CN103030513B - Method for preparing hexene by butylene disproportionation reaction - Google Patents

Method for preparing hexene by butylene disproportionation reaction Download PDF

Info

Publication number
CN103030513B
CN103030513B CN201110300619.0A CN201110300619A CN103030513B CN 103030513 B CN103030513 B CN 103030513B CN 201110300619 A CN201110300619 A CN 201110300619A CN 103030513 B CN103030513 B CN 103030513B
Authority
CN
China
Prior art keywords
parts
butylene
reaction
weight
hexene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110300619.0A
Other languages
Chinese (zh)
Other versions
CN103030513A (en
Inventor
王仰东
宣东
张惠明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201110300619.0A priority Critical patent/CN103030513B/en
Publication of CN103030513A publication Critical patent/CN103030513A/en
Application granted granted Critical
Publication of CN103030513B publication Critical patent/CN103030513B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a method for preparing hexene by butylene disproportionation reaction, which mainly solves the problem of high reaction temperature in the prior art. Aiming at well solving the problem, the method adopts the technical scheme that 1-butylene is used as a raw material, and the raw material comes into contact with a catalyst to react and generate an effluent containing the hexene in a fixed bed reactor when the temperature is 20 to 120 DEG C, the reaction pressure is 0 to 1 MPa by the absolute pressure, and the weight hourly space velocity is 6 to 20 h<-1>, wherein the catalyst comprises the following raw materials in parts by weight: 1 to 30 parts of rhenium oxide and 70 to 99 parts of alumina carrier. The method can be used for the industrial production of the hexene prepared by the butylene disproportionation reaction.

Description

Method for preparing hexane by disproportionating butylene
Technical field
The present invention relates to a kind of method for preparing hexane by disproportionating butylene.
Background technology
As a kind of olefin product of high added value, the synthetic of hexene paid attention to very much.The conventional preparation method of current industrial hexene generates 1-hexene by ethylene polymerization, and the catalyzer of employing is alkylating metal catalyst.By olefin metathesis technology, the low value-added C4 conversion of olefines of relative surplus can be become to hexene and the ethene of high added value.
Olefin metathesis (Olefin metathesis) is a kind of conversion of olefines process.Under the effect at transition-metal catalyst (as W, Mo, Re etc.), the fracture of the two keys of C=C and formation again in alkene, thus can obtain new olefin product.We can represent simply from following reaction formula the dismutation of alkene:
r in reaction formula 1, R 2, R 3, R 4represent respectively different alkyl or hydrogen atom.If wherein the disproportionation reaction of same alkene (suc as formula 1) is called self disproportionation (self-metathesis); Disproportionation reaction between different alkene (formula 2) is called cross disproportionation (cross-metathesis).
The control of self disproportionation reaction of 1-butylene is the most key, because 1-butylene double bond isomerization reaction generates 2-butylene, and 1-butylene and 2-butylene cross disproportionation cause hexene optionally to reduce, so the key of this technology is to suppress in raw material 1-butylene at the double-bond isomerization of catalyst surface.
WO02059066 has reported the automatic disproportionation technology of 1-butylene.The catalyzer that this technology adopts is that Tungsten oxide 99.999 loads on silicon oxide, and at the temperature of 200 ℃~350 ℃, 1-butylene self disproportionation generates ethene and 3-hexene.3-hexene is converted into 1-hexene in isomerization reaction subsequently.This patent points out, adds 2-amylene and be conducive to 3-hexene in product and optionally improve in reactant.
WO03076371A1 has reported that take butylene prepares the technology of propylene and hexene as raw material.The catalyzer that this technology adopts is that Tungsten oxide 99.999 loads on silicon oxide, and temperature of reaction is 343 ℃, and reaction pressure is 5bar.
When the reaction for preparing hexane by disproportionating butylene, all there is the problem that temperature of reaction is high in the method in above document.
Summary of the invention
Technical problem to be solved by this invention is the high problem of temperature of reaction existing in prior art, and a kind of method of new preparing hexane by disproportionating butylene is provided.When the method is reacted for butylene disproportionation, have advantages of that catalyst activity is high, temperature of reaction is low.
In order to solve the problems of the technologies described above, the technical solution used in the present invention is as follows: a kind of method of preparing hexane by disproportionating butylene, take 1-butylene as raw material, and in temperature of reaction, be 20~120 ℃, reaction pressure is counted 0~1MPa with absolute pressure, and weight space velocity is 6~20 hours -1under condition, raw material, by beds, generates hexene, and wherein used catalyst, in parts by weight, comprises following component:
A) 1~30 part of rhenium oxide;
B) 70~99 parts of alumina supporters.
In technique scheme, the preferable range of temperature of reaction is 30~100 ℃, and more preferably scope is 40~80 ℃; Reaction pressure preferable range is 0.2~0.8MPa, and more preferably scope is 0.4~0.6MPa; Liquid phase air speed preferable range is 8~16 hours -1, more preferably scope is 10~16 hours -1; The preferable range of rhenium oxide consumption parts by weight is 2~25 parts, and more preferably scope is 4~20 parts, and most preferred range is 8~15 parts; The carrier of catalyzer is preferably γ-Al 2o 3.
Catalyzer of the present invention can adopt dipping, chemisorption, electroless plating, ion-exchange, the method preparations such as physical mixed, in the present invention, rhenium source can be perrhenic acid or rhenate, rhenium source is ammonium perrhenate preferably, preferred version is that the aqueous solution in rhenium-containing source is immersed on carrier, concrete scheme is for to put into stirrer by the aqueous solution in rhenium-containing source and carrier, and add aluminium colloidal sol and sesbania powder, stir to mediate and make it to put into banded extruder after Load Balanced, extrusion is dried after becoming definite shape, under air atmosphere, after roasting, make finished product, the temperature of roasting is 500~700 ℃, roasting time is 2~8 hours.
Catalyzer prepared by technique scheme is for the automatic disproportionation reaction of alkene, and the embodiment of the present invention is that butylene disproportionation generates hexene.Reaction conditions is as follows: in fixed-bed reactor, temperature of reaction is 20~120 ℃, and reaction pressure is counted 0~1MPa with absolute pressure, and the mass space velocity of 1-butylene is 6~20 hours -1.
The present invention adopts rhenium oxide as active ingredient, makes catalyzer have at low temperatures good disproportionation active.In temperature of reaction, be 20~120 ℃, reaction pressure is counted 0~1MPa with absolute pressure, and the mass space velocity of 1-butylene is 6~20 hours -1under condition, by catalyzer and butylene contact reacts, the transformation efficiency of its 1-butylene can reach 60%, and the weight yield of hexene can reach 26%, and yield can improve and reaches 6% left and right, has obtained good technique effect.
Below by embodiment, the present invention is further elaborated.
Embodiment
[embodiment 1]
By 1 kilogram of γ-Al 2o 3add in stirrer and stir 45 minutes with 10 grams of sesbania powder, after mediating evenly, add 400 grams of aluminium colloidal sols and 36 grams of ammonium perrhenates, add the deionized water of 1 kilogram simultaneously, kneading, extrusion, dry, roasting 4 hours at 550 ℃ later, obtain catalyzer finished product, the content 4% of rhenium oxide.The evaluation of catalyzer is carried out on olefin metathesis evaluating apparatus, and raw material is that weight content is 99.9% 1-butylene.Reaction is to be 40 ℃ in temperature, and pressure is 0.5MPa, and the weight space velocity of 1-butylene is 8 hours -1condition under evaluate, evaluation result is as shown in table 1, is designated as SL-1.
[embodiment 2]
Press each step in embodiment 1, only changing ammonium perrhenate is 72 grams, and the charge capacity of the catalyst oxidation rhenium making is 8%, and changing in reaction conditions temperature of reaction and be 80 ℃, reaction pressure is that 0.2MPa and weight space velocity are 10 hours -1, evaluation result is as shown in table 1, is designated as SL-2.
[embodiment 3]
Press each step in embodiment 1, only changing ammonium perrhenate is 108 grams, and the charge capacity of the catalyst oxidation rhenium making is 12%, and changing in reaction conditions temperature of reaction and be 100 ℃, reaction pressure is that 0.4MPa and weight space velocity are 16 hours -1, evaluation result is as shown in table 1, is designated as SL-3.
[embodiment 4]
Press each step in embodiment 1, only changing ammonium perrhenate is 135 grams, and the charge capacity of the catalyst oxidation rhenium making is 15%, and changing in reaction conditions temperature of reaction and be 30 ℃, reaction pressure is that 1MPa and weight space velocity are 20 hours -1, evaluation result is as shown in table 1, is designated as SL-4.
[embodiment 5]
Press each step in embodiment 1, only changing ammonium perrhenate is 181 grams, and the charge capacity of the catalyst oxidation rhenium making is 20%, and changing in reaction conditions temperature of reaction and be 120 ℃, reaction pressure is that 0.8MPa and air speed are 12 hours -1, evaluation result is as shown in table 1, is designated as SL-5.
[embodiment 6]
Press each step in embodiment 1, only changing ammonium perrhenate is 18 grams, and the charge capacity of the catalyst oxidation rhenium making is 2%, and changing in reaction conditions temperature of reaction and be 20 ℃, reaction pressure is that 0.6MPa and weight space velocity are 6 hours -1, evaluation result is as shown in table 1, is designated as SL-6.
[embodiment 7]
Press each step in embodiment 1, only changing ammonium perrhenate is 9 grams, and the charge capacity of the catalyst oxidation rhenium making is 1%, and changing in reaction conditions temperature of reaction and be 35 ℃, reaction pressure is that 0.7MPa and weight space velocity are 15 hours -1evaluation result is as shown in table 1, is designated as SL-7.
[embodiment 8]
Press each step in embodiment 1, only changing ammonium perrhenate is 225 grams, and the charge capacity of the catalyst oxidation rhenium making is 25%, and changing reaction pressure is that 0.1MPa and weight space velocity are 12 hours -1, evaluation result is as shown in table 1, is designated as SL-8.
[embodiment 9]
Press each step in embodiment 1, only changing ammonium perrhenate is 271 grams, and the charge capacity of the catalyst oxidation rhenium making is 30%, and the weight space velocity that changes iso-butylene is 18 hours -1, evaluation result is as shown in table 1, is designated as SL-9.
[embodiment 10]
By 1 kilogram of γ-Al 2o 3add in stirrer and stir 45 minutes with 10 grams of sesbania powder, after mediating evenly, add 400 grams of aluminium colloidal sols, 36 grams of ammonium perrhenates and 2 grams of ammonium dimolybdates, the deionized water that simultaneously adds 1 kilogram, kneading, extrusion, dry, roasting 4 hours at 550 ℃ later, obtain catalyzer finished product, the content 4% of rhenium oxide.Appreciation condition is identical with embodiment 1, and evaluation result is as shown in table 1, is designated as SL-10.
[comparative example 1]
1 kilogram of 200 object chromatographic silica gel and 10 grams of sesbania powder are added in stirrer and stirred 45 minutes, after mediating evenly, add 400 grams of silicon sol and 55 grams of ammonium metawolframates, the deionized water that simultaneously adds 1 kilogram, kneading, extrusion, dry, roasting 4 hours at 550 ℃ later, obtain flaxen catalyzer finished product, the content 4% of Tungsten oxide 99.999, is designated as BJL-1.The evaluation of catalyzer is carried out on olefin metathesis evaluating apparatus, and raw material is the 1-butylene of weight content 99.9%.Reaction is to be 350 ℃ in temperature, and pressure is 0.5MPa, and the weight space velocity of 1-butylene is 8 hours -1condition under evaluate, evaluation result is as shown in table 2.
[comparative example 2]
Press each step Kaolinite Preparation of Catalyst in comparative example 1, the add-on that changes ammonium metawolframate is 110 grams, and the content of Tungsten oxide 99.999 is 8%, is designated as BJL-2.Changing in reaction conditions temperature of reaction and be 300 ℃, reaction pressure is 0.2MPa, and the weight space velocity of 1-butylene is 10 hours -1, evaluation result is as shown in table 2.
[comparative example 3]
Press each step Kaolinite Preparation of Catalyst in comparative example 1, the add-on that changes ammonium metawolframate is 165 grams, and the content of Tungsten oxide 99.999 is 12% to be designated as BJL-3.Changing in reaction conditions temperature of reaction and be 100 ℃, reaction pressure is 0.4MPa, and the weight space velocity of 1-butylene is 16 hours -1evaluation result is as shown in table 3.
Table 1
Table 2
Example and comparative example in his-and-hers watches 2 compare, and it is active that rhenium oxide has good disproportionation at low temperature, under identical reaction conditions, compares comparative example catalyzer, and the yield of hexene improves more than 6%.

Claims (5)

1. a method for preparing hexane by disproportionating butylene, take 1-butylene as raw material, in temperature of reaction, is 40~80 ℃, and reaction pressure is 0.4~0.6MPa, and weight space velocity is less than or equal to 16 hours for being greater than 10 -1under condition, raw material, by beds, generates hexene, and wherein used catalyst, in parts by weight, comprises following component:
A) 1~30 part of rhenium oxide;
B) 70~99 parts of alumina supporters;
The preparation method of described catalyzer is as follows: the aqueous solution in rhenium-containing source and carrier are put into stirrer, and add aluminium colloidal sol and sesbania powder, stir to mediate and make it to put into banded extruder after Load Balanced, extrusion is dried after becoming definite shape, under air atmosphere, after roasting, makes finished product, the temperature of roasting is 500~700 ℃, and roasting time is 2~8 hours.
2. the method for preparing hexane by disproportionating butylene according to claim 1, is characterized in that take that parts by weight rhenium oxide consumption is as 2~25 parts.
3. the method for preparing hexane by disproportionating butylene according to claim 2, is characterized in that take that parts by weight rhenium oxide consumption is as 4~20 parts.
4. the method for preparing hexane by disproportionating butylene according to claim 3, is characterized in that take that parts by weight rhenium oxide consumption is as 8~15 parts.
5. the method for preparing hexane by disproportionating butylene according to claim 1, the carrier that it is characterized in that catalyzer is γ-Al 2o 3.
CN201110300619.0A 2011-09-29 2011-09-29 Method for preparing hexene by butylene disproportionation reaction Active CN103030513B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110300619.0A CN103030513B (en) 2011-09-29 2011-09-29 Method for preparing hexene by butylene disproportionation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110300619.0A CN103030513B (en) 2011-09-29 2011-09-29 Method for preparing hexene by butylene disproportionation reaction

Publications (2)

Publication Number Publication Date
CN103030513A CN103030513A (en) 2013-04-10
CN103030513B true CN103030513B (en) 2014-10-15

Family

ID=48017967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110300619.0A Active CN103030513B (en) 2011-09-29 2011-09-29 Method for preparing hexene by butylene disproportionation reaction

Country Status (1)

Country Link
CN (1) CN103030513B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108080021B (en) * 2017-12-18 2020-11-17 陕西省石油化工研究设计院 Catalyst for preparing 1-hexene through butene disproportionation and oligomerization, and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1915938A (en) * 2005-08-15 2007-02-21 中国石油化工股份有限公司 Method for producing ethene and hexene through dismutation of butylene
CN101148391A (en) * 2006-09-20 2008-03-26 中国石油化工股份有限公司 Method for producing propylene by butylene and ethylene dismutation
EP2157071A2 (en) * 2002-03-07 2010-02-24 Lummus Technology Inc. Process for producing propylene and hexene from C4 olefin streams

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727396B2 (en) * 2001-01-25 2004-04-27 Abb Lummus Global, Inc. Process for the production of linear alpha olefins and ethylene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2157071A2 (en) * 2002-03-07 2010-02-24 Lummus Technology Inc. Process for producing propylene and hexene from C4 olefin streams
CN1915938A (en) * 2005-08-15 2007-02-21 中国石油化工股份有限公司 Method for producing ethene and hexene through dismutation of butylene
CN101148391A (en) * 2006-09-20 2008-03-26 中国石油化工股份有限公司 Method for producing propylene by butylene and ethylene dismutation

Also Published As

Publication number Publication date
CN103030513A (en) 2013-04-10

Similar Documents

Publication Publication Date Title
CN102040454B (en) Method for preparing hexane by disproportionating butylene
CN102372572B (en) Method for preparing propylene through C4 disproportionation
CN103030513B (en) Method for preparing hexene by butylene disproportionation reaction
CN103772115B (en) Iso-butylene produces the method for tetramethyl-ethylene
CN102794170B (en) Preparation method of supported rhenium catalyst for preparing alpha-olefins by high-carbon olefin disproportionation
CN102372575B (en) Method for preparing tetramethylethylene through isobutene metathesis
CN105582933B (en) Catalyst for double-bond isomerization
CN102464551B (en) Method for preparing tetramethyl-ethylene through disproportionated reaction of isobutene
CN100413828C (en) Method for producing ethene and hexene through dismutation of butylene
CN104549295B (en) Olefin isomerization catalyst
CN102464552B (en) Method for preparing 2,3-dimethyl-2-butylene through isobutylene disproportionation
CN103420761B (en) Method for propylene preparation through pentene disproportionation
CN103030507B (en) Method for producing propylene by virtue of disproportionating of amylene and ethylene
CN105080535B (en) Catalyst for butylene disproportionation
CN104275193B (en) metathesis catalyst
CN103420774B (en) For the method for preparing hexane by disproportionating butylene
CN103030506B (en) Method for producing propylene by virtue of disproportionating of amylene
CN103030514B (en) Method for preparing 2,3-dimethyl-2-butene through isobutene disproportionation
CN104549232B (en) Rhenium-based disproportionation catalyst
CN103772116B (en) For the method for preparing hexane by disproportionating butylene
CN104549225B (en) Olefin disproportionation catalyst
CN106824169B (en) Olefin metathesis catalyst and application thereof
CN105214643B (en) Catalyst for metathesis reaction
CN104557399A (en) Method for preparing propylene from pentene and ethylene by disproportionation
CN103739431B (en) For the method for ethene and butylene propylene

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant