation sequence of all n cooperative observation satellites has completed the delay correction from the cooperative satellite to the reference satellite, it is equivalent to placing the n detectors at the reference satellite and obtaining their respective TOA observation sequences . Adding the observation sequence of the reference satellite detector, the TOA observation sequence of n+1 independent detectors at the reference satellite can be obtained, and the observation sequence of n+1 detectors can be superimposed together to obtain the equivalent observation of the synthetic aperture detector sequence.
与单探测器相比,综合孔径探测器经过对n+1个子探测器观测信号的叠加,可将观测信号的信噪比提升为原始信号信噪比的倍。即对于同一颗脉冲星,为获得同样信噪比的积分脉冲轮廓,利用综合孔径观测技术,可将观测时间缩短至原来的 Compared with the single detector, the synthetic aperture detector can improve the signal-to-noise ratio of the observed signal to the signal-to-noise ratio of the original signal by superimposing the observed signals of n+1 sub-detectors. times. That is to say, for the same pulsar, in order to obtain the integrated pulse profile with the same signal-to-noise ratio, the observation time can be shortened to the original
图4为上述综合孔径观测方案的流程图:Fig. 4 is the flow chart of above-mentioned comprehensive aperture observation scheme:
首先,所有的协同观测卫星在基准卫星的协调下同时对同一颗毫秒脉冲星开展计时观测,每颗卫星将各自的原始观测数据进行保存,并根据卫星的位置与速度参数完成多普勒效应、狭义相对论效应等多项误差源的改正。在本次观测完成后,各协同观测卫星将各自的观测数据通过星间测距/通信链路传送至基准卫星。由基准卫星利用星间链路自主导航系统给出的不同时刻星间相对位置测量数据,来完成各协同卫星至基准卫星处的时延改正。对完成时延改正的各组观测数据进行叠加处理便可得到综合孔径计时观测系统的观测波形。First of all, under the coordination of the reference satellite, all the cooperative observation satellites carry out timing observations on the same millisecond pulsar at the same time, and each satellite saves its own original observation data, and completes the Doppler effect, Correction of multiple error sources such as special relativity effects. After the observation is completed, each cooperative observation satellite will transmit its own observation data to the reference satellite through the inter-satellite ranging/communication link. The reference satellite uses the inter-satellite relative position measurement data at different times given by the inter-satellite link autonomous navigation system to complete the time delay correction from each coordinated satellite to the reference satellite. The observation waveform of the comprehensive aperture timing observation system can be obtained by superimposing each group of observation data that has completed time-delay correction.
在得到清晰的脉冲轮廓之后,首先需要对基准卫星星载钟的钟差进行测量,测量原理如下:After obtaining a clear pulse profile, it is first necessary to measure the clock error of the reference satellite on-board clock. The measurement principle is as follows:
设所观测脉冲星的单位方向矢量为导航卫星在观测历元时的太阳系质心坐标系位置矢量为观测得到的脉冲到达卫星的时刻为toasat,由钟模型预报得到的同一脉冲到达太阳系质心的时刻为toaSSB,我们可建立如下观测方程。Let the unit direction vector of the observed pulsar be The position vector of the barycentric coordinate system of the solar system when the navigation satellite observes the epoch is The time when the observed pulse arrives at the satellite is toa sat , and the time when the same pulse arrives at the barycenter of the solar system predicted by the clock model is toa SSB , we can establish the following observation equation.
式中,c为光速,Δtc为基准卫星星载钟与标准时间TCB的偏差,δ为其余计时观测误差的总和。由于导航卫星已利用其它自主导航技术完成了太阳系质心坐标系位置坐标的测量,因此在忽略测量误差的情况下上式右端只有一个未知量Δtc。理论上,对一颗毫秒脉冲星开展一次计时观测便可完成基准卫星星载钟钟差的测量,但为了更好的消除观测误差,还需对多颗毫秒脉冲星开展多次观测,以提高观测精度。在完成基准卫星星载钟钟差的测量之后,由于导航星座内各卫星已完成了相对时间同步,因此可计算出导航星座各卫星与标准时间TCB的钟差。将各导航卫星星载钟相对于TCB的钟差转换为相对于TT(地球时)的钟差,并在每颗卫星各自的广播星历中将钟差改正值播发出去,就可保证用户的导航与授时服务精度,即完成了导航卫星的自主时间同步。In the formula, c is the speed of light, Δt c is the deviation between the reference satellite on-board clock and the standard time TCB, and δ is the sum of other timing observation errors. Since the navigation satellite has already used other autonomous navigation technologies to complete the measurement of the position coordinates of the barycentric coordinate system of the solar system, there is only one unknown quantity Δt c on the right side of the above formula when the measurement error is ignored. Theoretically, one timing observation of a millisecond pulsar can complete the measurement of the reference satellite clock error, but in order to better eliminate observation errors, multiple observations of multiple millisecond pulsars are needed to improve Observation accuracy. After the measurement of the on-board clock error of the reference satellite is completed, since the relative time synchronization of each satellite in the navigation constellation has been completed, the clock error of each satellite in the navigation constellation and the standard time TCB can be calculated. Convert the clock error of each navigation satellite satellite clock relative to TCB into clock error relative to TT (Earth Time), and broadcast the clock error correction value in the broadcast ephemeris of each satellite, which can ensure the user's Navigation and timing service accuracy, that is, the autonomous time synchronization of navigation satellites is completed.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210566902.2A CN103033188B (en) | 2012-12-24 | 2012-12-24 | The autonomous method for synchronizing time of Navsat based on synthetic aperture observation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210566902.2A CN103033188B (en) | 2012-12-24 | 2012-12-24 | The autonomous method for synchronizing time of Navsat based on synthetic aperture observation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103033188A true CN103033188A (en) | 2013-04-10 |
CN103033188B CN103033188B (en) | 2016-01-20 |
Family
ID=48020325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210566902.2A Expired - Fee Related CN103033188B (en) | 2012-12-24 | 2012-12-24 | The autonomous method for synchronizing time of Navsat based on synthetic aperture observation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103033188B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103644907A (en) * | 2013-11-13 | 2014-03-19 | 中国空间技术研究院 | Pulsar angular position measurement system and method based on double satellite platforms |
CN104316048A (en) * | 2014-10-14 | 2015-01-28 | 中国科学院国家授时中心 | Method for building universal pulsar-based autonomous navigation measurement model |
CN104316056A (en) * | 2014-10-14 | 2015-01-28 | 中国科学院国家授时中心 | Pulsar-based navigation constellation time synchronization and orientation parameter measurement method |
CN103616024B (en) * | 2013-11-27 | 2016-05-04 | 北京理工大学 | A kind of planetary detection approach section autonomous navigation system observability degree is determined method |
CN105657813A (en) * | 2016-01-04 | 2016-06-08 | 北京航空航天大学 | Time synchronization and distance measurement combined method among anchor-free nodes |
CN106403960A (en) * | 2016-09-23 | 2017-02-15 | 南京航空航天大学 | Constellation navigation method for self-organized constellation |
CN107421533A (en) * | 2017-06-22 | 2017-12-01 | 北京航空航天大学 | A kind of deep space probe X-ray pulsar TOA/DTOA Combinated navigation methods |
CN109001763A (en) * | 2018-06-04 | 2018-12-14 | 北京未来导航科技有限公司 | A kind of navigation Enhancement Method and system based on low rail constellation |
CN109459017A (en) * | 2018-12-11 | 2019-03-12 | 上海航天控制技术研究所 | A kind of constellation autonomous navigation method assisted using outside reference |
CN110058286A (en) * | 2019-05-13 | 2019-07-26 | 天津讯联科技有限公司 | Space-time synchronous method, apparatus, equipment and medium under the conditions of a kind of defence |
CN111308512A (en) * | 2020-03-05 | 2020-06-19 | 中国科学院微小卫星创新研究院 | Autonomous monitoring system and method for time-frequency integrity of navigation satellite |
CN111381251A (en) * | 2020-03-18 | 2020-07-07 | 杭州微萤科技有限公司 | Positioning system and synchronization chain self-optimization method thereof |
CN112683259A (en) * | 2020-11-27 | 2021-04-20 | 山东航天电子技术研究所 | Cluster distributed pulsar autonomous navigation system and control method thereof |
CN113422638A (en) * | 2021-07-02 | 2021-09-21 | 东方红卫星移动通信有限公司 | Low-earth-orbit satellite system whole-network time synchronization method and system |
CN114966766A (en) * | 2022-05-20 | 2022-08-30 | 中国科学院微小卫星创新研究院 | Method, device and system for constructing navigation constellation time reference |
CN115144891A (en) * | 2022-02-11 | 2022-10-04 | 中国人民解放军61540部队 | X-ray focusing type imaging telescope and millisecond pulsar weak signal observation method |
RU2828675C1 (en) * | 2023-10-25 | 2024-10-16 | Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") | System for monitoring integrity of global navigation satellite system, for example, glonass system, using intersatellite measurements |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005043189A (en) * | 2003-07-28 | 2005-02-17 | National Institute Of Information & Communication Technology | Space navigation system and method |
CN101038169A (en) * | 2007-02-13 | 2007-09-19 | 北京空间飞行器总体设计部 | Navigation satellite autonomous navigation system and method based on X-ray pulsar |
CN101178312A (en) * | 2007-12-12 | 2008-05-14 | 南京航空航天大学 | Spacecraft Integrated Navigation Method Based on Multi-Information Fusion |
US20090018762A1 (en) * | 2004-10-28 | 2009-01-15 | Suneel Sheikh | Navigation system and method using modulated celestial radiation sources |
-
2012
- 2012-12-24 CN CN201210566902.2A patent/CN103033188B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005043189A (en) * | 2003-07-28 | 2005-02-17 | National Institute Of Information & Communication Technology | Space navigation system and method |
US20090018762A1 (en) * | 2004-10-28 | 2009-01-15 | Suneel Sheikh | Navigation system and method using modulated celestial radiation sources |
CN101038169A (en) * | 2007-02-13 | 2007-09-19 | 北京空间飞行器总体设计部 | Navigation satellite autonomous navigation system and method based on X-ray pulsar |
CN101178312A (en) * | 2007-12-12 | 2008-05-14 | 南京航空航天大学 | Spacecraft Integrated Navigation Method Based on Multi-Information Fusion |
Non-Patent Citations (2)
Title |
---|
尹东山,高玉平,陈鼎,彭恢全: ""基于脉冲星的星载钟时间修正算法研究"", 《时间频率学报》 * |
杨廷高,高玉平: ""脉冲星时间尺度及其TOA预报初步分析"", 《时间频率学报》 * |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103644907B (en) * | 2013-11-13 | 2016-02-17 | 中国空间技术研究院 | A kind of pulsar angle-measurement system based on two satellite platform and method |
CN103644907A (en) * | 2013-11-13 | 2014-03-19 | 中国空间技术研究院 | Pulsar angular position measurement system and method based on double satellite platforms |
CN103616024B (en) * | 2013-11-27 | 2016-05-04 | 北京理工大学 | A kind of planetary detection approach section autonomous navigation system observability degree is determined method |
CN104316056B (en) * | 2014-10-14 | 2017-04-12 | 中国科学院国家授时中心 | Pulsar-based navigation constellation time synchronization and orientation parameter measurement method |
CN104316056A (en) * | 2014-10-14 | 2015-01-28 | 中国科学院国家授时中心 | Pulsar-based navigation constellation time synchronization and orientation parameter measurement method |
CN104316048B (en) * | 2014-10-14 | 2017-02-15 | 中国科学院国家授时中心 | Method for building universal pulsar-based autonomous navigation measurement model |
CN104316048A (en) * | 2014-10-14 | 2015-01-28 | 中国科学院国家授时中心 | Method for building universal pulsar-based autonomous navigation measurement model |
CN105657813A (en) * | 2016-01-04 | 2016-06-08 | 北京航空航天大学 | Time synchronization and distance measurement combined method among anchor-free nodes |
CN105657813B (en) * | 2016-01-04 | 2019-02-05 | 北京航空航天大学 | A joint time synchronization and ranging method between anchorless nodes |
CN106403960A (en) * | 2016-09-23 | 2017-02-15 | 南京航空航天大学 | Constellation navigation method for self-organized constellation |
CN106403960B (en) * | 2016-09-23 | 2019-07-09 | 南京航空航天大学 | A kind of constellation navigation method suitable for self-organizing constellation |
CN107421533A (en) * | 2017-06-22 | 2017-12-01 | 北京航空航天大学 | A kind of deep space probe X-ray pulsar TOA/DTOA Combinated navigation methods |
CN107421533B (en) * | 2017-06-22 | 2019-07-30 | 北京航空航天大学 | A kind of deep space probe X-ray pulsar TOA/DTOA Combinated navigation method |
CN109001763B (en) * | 2018-06-04 | 2020-06-30 | 北京未来导航科技有限公司 | Navigation enhancement method and system based on low-orbit constellation |
CN109001763A (en) * | 2018-06-04 | 2018-12-14 | 北京未来导航科技有限公司 | A kind of navigation Enhancement Method and system based on low rail constellation |
CN109459017A (en) * | 2018-12-11 | 2019-03-12 | 上海航天控制技术研究所 | A kind of constellation autonomous navigation method assisted using outside reference |
CN110058286A (en) * | 2019-05-13 | 2019-07-26 | 天津讯联科技有限公司 | Space-time synchronous method, apparatus, equipment and medium under the conditions of a kind of defence |
CN111308512A (en) * | 2020-03-05 | 2020-06-19 | 中国科学院微小卫星创新研究院 | Autonomous monitoring system and method for time-frequency integrity of navigation satellite |
CN111308512B (en) * | 2020-03-05 | 2021-12-14 | 中国科学院微小卫星创新研究院 | Autonomous monitoring system and method for time-frequency integrity of navigation satellite |
CN111381251A (en) * | 2020-03-18 | 2020-07-07 | 杭州微萤科技有限公司 | Positioning system and synchronization chain self-optimization method thereof |
CN112683259A (en) * | 2020-11-27 | 2021-04-20 | 山东航天电子技术研究所 | Cluster distributed pulsar autonomous navigation system and control method thereof |
CN112683259B (en) * | 2020-11-27 | 2022-11-11 | 山东航天电子技术研究所 | A control method for a cluster distributed pulsar autonomous navigation system |
CN113422638A (en) * | 2021-07-02 | 2021-09-21 | 东方红卫星移动通信有限公司 | Low-earth-orbit satellite system whole-network time synchronization method and system |
CN113422638B (en) * | 2021-07-02 | 2022-06-21 | 东方红卫星移动通信有限公司 | Low-earth-orbit satellite system whole-network time synchronization method and system |
CN115144891A (en) * | 2022-02-11 | 2022-10-04 | 中国人民解放军61540部队 | X-ray focusing type imaging telescope and millisecond pulsar weak signal observation method |
CN114966766A (en) * | 2022-05-20 | 2022-08-30 | 中国科学院微小卫星创新研究院 | Method, device and system for constructing navigation constellation time reference |
CN114966766B (en) * | 2022-05-20 | 2024-06-11 | 中国科学院微小卫星创新研究院 | Method, device and system for constructing navigation constellation time reference |
RU2828675C1 (en) * | 2023-10-25 | 2024-10-16 | Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") | System for monitoring integrity of global navigation satellite system, for example, glonass system, using intersatellite measurements |
Also Published As
Publication number | Publication date |
---|---|
CN103033188B (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103033188B (en) | The autonomous method for synchronizing time of Navsat based on synthetic aperture observation | |
CN109917431B (en) | A method for autonomous navigation of GNSS satellites using DRO orbit and inter-satellite measurement | |
van den IJssel et al. | Precise science orbits for the Swarm satellite constellation | |
CN103017774B (en) | Pulsar navigation method with single detector | |
WO2021129068A1 (en) | Moon navigation system based on earth gnss and moon navigation enhancement satellite | |
CN106338753B (en) | A Geosynchronous Orbit Constellation Orbit Determination Method Based on Ground Station/Inter-satellite Link/GNSS Joint Measurement | |
CN102679985B (en) | A Decentralized Autonomous Navigation Method for Spacecraft Constellation Using Intersatellite Tracking | |
CN103542854B (en) | Based on the autonomous orbit determination method of satellite-borne processor | |
CN113608427B (en) | Centralized space-based time reference establishing method | |
CN108120994B (en) | Real-time GEO satellite orbit determination method based on satellite-borne GNSS | |
CN110426720B (en) | Method for realizing rapid recovery of GEO satellite after maneuvering through inter-satellite measurement | |
CN113253314B (en) | A method and system for time synchronization between low-orbit satellites | |
CN103868514B (en) | A kind of at orbit aerocraft autonomous navigation system | |
CN116338742A (en) | A real-time high-precision PNT service method based on space-ground joint observation resources | |
CN113581501B (en) | System and method suitable for networking low-orbit satellite combined orbit determination | |
CN103675804A (en) | Inter-satellite ranging method based on dual-satellite time synchronization | |
CN117890936B (en) | Low-orbit satellite in-orbit real-time inter-satellite time transfer method and system | |
CN103543454A (en) | Satellite orbit determination system inserted in mobile communication network | |
CN107782317B (en) | An Inverted VLBI Deep Space One-way Navigation and Positioning Method | |
Gong et al. | Precise real-time navigation of the small TJU-1 satellite using GPS, GLONASS and BDS | |
Wang et al. | COMPASS time synchronization and dissemination—Toward centimetre positioning accuracy | |
CN104991265A (en) | Beidou satellite navigation system user uniformity positioning method | |
CN115639582B (en) | GeO satellite orbit maneuver period orbit determination method based on co-view time service | |
Li et al. | Precise orbit determination for LEO satellites: single-receiver ambiguity resolution using GREAT products | |
CN113687394B (en) | Centimeter-level orbit determination system and method for high-orbit satellite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent of invention or patent application | ||
CB03 | Change of inventor or designer information |
Inventor after: Yin Dongshan Inventor after: Gao Yuping Inventor after: Zhao Shuhong Inventor after: Zhao Chengshi Inventor before: Yin Dongshan |
|
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: YIN DONGSHAN TO: YIN DONGSHAN GAO YUPING ZHAO SHUHONG ZHAO CHENGSHI |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160120 Termination date: 20171224 |
|
CF01 | Termination of patent right due to non-payment of annual fee |