CN103027667A - 脉搏波的特征参数提取 - Google Patents

脉搏波的特征参数提取 Download PDF

Info

Publication number
CN103027667A
CN103027667A CN2011103168354A CN201110316835A CN103027667A CN 103027667 A CN103027667 A CN 103027667A CN 2011103168354 A CN2011103168354 A CN 2011103168354A CN 201110316835 A CN201110316835 A CN 201110316835A CN 103027667 A CN103027667 A CN 103027667A
Authority
CN
China
Prior art keywords
pulse wave
wave signal
point
parts
extreme value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103168354A
Other languages
English (en)
Other versions
CN103027667B (zh
Inventor
王颖
郭松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Priority to CN201110316835.4A priority Critical patent/CN103027667B/zh
Publication of CN103027667A publication Critical patent/CN103027667A/zh
Application granted granted Critical
Publication of CN103027667B publication Critical patent/CN103027667B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本发明提供脉搏波的特征参数提取,属于中医脉象量化技术领域。提取脉搏波的特征参数的方法中,包括步骤:确定所述脉搏波信号中的所有主峰点;并依据每个主峰点确定相应的每个脉搏波信号周期的起始点;确定所述脉搏波信号周期中的所有可能极值点;去除所述可能极值点中的干扰极值点以精确得到所述脉搏波信号周期信号中的特征点;以及依据所述特征点的信息获取特征参数。该方法对特征点定位准确,所提取的特征参数准确、科学、可靠。

Description

脉搏波的特征参数提取
技术领域
本发明属于中医脉象量化技术领域,涉及利用计算机技术实现脉象的特征参数提取,其提取过程中采用极值点来精确定位脉搏波信号中的特征点。 
背景技术
脉诊是根据“脉象”观察、判断病症情况的一种诊断方法,它是中医的基本技术,也是中医临床不可缺少的诊察步骤和内容。脉诊之所以重要,就是由于脉象能传递机体各部分的生理病理信息,是窥视体内功能变化的窗口,可为诊断病证提供重要依据。 
传统的中医脉诊是完全依赖于医生的经验,医生通过感知脉搏搏动,获取病人的脉象信息实现疾病诊断,其经验程度要求较高、并且主观性相对较强。因此,近年来,为实现中医脉诊技术的广泛化、规范化、客观化应用,推出了中医脉诊仪器设备,其利用信号采集装置从病人采集反映脉象的脉搏波信号,并且进一步利用信号分析处理技术、图像处理技术等对脉搏波信号进行技术量化分析处理,为脉象的判断提供客观的数据信息,从而为脉诊创造便利条件。 
在该对脉搏波信号的数据分析处理过程中,通常地包括对脉搏波的特征参数提取过程,这是脉诊的关键信息之一。中国专利申请号为CN200810153175.0、名称为“中医脉象特征函数自动提取方法”的专利中,以及中国专利申请号为CN200510061394.2、名称为“中医脉象特征参数自动检测方法”的专利中,各自描述了脉搏波的特征参数的提取方法。但是,这些现有技术的提取方法中,对脉搏波信号周期中的特征点的定位相对模糊或者不准确,可能会导致特征参数的计算不精确,进而可能会导致错误脉诊。 
发明内容
本发明的目的在于,准确提取脉搏波信号中的特征参数。 
为实现以上目的或者其它目的,本发明提供以下技术方案。 
按照本发明的一方面,提供一种提取脉搏波的特征参数的方法,其包括以下步骤:
获取一段包括一个周期以上的脉搏波信号; 
确定所述脉搏波信号中的所有主峰点; 
依据每个主峰点确定相应的每个脉搏波信号周期的起始点,以 
实现所述脉搏波信号的周期分割; 
依据微积分理论确定所述脉搏波信号周期中的所有可能极值点; 
去除所述可能极值点中的干扰极值点以精确得到所述脉搏波信号周期信号中的特征点;以及 
依据所述特征点的信息获取特征参数。 
按照本发明提供的提取方法的一实施例,其中,所述去除干扰极值点的过程包括:
依据所述起始点计算每个脉搏波信号周期的平均周期; 
判断任意相邻的第一可能极值点和第二可能极值点之间的幅度差是否小于或等于特定幅度阈值,若判断为“是”,则将第一可能极值点和第二可能极值点中的幅度较小的一个作为干扰极值点被去除;和/或 
判断任意相邻的第一可能极值点和第二可能极值点之间的时间差是否小于或等于特定时间阈值,若判断为“是”,则合并第一可能极值点和第二可能极值点为一个可能极值点以实现所述干扰极值点的去除;和 
将剩余的可能极值点进行直方图统计,利用聚类分析法将直方图划分为若干区域,若某一区域内的所述可能极值点的数目小于第一数值时,则该区域内的相应所述可能极值点作为干扰极值点被去除。 
在之前的实施例中,优选地,在所述直方图统计并去除干扰极值点之后,还包括步骤: 
判断一个脉搏波信号周期内的剩余的可能极值点的数目是否大于10,如果大于10,则去除该脉搏波信号周期。 
在之前的实施例中,优选地,所述特定幅度阈值为所述脉搏波信号的幅度浮动范围的0.01倍,所述特定时间阈值为所述平均周期的0.02 倍。 
在之前的实施例中,优选地,所述第一数值为所述剩余的可能极值点的总数的百分之五。 
在之前的实施例中,优选地,所述若干区域的个数五个,其分别为主峰值区域、潮波区域、重博波区域、房缩波区域和周期起始点区域。 
在之前的实施例中,优选地,所述聚类分析法为k均值聚类算法或者模糊聚类算法。 
按照本发明提供的提取方法的又一实施例,其中,所述脉搏波信号的周期分割之后,还包括步骤: 
去除所述脉搏波信号的基线漂移影响;以及 
对所述脉搏波信号的数据进行规范化处理。 
在之前的实施例中,优选地,所述去除基线漂移影响的步骤中,包括:对于所述起始点进行插值计算以得到所述基线。 
在之前的实施例中,优选地,所述去除基线漂移影响的步骤中,包括:所述脉搏波信号对应减去所述基线的幅度值。 
在之前的实施例中,优选地,所述插值计算为三次样条插值计算或者分段三次埃米尔特插值计算。 
在之前的实施例中,优选地,所述规范化处理包括以下过程: 
依据所述峰值点和起始点确定该脉搏波信号的浮动范围;以及 
根据所述浮动范围对脉搏波信号中的每个点进行归一化处理。 
按照本发明提供的提取方法的再一实施例,其中,在确定所有主峰点之前,还包括步骤: 
对所述脉搏波信号进行平滑滤波以及去除噪声处理。 
在之前的实施例中,优选地,所述平滑滤波以及去除噪声处理采用一维均值滤波方法或者高斯滤波方法。 
在之前的实施例中,优选地,所述一维均值滤波方法或者高斯滤波方法的滤波窗口被设置为大于或等于所述脉搏波信号的采样频率的0.03倍、并小于或等于所述脉搏波信号的采样频率的0.08倍。 
按照本发明提供的提取方法的还一实施例,其中,所述确定所有主峰点的步骤包括: 
确定第一窗口的大小; 
利用该第一窗口对所述脉搏波信号进行遍历; 
计算出每个第一窗口范围内的最大幅度值;以及 
判断任意两个相邻的所述最大幅度值对应的时间差是否小于所述第一窗口的大小,如果判断为“是”,则去除其中较小的最大幅度值,剩余的所述最大幅度值对应的位置点被定义为主峰点。 
在之前的实施例中,优选地,所述第一窗口被设置为大于或等于所述脉搏波信号的采样频率的0.6倍且小于或等于所述脉搏波信号的采样频率的0.8倍。 
在之前的实施例中,优选地,确定所述起始点的步骤中,通过定位每个主峰点之前的0.3倍于采样频率的范围内的最小值、并定义该最小值对应的点为所述起始点。 
在之前的实施例中,优选地,确定所述可能极值点的过程中,计算所述脉搏波信号周期中每个点分别与相邻的两点之间的第一幅度差值和第二幅度差值,并计算所述第一幅度差值与第二幅度差值的乘积,如果该乘积值小于或等于预定的阈值,则确定该点为所述可能极值点。 
在之前的实施例中,优选地,所述脉搏波信号的数据被进行归一化处理,所述预定的阈值为1×10-5。 
在之前的实施例中,所述脉搏波信号可以通过脉象采集装置实时获取。 
在之前的实施例中,所述脉搏波信号也可以通过从脉象数据库中获取。 
优选地,通过COM接口、USB接口、网络接口、或者无线传输模块从所述脉象数据库中获取所述脉搏波信号。 
在之前的实施例中,优选地,所述脉搏波信号包括6至16个脉搏波信号周期。 
按照本发明的又一方面,提供一种用于提取脉搏波的特征参数的装置,其包括: 
用于获取一段包括一个周期以上的脉搏波信号的部件; 
用于确定所述脉搏波信号中的所有主峰点的部件; 
用于依据每个主峰点确定相应的每个脉搏波信号周期的起始点、以实现所述脉搏波信号的周期分割的部件; 
用于依据微积分理论确定所述脉搏波信号周期中的所有可能极值点的部件; 
用于去除所述可能极值点中的干扰极值点以精确得到所述脉搏波信号周期信号中的特征点的部件;以及 
用于依据所述特征点的信息获取特征参数的部件。 
按照本发明提供的装置的一实施例,其中,所述用于去除所述可能极值点中的干扰极值点以精确得到所述脉搏波信号周期信号中的特征点的部件进一步包括: 
用于依据所述起始点计算每个脉搏波信号周期的平均周期的部件; 
用于判断任意相邻的第一可能极值点和第二可能极值点之间的幅度差是否小于或等于特定幅度阈值的部件,若该部件判断为“是”,则将第一可能极值点和第二可能极值点中的幅度较小的一个作为干扰极值点被去除;和/或 
用于判断任意相邻的第一可能极值点和第二可能极值点之间的时间差是否小于或等于特定时间阈值的部件,若该部件判断为“是”,则合并第一可能极值点和第二可能极值点为一个可能极值点以实现所述干扰极值点的去除;和 
用于将剩余的可能极值点进行直方图统计的部件,该部件利用聚类分析法将直方图划分为若干区域,若某一区域内的所述可能极值点的数目小于第一数值时,则该区域内的相应所述可能极值点作为干扰极值点被去除。 
在之前所述的实施例中,优选地,所述用于去除所述可能极值点中的干扰极值点以精确得到所述脉搏波信号周期信号中的特征点的部件进一步包括: 
紊乱波周期去除部件,其用于判断一个脉搏波信号周期内的剩余的可能极值点的数目是否大于10,如果大于10,则去除该脉搏波信号周期。 
在之前所述的实施例中,优选地,所述特定幅度阈值为所述脉搏波信号的幅度浮动范围的0.01倍,所述特定时间阈值为所述平均周期的0.02倍。 
在之前所述的实施例中,优选地,所述第一数值为所述剩余的可能极值点的总数的百分之五。 
在之前所述的实施例中,优选地,所述若干区域的个数五个,其分 别为主峰值区域、潮波区域、重博波区域、房缩波区域和周期起始点区域。 
在之前所述的实施例中,优选地,所述聚类分析法为k均值聚类算法或者模糊聚类算法。 
在之前所述的实施例中,优选地,还包括: 
用于去除所述脉搏波信号的基线漂移影响的部件;以及 
用于对所述脉搏波信号的数据进行规范化处理的部件。 
按照本发明提供的装置的又一实施例,其中,用于去除所述脉搏波信号的基线漂移影响的部件进一步包括: 
用于对于所述起始点进行插值计算以得到所述基线的部件;以及 
用于所述脉搏波信号对应减去所述基线的幅度值的部件。 
在之前所述的实施例中,优选地,所述插值计算为三次样条插值计算或者分段三次埃米尔特插值计算。 
在之前所述的实施例中,优选地,所述用于对所述脉搏波信号的数据进行规范化处理的部件进一步包括: 
用于依据所述峰值点和起始点确定该脉搏波信号的浮动范围的部件;以及 
用于根据所述浮动范围对脉搏波信号中的每个点进行归一化处理的部件。 
在之前所述的实施例中,优选地,还包括: 
用于对所述脉搏波信号进行平滑滤波以及去除噪声处理的部件。 
按照本发明提供的装置的还一实施例,其中,用于确定所述脉搏波信号中的所有主峰点的部件进一步包括: 
用于确定第一窗口的大小的部件; 
用于利用该第一窗口对所述脉搏波信号进行遍历的部件; 
用于计算出每个第一窗口范围内的最大幅度值的部件;以及 
用于判断任意两个相邻的所述最大幅度值对应的时间差是否小于所述第一窗口的大小的部件,如果该部件判断为“是”,则去除其中较小的最大幅度值,剩余的所述最大幅度值对应的位置点被该部件定义为主峰点。 
在之前所述的实施例中,优选地,用于依据每个主峰点确定相应的 每个脉搏波信号周期的起始点、以实现所述脉搏波信号的周期分割的部件进一步包括: 
用于通过定位每个主峰点之前的0.3倍于采样频率的范围内的最小值、并定义该最小值对应的点为所述起始点的部件。
本发明的技术效果是,在提取脉搏波的特征参数的过程中,找出可能极值点、并且去除了可能极值点中的干扰极值点,从而实现特征点的定位,特征点相对定位准确,所提取的特征参数准确、科学、可靠。 
附图说明
从结合附图的以下详细说明中,将会使本发明的上述和其它目的及优点更加完全清楚,其中,相同或相似的要素采用相同的标号表示。 
图1是按照本发明一实施例提供的提取脉搏波的特征参数的基本方法流程示意图; 
图2是本发明一实施例获取的脉搏波信号的波形图; 
图3是平滑滤波及去除噪声处理后的脉搏波信号的主峰点以及周期的起始点的示意图; 
图4是通过对起始点进行差值计算法后得到的脉搏波的基线; 
图5是去除基线漂移影响后的脉搏波信号40的波形图; 
图6是脉搏波信号周期中的可能极值点的示意图; 
图7是脉搏波信号中被第一次去除干扰极值点之后的可能极值点的示意图。 
图8是将可能极值点进行直方图统计后得到的直方图; 
图9是对图7所示的直方图进行聚类分析后的结果示意图; 
图10是脉搏波信号50中的精确定位的特征点的示意图; 
图11是图10中的虚线框中的一个脉搏波信号周期的放大示意图; 
图12是在一实例中提取出的脉搏波的特征参数列表。 
具体实施方式
下面介绍的是本发明的多个可能实施例中的一些,旨在提供对本发明的基本了解,并不旨在确认本发明的关键或决定性的要素或限定所要保护的范围。容易理解,根据本发明的技术方案,在不变更本发明的实 质精神下,本领域的一般技术人员可以提出可相互替换的其它实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。 
图1所示为按照本发明一实施例提供的提取脉搏波的特征参数的基本方法流程示意图。其中,图2至图12为配合解释说明图1的提取方法过程而提供的示意图,以下结合图1至图12对该提取特征参数的方法进行详细说明。 
首先,执行步骤S111,获取一段待提取特征参数的脉搏波信号。 
图2所示为本发明一实施例获取的脉搏波信号的波形图。如图2所示,获取的脉搏波信号10包括多个脉搏波信号周期,优选地,脉搏波信号中所包括的脉搏波信号周期的数量范围为6个至16个(例如图中所示的10个脉搏波信号周期)。具体地,图2所示的脉搏波信号10可以通过脉象采集装置实时地采集,其被传输至执行图1所示方法过程的计算机装置中,脉象采集装置是用于从躯体具体部位(例如,“寸”、“关”、“节”等部位)采集脉搏波信号,其具体可以包括传感器、可调放大电路模块、滤波电路模块、ADC模数转换电路模块等,但是,脉象采集装置的具体形式不受本发明实施例限制,其甚至可以应用将来所提出的各种脉象采集装置;在脉象采集装置采集的脉搏波信号失真度越低的情况下,应用于本方法过程中所取得预期效果可能更佳。脉搏波信号10还可以是在某一存储装置中已经存储的脉象数据库中获取的数字信息,其可以通过但不限于COM接口、USB接口、网络接口、或者无线传输模块等从所述脉象数据库中传输获得该数字信息。 
继续如图2所示,其中横坐标反映脉搏波信号10的时间,纵坐标反映脉搏波信号10的幅度。脉搏波信号10的采集频率可以根据具体情况(例如病人个体情况)来设置,在该实例中,采集频率可以200Hz,一般地,脉象采集装置初步采集的脉搏波信号10存在不同程度的噪音、干扰、和/或漂移等,其与脉象采集装置具体设置、病人个体等情况有关。 
进一步,优选地,执行步骤S113,对脉搏波信号10进行平滑滤波及去除噪声处理。脉搏波信号10被平滑滤波处理及去除噪声处理 后,得到图3所示的脉搏波信号20。具体地,在一实施例中,平滑滤波及去除噪声处理可以通过对脉搏波信号10的数据进行一维均值滤波方法或者高斯滤波方法处理来实现,但是,具体的处理方法并不是限制性的。在采用维均值滤波方法或者高斯滤波方法处理进行平滑滤波及去除噪声处理时,其设定的滤波窗口优选地大于或等于脉搏波信号10的采样频率的0.03倍、且小于或等于脉搏波信号10的采样频率的0.08倍,例如,采样频率为200Hz时(每秒采样200个点),滤波窗口优选地在6(200×0.03)个点至16(200×0.08)个点之间。这样,既能有效去除噪声,又能尽量减小脉搏波的波形失真。当然,滤波窗口也可以根据其它具体情况来调整。 
进一步,执行步骤S115,确定脉搏波信号20中的所有主峰点。通常地,脉搏波信号中的每个脉搏波信号周期的主峰点的幅度值比较突出,其相对容易判断定位。优选地,主峰点的判断可以通过以下方法实施例实现: 
步骤115a,确定遍历窗口的大小,该窗口大小优选地选择在采样频率的0.6-0.8倍的范围内,例如,采样频率的0.7倍,其可以根据脉搏波的大致周期长度来选定;当采样频率为200Hz时(每秒采样200个点),该窗口大小优选地在120(200×0.6)个点至160(200×0.8)个点之间; 
步骤115b,利用该遍历窗口对脉搏波信号20进行遍历处理; 
步骤115c,计算出每个遍历窗口范围内的幅度最大值; 
步骤115d,如果任意两个相邻(在时间上相邻)的最大幅度值对应的时间差小于该遍历窗口的大小,则舍去该两个相邻的最大幅度值中较小的一个,剩下的最大幅度值被定义主峰点。 
进一步,步骤S117,依据每个主峰点确定相应的每个脉搏波信号周期的起始点。 
图3所示为平滑滤波及去除噪声处理后的脉搏波信号的主峰点以及周期的起始点的示意图。在规则的脉搏波信号周期中,一个脉搏波信号周期中存在一个主峰点21以及一个起始点23。脉搏波信号20中的主峰点21通过以上述及的优选方法过程粗略定位,定位起始点23的优选方法包括以下过程:通过定位每个主峰点21之前的0.3倍于采样频率的范围内的最小值、并定义该最小值对应的点23为起始点,例如,采样频率为200Hz时(每秒采样200个点),确定每个主峰点21 之前60点内的最小值为起始点。以上过程可以实现起始点23的粗略定位。 
在起始点23基本定位以后,相邻两个起始点之间即为一个脉搏波信号周期,因此,起始点23实现了脉搏波信号的周期分割。
进一步,优选地,执行步骤S119,去除脉搏波信号20中的基线漂移的影响。 
图4所示为通过对起始点23进行差值计算法后得到的脉搏波的基线30。在该步骤中,根据步骤S117中确定的起始点23,对起始点23的相应数据进行差值计算,例如,运用三次样条插值计算或者分段三次埃米尔特(Hermite)插值计算,差值计算后的得到的关于起始点的波形即为基线30。 
在一实施例中,为去除基线漂移的影响,通过将脉搏波信号20对应减去基线30的幅度值即可基本实现。图5所示为去除基线漂移影响后的脉搏波信号40的波形图。 
进一步,优选地,执行步骤S121,对脉搏波信号40的数据进行规范化处理。为便于对采集的脉搏波信号进行统一计算处理,并去除采集的脉搏波图形的差异化因素影响(例如在施加的取脉压力或脉象采集装置不同时,脉搏波的幅度大小是不一致的),可以对脉搏波信号40的数据进行规范化处理。具体地,可以采用归一化处理的形式对每个采样点进行处理,例如,确定脉搏波信号40的浮动范围,以每个采样点的幅度除以该幅度范围,得到归一化处理后的脉搏波信号50(在图6中示出),其归一的范围为[0,1]。可以理解的是,归一化的参数在后续特征参数的计算过程中可以被采用。 
进一步,执行步骤S123,确定脉搏波信号周期中的所有可能极值点。 
图6所示为脉搏波信号周期中的可能极值点的示意图。在该步骤中,脉搏波信号50中的可能极值点51依据微积分理论来确定,可能极值点51并不仅指指狭义上的一阶导数等于0的极值点,其较佳地是指广义上的极值点,也即一阶导数等于0或基本等于0。一阶导数基本等于0的可能极值点是指斜率变化很小的点,具体地,通过以下方法过程来确定一阶导数基本等于0的点: 
假如d0、d1、d2为一个脉搏波信号周期中的三个依次相邻的点,计算d0与d1之间的幅度差值c1(c1等于d1的幅度值减去d0的幅度 值),计算d1与d2之间的幅度差值c2(c2等于d2的幅度值减去d1的幅度值); 
幅度差值c1乘以幅度差值c2得出乘积值f1,如果f1小于或等于1×10-5(以上幅度值为归一化处理后的幅度值),则判断该点d1为可能极值点,否则判定为非可能极值点; 
重复执行以上过程,依次对每个点进行以上处理过程来确定是否为可能极值点。 
继续如图6所示,并对比图3所示,峰值点21所对应的位置区域可能存在多个可能极值点51,起始点23所对应的位置区域也可能存在多个可能极值点51;因此,需要从多个可能极值点中筛选得出特征点,也即对特征点进行精确定位。特别是在脉搏波信号周期的波动区域,如图6中所示的可能极值点53所在的区域,在小的区域里可能集聚多个可能极值点,从多个可能极值点中精确定位出特征点变得非常重要。 
进一步,优选地,执行步骤S125,依据起始点23的位置计算脉搏波信号周期的平均周期。如图3所示,虽然起始点23并没有精确定位,但是,在计算平均周期时,基本可以忽略其影响而得到相对准确的平均周期Taver。 
进一步,优选地,执行步骤S 127,第一次去除干扰极值点。在该过程中,通过以下方法过程对每个脉搏波信号周期中的每个可能极值点51进行处理: 
(a)假如a1和a2为两个相邻(时间上相邻)的可能极值点,求出a1和a2的时间差b1以及幅度差b2; 
(b)如果幅度差b2小于或等于特定幅度阈值,则如果确定a1和a2中的幅度较小的一个作为干扰极值点被去除; 
(c)如果时间差b1小于或等于特定时间阈值,则对a1和a2两个点进行合并(例如取其中间位置)。 
以上方法过程中,步骤(b)和(c)可以同步地进行,也可以仅执行其中一个步骤来去除干扰极值点。其中,特定时间阈值和特定幅度阈值可以根据具体情况来设定,在该实例中,特定幅度阈值被设置为脉搏波信号40的幅度浮动范围的0.01倍(例如,在归一化处理后,即为脉搏波信号50时,其被设置为0.01),特定时间阈值被设置为平均周期Taver的0.02倍。 
图7所示为脉搏波信号中被第一次去除干扰极值点之后的可能极值点的示意图。相比于图6所示中的可能极值点,其数量相对减少。 
进一步,优选地执行步骤S129,将剩余的可能极值点进行直方图统计在该过程中,图8所示为将可能极值点进行直方图统计后得到的直方图。 
进一步,优选地,执行步骤S131,第二次去除干扰极值点。在该步骤中,首先用聚类分析法将直方图划分为若干区域,其中,图9所示为对图7所示的直方图进行聚类分析后的结果示意图;明显地,利用聚类分析法将直方图划分为若干区域,在该实施例中,其可以划分为主峰值区域、潮波区域、重博波区域、房缩波区域和周期起始点区域,这基本是由脉搏波形状决定的。继续如图9所示,然后对每个区域中的可能极值点的数目进行统计(如图中虚线圈中的点的数目,但是在图中未完全反应出每个区域的点数),其数目小于剩余的可能极值点的总数的5%时,则判断该区域内的相应可能极值点51为干扰极值点,并去除该干扰极值点。 
进一步,优选地,执行步骤S133,去除脉搏波信号中的紊乱脉搏波周期。其中,紊乱脉搏波周期的确定通过以下方法过程实现:通过两次去除干扰极值点后所剩下的可能极值点被按脉搏波周期进行统计,如果在一个周期内所剩下的可能极值点的数目是否大于10(一般一个周期内的特征点不会多余10个),如果大于10,则表示该脉搏波信号周期是紊乱的。 
进一步,执行步骤S135,确定脉搏波信号周期中的特征点。通过以上步骤S125至步骤S131对可能极值点进行干扰极值点去除以后,剩下的可能极值点被定义为特征点。因此,特定点是通过以上过程精确定位得出,其有利于其后准确获取特征参数。 
图10所述为脉搏波信号50中的精确定位的特征点的示意图,图11所示为图10中的虚线框中的一个脉搏波信号周期的放大示意图。如图10所示,脉搏波信号50中的每个周期中,可能包括6个特征点、也可能包括7个特征点,特征点的个数不是限定的,其与脉象类型等有关。在图11所示实例的脉搏波信号周期中,7个特征点521-527被定位出来。 
进一步,执行步骤S137,依据特征点的信息获取特征参数。 
参考图11所示,在特征点521-527被定位出来后,依据每个特征点 的坐标信息可以以得出每个特征点的时间点(横坐标)和幅度值(纵坐标),其中,t1-t7相应表示特征点521-527的相对时间点,h1-h7相应表示特征点521-527的相对幅度值。 
图12所示为在一实例中提取出的脉搏波的特征参数列表。其中,t1表示主波出现的时刻,h1表示主波幅度;t2表示潮波起点出现时刻,h2表示潮波起点幅度;t3表示重博前波(潮波)出现时刻,h3表示重博前波幅度;t4表示降中峡出现时刻,h4表示降中峡幅度;t5表示重博波出现时刻,h5表示重博波幅度;t6表示房缩前波出现时刻,h6表示房缩前波幅度;t7表示房缩波出现时刻,h7表示房缩波幅度;w表示主波宽度;T表示脉搏波平均周期;S表示脉搏波平均面积;h3/h1表示重博前波相对幅度;h4/h1表示降中峡相对幅度;s1等于h1/t1,表示主波上升斜率;s2等于(h1-h2)/(t2-t1),表示主波下降斜率;w/t表示主波相对宽度;peaknum表示每个脉搏波信号周期的平均波峰数。 
需要说明的是,以上特征参数仅是示意性的,根据不同需求,可以获取不同的特征参数,其它的某些特征参数也可以根据以上得出的特征参数计算得出,例如,主波平均上升斜率(h1/t1)、主波平均下降斜率((h1-h2)/(t2-t1))、节律信息(rhy)等。根据特征点计算特征参数的具体方法在本本发明中也不是限制性的。 
至此,截取的脉搏波信号的特征参数提取基本完成。该方法过程中,避免了传统的方法中采用拐点判断法来实现特征点的定位,而是利用可能极值点来精确定位特征点,因此,可以实现特征参数的准确提取,有利于中医脉象诊断,进一步提高利用该方法过程的中医脉诊仪器设备的科学性。 
以上关于脉搏波信号的特征参数提取方法可以在计算机装置中自动运行,脉搏波信号和/或其相应的特征参数也可以存储于与该计算机装置相关的存储介质中。因此,特征参数的提取过程可以自动地实现。 
需要说明的是,本文中的脉搏波信号优选地适于中医脉诊,但是,但是其具体应用以及所提取出的特征参数的具体应用并不是限制性的,其可以是任何类型脉搏波信号、根据以上方法定位出的特征点提取任何种类的特征参数。 
以上例子主要说明了本发明的关于脉搏波信号的特征参数提取 方法。尽管只对其中一些本发明的实施方式进行了描述,但是本领域普通技术人员应当了解,本发明可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的修改与替换。 

Claims (36)

1.一种提取脉搏波的特征参数的方法,其特征在于,包括以下步骤:
获取一段包括一个周期以上的脉搏波信号;
确定所述脉搏波信号中的所有主峰点;
依据每个主峰点确定相应的每个脉搏波信号周期的起始点,以实现所述脉搏波信号的周期分割;
依据微积分理论确定所述脉搏波信号周期中的所有可能极值点;
去除所述可能极值点中的干扰极值点以精确得到所述脉搏波信号周期信号中的特征点;以及
依据所述特征点的信息获取特征参数。
2.如权利要求1所述的方法,其特征在于,所述去除干扰极值点的过程包括:
依据所述起始点计算每个脉搏波信号周期的平均周期;
判断任意相邻的第一可能极值点和第二可能极值点之间的幅度差是否小于或等于特定幅度阈值,若判断为“是”,则将第一可能极值点和第二可能极值点中的幅度较小的一个作为干扰极值点被去除;和/或
判断任意相邻的第一可能极值点和第二可能极值点之间的时间差是否小于或等于特定时间阈值,若判断为“是”,则合并第一可能极值点和第二可能极值点为一个可能极值点以实现所述干扰极值点的去除;和
将剩余的可能极值点进行直方图统计,利用聚类分析法将直方图划分为若干区域,若某一区域内的所述可能极值点的数目小于第一数值时,则该区域内的相应所述可能极值点作为干扰极值点被去除。
3.如权利要求2所述的方法,其特征在于,在所述直方图统计并去除干扰极值点之后,还包括步骤:
判断一个脉搏波信号周期内的剩余的可能极值点的数目是否大于10,如果大于10,则去除该脉搏波信号周期。
4.如权利要求2所述的方法,其特征在于,所述特定幅度阈值为所述脉搏波信号的幅度浮动范围的0.01倍,所述特定时间阈值为所述平均周期的0.02倍。
5.如权利要求2或4所述的方法,其特征在于,所述第一数值为所述剩余的可能极值点的总数的百分之五。
6.如权利要求2或4所述的方法,其特征在于,所述若干区域的个数五个,其分别为主峰值区域、潮波区域、重博波区域、房缩波区域和周期起始点区域。
7.如权利要求2或4所述的方法,其特征在于,所述聚类分析法为k均值聚类算法或者模糊聚类算法。
8.如权利要求1或2所述的方法,其特征在于,所述脉搏波信号的周期分割之后,还包括步骤:
去除所述脉搏波信号的基线漂移影响;以及
对所述脉搏波信号的数据进行规范化处理。
9.如权利要求8所述的方法,其特征在于,所述去除基线漂移影响的步骤中,包括:对于所述起始点进行插值计算以得到所述基线。
10.如权利要求9所述的方法,其特征在于,所述去除基线漂移影响的步骤中,包括:所述脉搏波信号对应减去所述基线的幅度值。
11.如权利要求9或10所述的方法,其特征在于,所述插值计算为三次样条插值计算或者分段三次埃米尔特插值计算。
12.如权利要求8所述的方法,其特征在于,所述规范化处理包括以下过程:
依据所述峰值点和起始点确定该脉搏波信号的浮动范围;以及
根据所述浮动范围对脉搏波信号中的每个点进行归一化处理。
13.如权利要求1或2所述的方法,其特征在于,在确定所有主峰点之前,还包括步骤:
对所述脉搏波信号进行平滑滤波以及去除噪声处理。
14.如权利要求13所述的方法,其特征在于,所述平滑滤波以及去除噪声处理采用一维均值滤波方法或者高斯滤波方法。
15.如权利要求13所述的方法,其特征在于,所述一维均值滤波方法或者高斯滤波方法的滤波窗口被设置为大于或等于所述脉搏波信号的采样频率的0.03倍、并小于或等于所述脉搏波信号的采样频率的0.08倍。
16.如权利要求1或2所述的方法,其特征在于,所述确定所有主峰点的步骤包括:
确定第一窗口的大小;
利用该第一窗口对所述脉搏波信号进行遍历;
计算出每个第一窗口范围内的最大幅度值;以及
判断任意两个相邻的所述最大幅度值对应的时间差是否小于所述第一窗口的大小,如果判断为“是”,则去除其中较小的最大幅度值,剩余的所述最大幅度值对应的位置点被定义为主峰点。
17.如权利要求16所述的方法,其特征在于,所述第一窗口被设置为大于或等于所述脉搏波信号的采样频率的0.6倍且小于或等于所述脉搏波信号的采样频率的0.8倍。
18.如权利要求16所述的方法,其特征在于,确定所述起始点的步骤中,通过定位每个主峰点之前的0.3倍于采样频率的范围内的最小值、并定义该最小值对应的点为所述起始点。
19.如权利要求1或2所述的方法,其特征在于,确定所述可能极值点的过程中,计算所述脉搏波信号周期中每个点分别与相邻的两点之间的第一幅度差值和第二幅度差值,并计算所述第一幅度差值与第二幅度差值的乘积,如果该乘积值小于或等于预定的阈值,则确定该点为所述可能极值点。
20.如权利要求19所述的方法,其特征在于,所述脉搏波信号的数据被进行归一化处理,所述预定的阈值为1×10-5。
21.如权利要求1或2所述的方法,其特征在于,所述脉搏波信号通过脉象采集装置实时获取。
22.如权利要求1或2所述的方法,其特征在于,所述脉搏波信号通过从脉象数据库中获取。
23.如权利要求22所述的方法,其特征在于,通过COM接口、USB接口、网络接口、或者无线传输模块从所述脉象数据库中获取所述脉搏波信号。
24.如权利要求1或2所述的方法,其特征在于,所述脉搏波信号包括6至16个脉搏波信号周期。
25.一种用于提取脉搏波的特征参数的装置,其特征在于,包括:
用于获取一段包括一个周期以上的脉搏波信号的部件;
用于确定所述脉搏波信号中的所有主峰点的部件;
用于依据每个主峰点确定相应的每个脉搏波信号周期的起始点、以实现所述脉搏波信号的周期分割的部件;
用于依据微积分理论确定所述脉搏波信号周期中的所有可能极值点的部件;
用于去除所述可能极值点中的干扰极值点以精确得到所述脉搏波信号周期信号中的特征点的部件;以及
用于依据所述特征点的信息获取特征参数的部件。
26.如权利要求25所述的装置,其特征在于,所述用于去除所述可能极值点中的干扰极值点以精确得到所述脉搏波信号周期信号中的特征点的部件进一步包括:
用于依据所述起始点计算每个脉搏波信号周期的平均周期的部件;
用于判断任意相邻的第一可能极值点和第二可能极值点之间的幅度差是否小于或等于特定幅度阈值的部件,若该部件判断为“是”,则将第一可能极值点和第二可能极值点中的幅度较小的一个作为干扰极值点被去除;和/或
用于判断任意相邻的第一可能极值点和第二可能极值点之间的时间差是否小于或等于特定时间阈值的部件,若该部件判断为“是”,则合并第一可能极值点和第二可能极值点为一个可能极值点以实现所述干扰极值点的去除;和
用于将剩余的可能极值点进行直方图统计的部件,该部件利用聚类分析法将直方图划分为若干区域,若某一区域内的所述可能极值点的数目小于第一数值时,则该区域内的相应所述可能极值点作为干扰极值点被去除。
27.如权利要求26所述的装置,其特征在于,所述用于去除所述可能极值点中的干扰极值点以精确得到所述脉搏波信号周期信号中的特征点的部件进一步包括:
紊乱波周期去除部件,其用于判断一个脉搏波信号周期内的剩余的可能极值点的数目是否大于10,如果大于10,则去除该脉搏波信号周期。
28.如权利要求26所述的装置,其特征在于,所述特定幅度阈值为所述脉搏波信号的幅度浮动范围的0.01倍,所述特定时间阈值为所述平均周期的0.02倍。
29.如权利要求26或28所述的装置,其特征在于,所述第一数值为所述剩余的可能极值点的总数的百分之五。
30.如权利要求26或28所述的装置,其特征在于,所述若干区域的个数五个,其分别为主峰值区域、潮波区域、重博波区域、房缩波区域和周期起始点区域。
31.如权利要求26或28所述的装置,其特征在于,所述聚类分析法为k均值聚类算法或者模糊聚类算法。
30.如权利要求26或28所述的装置,其特征在于,还包括:
用于去除所述脉搏波信号的基线漂移影响的部件;以及
用于对所述脉搏波信号的数据进行规范化处理的部件。
31.如权利要求30所述的装置,其特征在于,用于去除所述脉搏波信号的基线漂移影响的部件进一步包括:
用于对于所述起始点进行插值计算以得到所述基线的部件;和
用于所述脉搏波信号对应减去所述基线的幅度值的部件。
32.如权利要求31所述的装置,其特征在于,所述插值计算为三次样条插值计算或者分段三次埃米尔特插值计算。
33.如权利要求30所述的装置,其特征在于,所述用于对所述脉搏波信号的数据进行规范化处理的部件进一步包括:
用于依据所述峰值点和起始点确定该脉搏波信号的浮动范围的部件;以及
用于根据所述浮动范围对脉搏波信号中的每个点进行归一化处理的部件。
34.如权利要求25所述的装置,其特征在于,还包括:
用于对所述脉搏波信号进行平滑滤波以及去除噪声处理的部件。
35.如权利要求25或26所述的装置,其特征在于,用于确定所述脉搏波信号中的所有主峰点的部件进一步包括:
用于确定第一窗口的大小的部件;
用于利用该第一窗口对所述脉搏波信号进行遍历的部件;
用于计算出每个第一窗口范围内的最大幅度值的部件;以及
用于判断任意两个相邻的所述最大幅度值对应的时间差是否小于所述第一窗口的大小的部件,如果该部件判断为“是”,则去除其中较小的最大幅度值,剩余的所述最大幅度值对应的位置点被该部件定义为主峰点。
36.如权利要求35所述的装置,其特征在于,用于依据每个主峰点确定相应的每个脉搏波信号周期的起始点、以实现所述脉搏波信号的周期分割的部件进一步包括:
用于通过定位每个主峰点之前的0.3倍于采样频率的范围内的最小值、并定义该最小值对应的点为所述起始点的部件。
CN201110316835.4A 2011-09-30 2011-09-30 脉搏波的特征参数提取 Active CN103027667B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110316835.4A CN103027667B (zh) 2011-09-30 2011-09-30 脉搏波的特征参数提取

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110316835.4A CN103027667B (zh) 2011-09-30 2011-09-30 脉搏波的特征参数提取

Publications (2)

Publication Number Publication Date
CN103027667A true CN103027667A (zh) 2013-04-10
CN103027667B CN103027667B (zh) 2017-01-18

Family

ID=48015456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110316835.4A Active CN103027667B (zh) 2011-09-30 2011-09-30 脉搏波的特征参数提取

Country Status (1)

Country Link
CN (1) CN103027667B (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103340609A (zh) * 2013-07-04 2013-10-09 李文博 脉象自动分析及其特征提取的方法
CN104127173A (zh) * 2014-07-14 2014-11-05 昆明理工大学 一种基于动态脉搏波特征参数的病理信息提取方法
CN104706337A (zh) * 2015-02-11 2015-06-17 华东师范大学 脉搏波波峰波谷自动检测方法
CN105105741A (zh) * 2015-07-15 2015-12-02 无锡海鹰电子医疗系统有限公司 一种脉搏波图像包络线提取和特征点跟踪的方法
CN105286815A (zh) * 2015-11-02 2016-02-03 重庆大学 一种基于波形时域特征的脉搏波信号特征点检测方法
CN106539570A (zh) * 2016-07-04 2017-03-29 悦享趋势科技(北京)有限责任公司 定位潮波的方法及装置
CN107510443A (zh) * 2017-08-18 2017-12-26 浙江舒眠科技有限公司 一种基于多通道的睡眠体征信号采集装置及数据处理方法
CN107822608A (zh) * 2017-10-26 2018-03-23 中国民航大学 基于高斯混合模型的脉搏波特征提取方法
CN107997759A (zh) * 2017-10-27 2018-05-08 北京康博众联电子科技有限公司 心电信号中qrs波群的检测方法、存储介质和计算机设备
CN108926330A (zh) * 2018-08-10 2018-12-04 沈阳星泽健康科技有限公司 一种基于腕带充气式压力传感器的智能中医脉诊分析系统
CN108992054A (zh) * 2018-06-27 2018-12-14 深圳还是威健康科技有限公司 一种脉搏信号峰值点检测方法及装置
CN109512405A (zh) * 2019-01-08 2019-03-26 哈尔滨工业大学(深圳) 一种基于局部点检测的脉象信号分割方法
CN109512424A (zh) * 2018-11-16 2019-03-26 福州大学 一种高密度或多通道肌电信号的肌肉激活起点检测方法
CN109833035A (zh) * 2017-11-28 2019-06-04 深圳市岩尚科技有限公司 脉搏波血压测量装置的分类预测数据处理方法
CN109864705A (zh) * 2019-01-07 2019-06-11 平安科技(深圳)有限公司 对脉搏波进行滤波的方法、装置和计算机设备
CN109934100A (zh) * 2019-01-24 2019-06-25 西安交通大学 一种基于滑动窗口的幅频时变工艺信号分割方法
CN110037668A (zh) * 2019-04-10 2019-07-23 常熟理工学院 脉搏信号时空域结合模型判断年龄、健康状态及恶性心律失常识别的系统
CN110141205A (zh) * 2019-05-27 2019-08-20 深圳市是源医学科技有限公司 基于hrv技术的抗压数据、疲劳数据的测试方法和装置
CN110313903A (zh) * 2019-08-12 2019-10-11 中国科学院微电子研究所 一种脉搏波频域特征参数提取方法及装置
CN110731761A (zh) * 2019-09-09 2020-01-31 上海掌门科技有限公司 一种用于确定脉搏波特征信息的方法与设备
CN110801210A (zh) * 2019-11-06 2020-02-18 心核心科技(北京)有限公司 一种脉搏波信号的滤波方法、装置、可读介质及电子设备
CN110881958A (zh) * 2019-12-25 2020-03-17 福州数据技术研究院有限公司 一种用于中医脉诊仪的脉搏信号非生理信号去除方法
CN110960203A (zh) * 2019-12-13 2020-04-07 心核心科技(北京)有限公司 一种心血管特性参数检测方法及装置
WO2020206661A1 (zh) * 2019-04-11 2020-10-15 深圳市柔宇科技有限公司 目标对象的特征参数获取方法、终端及存储介质
CN112057057A (zh) * 2020-08-11 2020-12-11 上海掌门科技有限公司 调整脉搏测量装置、测量脉搏信号的方法与设备
CN112244835A (zh) * 2020-09-16 2021-01-22 深圳数联天下智能科技有限公司 信号处理方法及相关装置
CN112617784A (zh) * 2020-12-31 2021-04-09 深圳北芯生命科技有限公司 血管内压力测量的信号处理方法
CN114159038A (zh) * 2022-01-05 2022-03-11 维沃移动通信有限公司 血压测量方法、装置、电子设备和可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525395A (zh) * 2003-02-24 2004-09-01 深圳迈瑞生物医疗电子股份有限公司 信号时域波形极值点和周期的检测方法
CN1792319A (zh) * 2005-11-03 2006-06-28 浙江大学 中医脉象特征参数自动检测方法
CN102247129A (zh) * 2011-06-15 2011-11-23 西安电子科技大学 脉搏波非典型波峰波谷的识别方法
CN103034837A (zh) * 2011-09-30 2013-04-10 Ge医疗系统环球技术有限公司 特征参数与脉象要素的关联

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525395A (zh) * 2003-02-24 2004-09-01 深圳迈瑞生物医疗电子股份有限公司 信号时域波形极值点和周期的检测方法
CN1792319A (zh) * 2005-11-03 2006-06-28 浙江大学 中医脉象特征参数自动检测方法
CN102247129A (zh) * 2011-06-15 2011-11-23 西安电子科技大学 脉搏波非典型波峰波谷的识别方法
CN103034837A (zh) * 2011-09-30 2013-04-10 Ge医疗系统环球技术有限公司 特征参数与脉象要素的关联

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
唐铭一等: "脉搏信号数据分析与管理的研究", 《中国优秀硕士学位论文全文数据库 信息科技辑(2010年)》 *
唐铭一等: "脉搏波信号时域特征提取与算法的研究", 《计算机与现代化》 *
李丽颖等: "浅析极值法提取脉搏信号特征点的方法", 《电子质量》 *
赵志强等: "脉搏波信号降噪和特征点识别研究", 《电子设计工程》 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103340609A (zh) * 2013-07-04 2013-10-09 李文博 脉象自动分析及其特征提取的方法
CN104127173A (zh) * 2014-07-14 2014-11-05 昆明理工大学 一种基于动态脉搏波特征参数的病理信息提取方法
CN104127173B (zh) * 2014-07-14 2016-06-08 昆明理工大学 一种基于动态脉搏波特征参数的病理信息提取方法
CN104706337A (zh) * 2015-02-11 2015-06-17 华东师范大学 脉搏波波峰波谷自动检测方法
CN105105741A (zh) * 2015-07-15 2015-12-02 无锡海鹰电子医疗系统有限公司 一种脉搏波图像包络线提取和特征点跟踪的方法
CN105286815A (zh) * 2015-11-02 2016-02-03 重庆大学 一种基于波形时域特征的脉搏波信号特征点检测方法
CN105286815B (zh) * 2015-11-02 2017-11-21 重庆大学 一种基于波形时域特征的脉搏波信号特征点检测方法
CN106539570A (zh) * 2016-07-04 2017-03-29 悦享趋势科技(北京)有限责任公司 定位潮波的方法及装置
CN107510443A (zh) * 2017-08-18 2017-12-26 浙江舒眠科技有限公司 一种基于多通道的睡眠体征信号采集装置及数据处理方法
CN107510443B (zh) * 2017-08-18 2024-03-22 浙江舒眠科技有限公司 一种基于多通道的睡眠体征信号采集装置及数据处理方法
CN107822608A (zh) * 2017-10-26 2018-03-23 中国民航大学 基于高斯混合模型的脉搏波特征提取方法
CN107997759A (zh) * 2017-10-27 2018-05-08 北京康博众联电子科技有限公司 心电信号中qrs波群的检测方法、存储介质和计算机设备
CN109833035A (zh) * 2017-11-28 2019-06-04 深圳市岩尚科技有限公司 脉搏波血压测量装置的分类预测数据处理方法
CN109833035B (zh) * 2017-11-28 2021-12-07 深圳市岩尚科技有限公司 脉搏波血压测量装置的分类预测数据处理方法
CN108992054A (zh) * 2018-06-27 2018-12-14 深圳还是威健康科技有限公司 一种脉搏信号峰值点检测方法及装置
CN108926330A (zh) * 2018-08-10 2018-12-04 沈阳星泽健康科技有限公司 一种基于腕带充气式压力传感器的智能中医脉诊分析系统
CN109512424A (zh) * 2018-11-16 2019-03-26 福州大学 一种高密度或多通道肌电信号的肌肉激活起点检测方法
CN109512424B (zh) * 2018-11-16 2021-07-13 福州大学 一种高密度或多通道肌电信号的肌肉激活起点检测方法
CN109864705A (zh) * 2019-01-07 2019-06-11 平安科技(深圳)有限公司 对脉搏波进行滤波的方法、装置和计算机设备
CN109864705B (zh) * 2019-01-07 2022-08-12 平安科技(深圳)有限公司 对脉搏波进行滤波的方法、装置和计算机设备
CN109512405A (zh) * 2019-01-08 2019-03-26 哈尔滨工业大学(深圳) 一种基于局部点检测的脉象信号分割方法
CN109512405B (zh) * 2019-01-08 2021-05-11 哈尔滨工业大学(深圳) 一种基于局部点检测的脉象信号分割方法
CN109934100A (zh) * 2019-01-24 2019-06-25 西安交通大学 一种基于滑动窗口的幅频时变工艺信号分割方法
CN110037668A (zh) * 2019-04-10 2019-07-23 常熟理工学院 脉搏信号时空域结合模型判断年龄、健康状态及恶性心律失常识别的系统
CN110037668B (zh) * 2019-04-10 2022-02-01 常熟理工学院 脉搏信号时空域结合模型判断年龄、健康状态及恶性心律失常识别的系统
CN113329685A (zh) * 2019-04-11 2021-08-31 深圳市柔宇科技股份有限公司 目标对象的特征参数获取方法、终端及存储介质
WO2020206661A1 (zh) * 2019-04-11 2020-10-15 深圳市柔宇科技有限公司 目标对象的特征参数获取方法、终端及存储介质
CN110141205A (zh) * 2019-05-27 2019-08-20 深圳市是源医学科技有限公司 基于hrv技术的抗压数据、疲劳数据的测试方法和装置
CN110313903A (zh) * 2019-08-12 2019-10-11 中国科学院微电子研究所 一种脉搏波频域特征参数提取方法及装置
CN110313903B (zh) * 2019-08-12 2022-06-14 中国科学院微电子研究所 一种脉搏波频域特征参数提取方法及装置
CN110731761A (zh) * 2019-09-09 2020-01-31 上海掌门科技有限公司 一种用于确定脉搏波特征信息的方法与设备
CN110801210A (zh) * 2019-11-06 2020-02-18 心核心科技(北京)有限公司 一种脉搏波信号的滤波方法、装置、可读介质及电子设备
CN110960203A (zh) * 2019-12-13 2020-04-07 心核心科技(北京)有限公司 一种心血管特性参数检测方法及装置
CN110881958A (zh) * 2019-12-25 2020-03-17 福州数据技术研究院有限公司 一种用于中医脉诊仪的脉搏信号非生理信号去除方法
CN112057057B (zh) * 2020-08-11 2022-04-26 上海掌门科技有限公司 调整脉搏测量装置、测量脉搏信号的方法与设备
CN112057057A (zh) * 2020-08-11 2020-12-11 上海掌门科技有限公司 调整脉搏测量装置、测量脉搏信号的方法与设备
CN112244835A (zh) * 2020-09-16 2021-01-22 深圳数联天下智能科技有限公司 信号处理方法及相关装置
CN112617784A (zh) * 2020-12-31 2021-04-09 深圳北芯生命科技有限公司 血管内压力测量的信号处理方法
CN114159038A (zh) * 2022-01-05 2022-03-11 维沃移动通信有限公司 血压测量方法、装置、电子设备和可读存储介质

Also Published As

Publication number Publication date
CN103027667B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
CN103027667A (zh) 脉搏波的特征参数提取
EP3358485A1 (en) General noninvasive blood glucose prediction method based on timing analysis
CN103034837B (zh) 特征参数与脉象要素的关联
CN102247128A (zh) 人体脉搏信息采集装置及人体健康状况监护装置
CN106264505A (zh) 一种基于支持向量机的心率谱峰选择方法
CN101991410B (zh) 一种脉率搜索和计算方法
CN101919704B (zh) 一种心音信号定位、分段方法
CN110432895B (zh) 训练数据处理、心电波形检测方法及电子设备
CN106214143B (zh) 瞬时运动干扰识别方法及心率置信度计算方法
DE112015005804T5 (de) Atemzustandsschätzvorrichtung, tragbare Vorrichtung, an Körper tragbare Vorrichtung, Programm, Medium, Atemzustandsschätzverfahren und Atemzustandsschätzer
CN106446765A (zh) 一种基于多维生理大数据深度学习的健康状态评价系统
CN117357080B (zh) 近红外光谱信号去噪方法及装置、终端设备、存储介质
CN101797156A (zh) 一种人体呼吸监控系统呼吸波的判定方法
CN110313903A (zh) 一种脉搏波频域特征参数提取方法及装置
CN105635359A (zh) 心率测量方法及装置、终端
CN114176602B (zh) 一种基于深度学习多目标检测同时定位心电p波、qrs波、t波位置的方法
CN111449638A (zh) 一种基于传感器采集的数据构建三维脉象图的方法及应用
CN109567869B (zh) 一种处理胎心率曲线上加速活动的方法及系统
CN106236041B (zh) 一种实时且准确的测量心率及呼吸率的算法及系统
CN103040524A (zh) 减少生理活动对医学成像或测量结果干扰的装置及方法
CN106419884B (zh) 一种基于小波分析的心率计算方法与系统
CN103178806A (zh) 一种一维数据的包络提取方法及系统
CN101866423A (zh) 一种动脉压信号逐拍分割方法
CN111278353A (zh) 一种生命体征信号噪声的检测方法与系统
CN104391599B (zh) 一种平衡精确度与灵敏度的触屏点过滤方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant