CN103018238B - Method for measuring iodide ions quickly and efficiently - Google Patents

Method for measuring iodide ions quickly and efficiently Download PDF

Info

Publication number
CN103018238B
CN103018238B CN201210527677.1A CN201210527677A CN103018238B CN 103018238 B CN103018238 B CN 103018238B CN 201210527677 A CN201210527677 A CN 201210527677A CN 103018238 B CN103018238 B CN 103018238B
Authority
CN
China
Prior art keywords
buffer solution
iodide ion
determination
certain
iodide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210527677.1A
Other languages
Chinese (zh)
Other versions
CN103018238A (en
Inventor
王光丽
朱晓瑛
董玉明
武文涛
刑志峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201210527677.1A priority Critical patent/CN103018238B/en
Publication of CN103018238A publication Critical patent/CN103018238A/en
Application granted granted Critical
Publication of CN103018238B publication Critical patent/CN103018238B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明提供碘离子的快速、高效的测定方法。以水溶性好、摩尔吸光系数大的金属纳米材料(金或银)作为探针,利用碘离子对纳米材料的氧化聚集的抑制作用,建立了新型碘离子传感器。该方法能成功的应用于碘离子的测定,目视法能够检测碘离子的最低浓度低至1nM。和目前报道的测定碘离子的方法(如光谱法、电化学法)相比,这一最低浓度(1nM)比这些方法所得的检测限还要低至少一个数量级。该发明所建立的新型“抗聚集”型纳米材料探针能够有效的避免溶液中其它因素所导致的聚集,能够提高测定的选择性。因此,该方法具有简单快速、灵敏度高和选择性好的优点,有望应用于食盐和尿液中碘离子的测定。

The invention provides a fast and efficient determination method for iodide ions. Using metal nanomaterials (gold or silver) with good water solubility and large molar absorptivity as probes, a new type of iodide ion sensor was established by using the inhibition effect of iodide ions on the oxidation and aggregation of nanomaterials. The method can be successfully applied to the determination of iodide ion, and the minimum concentration of iodide ion can be detected as low as 1nM by visual method. Compared with the currently reported methods for the determination of iodide ions (such as spectroscopic methods, electrochemical methods), this lowest concentration (1nM) is at least an order of magnitude lower than the detection limits obtained by these methods. The novel "anti-aggregation" nanometer material probe established by the invention can effectively avoid aggregation caused by other factors in the solution, and can improve the selectivity of determination. Therefore, the method has the advantages of simplicity, rapidity, high sensitivity and good selectivity, and is expected to be applied to the determination of iodide ions in table salt and urine.

Description

碘离子的快速、高效检测方法A Rapid and Efficient Detection Method for Iodide Ion

技术领域:Technical field:

本发明涉及分析检测领域,尤其涉及水溶性、高吸光系数的金属纳米材料作为比色法探针在快速、高灵敏检测碘离子中的应用。The invention relates to the field of analysis and detection, in particular to the application of water-soluble, high-absorptivity metal nanomaterials as colorimetric probes in rapid and highly sensitive detection of iodide ions.

背景技术:Background technique:

碘离子普遍存在于生态系统中,对于神经的生长发育以及生物体的新陈代谢起着至关重要的作用[G.Aumont and J.C.Tressol,Analyst,1986,3,841-843;M.Haldimann,B.Zimmerli,C.Als and H.Gerber,Clin.Chem.,1998,44,817-824;F.Jalali,M.J.Rajabi,G. Bahrami and M.Shamsipur,Anal.Sci.,2005,21,1533-1535]。例如,缺乏碘会导致自然流产,婴儿死亡率升高,心智缺陷[L.Rong and T.Takeuchi,J. Chromatogr.A,2004,1042,131-135;J.Jakmunee and K.Grudpan,Anal.Chim.Acta,2001,438,299-304;F.Delange,B.Benoist,E.Pretell and J.T.Dunn,Thyroid,2001,11,437-447]。世界卫生组织已经发表声明,在全球范围内碘的缺乏是导致心智缺陷最主要的原因[http://www.iccidd.org]。因此,检测碘离子意义重大而紧迫。然而,众所周知,卤族元素包括氟,氯,溴,碘。它们具有相似的物理性质。而且,碘离子具有较大的离子半径,较低的电荷密度和氢键形成能力。这些特性大大的增加了选择性测定碘离子的难度[Z.Rodriguez-Docampo,S.I.Pascu,S.Kubik and S.Otto,J. Am.Chem.Soc.,2006,128,11206-11210;M.Vetrichelvan,R.Nagarajan and S.Valiyaveettil,Macromolecules,2006,39,8303-8310;N.Narinder Singh and D.O.Jang,Org.Lett.,2007,9,1991-1994;S.Kubik,Chem.Soc.Rev.,2010,39,3648-3663]。目前报道的测定方法有光谱法[M.P. Arena,M.D.Porter and J.S.Fritz,Anal.Chem.,2002,74,185-190;A.K.Mahapatra,G. Hazra,J.Roy and P. Sahoo,J. Lumin.,2011,131,1255-1259;Z.B.Shang,Y. Wang and W.J.Jin,Talanta,2009,78,364-369;M.Zhangand B.C.Ye,Chem.Commun.,2012,48,3647-3649;X.J.Wang,C.H.Zhang,L.H.Feng and L.W.Zhang,Sens.Actuators,B,2011,156,463-466;Y.M.Chen,T.L.Cheng and W.L.Tseng,Analyst,2009,134,2106-2112;P. Pienpinijtham,X.X.Han,S.Ekgasit and Y. Ozaki,Anal.Chem.,2011,83,3655-3662]、电化学法[D.Phokharatkul,C.Karuwan,T.Lomas,D.Nacapricha,A.Wisitsoraat and A.Tuantranont,Talanta,2011,84,1390-1395;L.Vitali,B.L.Horst,M.Heller,V.T.Fávere and G. A.Micke,J. Chromatogr.A,2011,1218,4586-4591;H.Ciftci and U.Tamer,Anal.Chim.Acta,2011,687,137-140]。在光谱法领域,大多采用超分子化合物测定碘离子[A.Kumar,R.K.Chhatra and P.S.Pandey,Org.Lett.,2010,12,24-27;H.H.Wang,L.Xue and H.Jiang,Org.Lett.,2011,13,3844-3847;M.A.Tetilla,M.Carla Aragoni,M.Arca,C.Caltagirone,C.Bazzicalupi,A.Bencini,A.Garau,F.Isaia,A.Laguna,V. Lippolis and V.Meli,Chem.Commun.,2011,47,3805-3807]。尽管这些传感器具有较好的选择性,但也存在一些缺陷,如合成超分子化合物涉及较为复杂的有机合成步骤,所用试剂的成本较高;而且,超分子化合物往往不溶于水,难以在水中直接测定碘离子;用超分子化合物测定碘离子的检测限往往比较高。因此,建立新型、高效的碘离子传感器仍将是一个挑战。Iodide ions are ubiquitous in the ecosystem and play a vital role in the growth and development of nerves and the metabolism of organisms [G.Aumont and JCTressol, Analyst, 1986, 3, 841-843; M.Haldimann, B.Zimmerli , C. Als and H. Gerber, Clin. Chem., 1998, 44, 817-824; F. Jalali, MJ Rajabi, G. Bahrami and M. Shamsipur, Anal. Sci., 2005, 21, 1533-1535]. For example, iodine deficiency can lead to spontaneous abortion, increased infant mortality, mental retardation [L.Rong and T.Takeuchi, J. Chromatogr.A, 2004, 1042, 131-135; J.Jakmunee and K.Grudpan, Anal. Chim. Acta, 2001, 438, 299-304; F. Delange, B. Benoist, E. Pretell and JT Dunn, Thyroid, 2001, 11, 437-447]. The World Health Organization has issued a statement that iodine deficiency is the leading cause of mental retardation worldwide [ http://www.iccidd.org ]. Therefore, the detection of iodide ion is of great significance and urgency. However, it is well known that halogen elements include fluorine, chlorine, bromine, and iodine. They have similar physical properties. Moreover, iodide ion has larger ionic radius, lower charge density and hydrogen bond forming ability. These characteristics have greatly increased the difficulty of selective determination of iodide [Z.Rodriguez-Docampo, SIPascu, S.Kubik and S.Otto, J. Am.Chem.Soc., 2006, 128, 11206-11210; M.Vetrichelvan , R.Nagarajan and S.Valiyaveettil, Macromolecules, 2006, 39, 8303-8310; N.Narinder Singh and DOJang, Org.Lett., 2007, 9, 1991-1994; S.Kubik, Chem.Soc.Rev., 2010, 39, 3648-3663]. Currently reported assay methods include spectroscopic methods [MP Arena, MD Porter and JS Fritz, Anal. 131, 1255-1259; ZBShang, Y. Wang and WJJin, Talanta, 2009, 78, 364-369; M. Zhang and BCYe, Chem. Commun., 2012, 48, 3647-3649; XJWang, CH Zhang, LHFeng and LW Zhang, Sens.Actuators, B, 2011, 156, 463-466; YMChen, TLCheng and WLTseng, Analyst, 2009, 134, 2106-2112; P. Pienpinijtham, XX Han, S.Ekgasit and Y. Ozaki, Anal.Chem., 2011 , 83, 3655-3662], electrochemical method [D.Phokharatkul, C.Karuwan, T.Lomas, D.Nacapricha, A.Wisitsoraat and A.Tuantranont, Talanta, 2011, 84, 1390-1395; L.Vitali, BL Horst, M. Heller, V T Fávere and G. A. Micke, J. Chromatogr. A, 2011, 1218, 4586-4591; H. Ciftci and U. Tamer, Anal. Chim. Acta, 2011, 687, 137-140]. In the field of spectrometry, supramolecular compounds are mostly used to determine iodide [A.Kumar, RKChhatra and PSPandey, Org.Lett., 2010, 12, 24-27; HHWang, L.Xue and H.Jiang, Org.Lett., 2011, 13, 3844-3847; MATetilla, M.Carla Aragoni, M.Arca, C.Caltagirone, C.Bazzicalupi, A.Bencini, A.Garau, F.Isaia, A.Laguna, V. Lippolis and V.Meli , Chem.Commun., 2011, 47, 3805-3807]. Although these sensors have good selectivity, there are also some defects. For example, the synthesis of supramolecular compounds involves relatively complicated organic synthesis steps, and the cost of reagents used is high; moreover, supramolecular compounds are often insoluble in water, and it is difficult to directly detect them in water. Determination of iodide ions; the detection limit of iodide ions with supramolecular compounds is often relatively high. Therefore, it will still be a challenge to establish novel and highly efficient iodide ion sensors.

比色法由于具有肉眼可见,容易观测和不需要借助先进仪器的优点,越来越多的被用于待测物的识别和检测[J.Liu and Y.Lu,J.Am.Chem.Soc.,2005,127,12677-12683;C.J.Murphy,A.M.Gole,J.W.Stone,P.N.Sisco,A.M.Alkilany,E.C.Goldsmith and S.C.Baxter,Acc.Chem.Res.,2008,41,1721-1730;Y. Tan,X.Su,E.Liu and J.S.Thomsen,Anal.Chem.,2010,82,2759-2765;N.Nath and A.Chilkoti,Anal.Chem.,2002,74,504-509]。然而,与超分子传感器相比,金属纳米材料传感器用于碘离子测定的报道非常少。目前只有一篇文献是报道用金属纳米材料比色法测定碘离子的。其测定原理是利用碘离子对CuAu核/壳纳米材料的原子重组效应[J.Zhang,X.W.Xu,C.Yang,F.Yang and X.R.Yang,Anal.Chem.,2011,83,3911-3917]。本发明利用碘离子对金属纳米材料的抗聚集作用建立了碘离子的新的测试方法。采用抗聚集原理测定能够有效的避免溶液中其它因素造成的纳米材料聚集作用的干扰,测定的选择性大大提高。该方法能成功的实现碘离子的快速、高效测定,常见的阴离子对碘离子的测定几乎没有干扰。该方法有望用作食盐和尿液中碘离子的测定。Due to the advantages of being visible to the naked eye, easy to observe and not requiring advanced instruments, colorimetry is more and more used in the identification and detection of analytes [J.Liu and Y.Lu, J.Am.Chem.Soc ., 2005, 127, 12677-12683; C.J.Murphy, A.M.Gole, J.W.Stone, P.N.Sisco, A.M.Alkilany, E.C.Goldsmith and S.C.Baxter, Acc.Chem.Res., 2008, 41, 1721-1730; Y. Tan, X.Su, E.Liu and J.S.Thomsen, Anal.Chem., 2010, 82, 2759-2765; N.Nath and A.Chilkoti, Anal.Chem., 2002, 74, 504-509]. However, compared with supramolecular sensors, there are very few reports on metallic nanomaterial sensors for iodide ion determination. At present, there is only one literature that reports the determination of iodide ion by metal nanomaterial colorimetry. The measurement principle is to use the atomic recombination effect of iodide ions on CuAu core/shell nanomaterials [J.Zhang, X.W.Xu, C.Yang, F.Yang and X.R.Yang, Anal.Chem., 2011, 83, 3911-3917] . The invention utilizes the anti-aggregation effect of the iodide ion on the metal nanometer material to establish a new test method for the iodide ion. Using the anti-aggregation principle to measure can effectively avoid the interference of nanometer material aggregation caused by other factors in the solution, and the selectivity of the determination is greatly improved. The method can successfully realize the rapid and efficient determination of iodide ions, and the common anions hardly interfere with the determination of iodide ions. This method is expected to be used for the determination of iodide ions in table salt and urine.

发明内容:Invention content:

本发明的目的是提供一种快速、高效的碘离子的测定方法;尤其是提供纳米材料作为比色法探针在碘离子测定方面的新用途。The purpose of the present invention is to provide a fast and efficient iodide ion determination method; especially to provide a new application of nanomaterials as a colorimetric probe in the determination of iodide ions.

本发明的目的之一可通过如下技术措施来实现:One of purpose of the present invention can be realized by following technical measures:

a、在修饰剂的存在下,通过酚类化合物作为还原剂还原金属离子可溶性盐(硝酸银、氯金(III)酸)的溶液以制备功能性银/金纳米材料;a, in the presence of modifiers, the solution of soluble salts (silver nitrate, chloroauric acid) is reduced by phenolic compounds as reducing agents to prepare functional silver/gold nanomaterials;

b、取一定体积的金属纳米材料加入一定体积的具有一定pH的缓冲溶液,一定浓度的待测碘离子标准溶液,随后,加入一定浓度的能使金属纳米材料聚集的试剂,室温下显色5分钟。b. Take a certain volume of metal nanomaterials and add a certain volume of buffer solution with a certain pH, a certain concentration of iodide ion standard solution to be measured, and then add a certain concentration of reagents that can make the metal nanomaterials aggregate, and develop color at room temperature for 5 minute.

本发明的目的还可通过如下技术措施来实现:The purpose of the present invention can also be achieved through the following technical measures:

所述的金属纳米材料的修饰剂,选自十二烷基硫酸钠,多聚磷酸钠,十六烷基三甲基溴化铵,PDDA聚合物,PSS聚合物,柠檬酸三钠;所用的酚类还原剂为苯酚、邻苯二酚、多巴胺、对苯二酚、没食子酸;所述的具有一定pH的缓冲溶液的pH范围为2.0-9.0;测定所用的缓冲溶液为醋酸缓冲溶液、柠檬酸缓冲溶液、碳酸缓冲溶液、磷酸缓冲溶液、Tris缓冲溶液;所述的能使金属纳米材料聚集的试剂为过氧化氢、高锰酸钾、重铬酸钾、次氯酸钠、过二硫酸铵,所用的能使金属纳米材料聚集的试剂的浓度为2×10-4-5×10-2mol/L。The modifying agent of the metal nanomaterial is selected from sodium lauryl sulfate, sodium polyphosphate, cetyltrimethylammonium bromide, PDDA polymer, PSS polymer, trisodium citrate; used The phenolic reducing agent is phenol, catechol, dopamine, hydroquinone, gallic acid; the pH range of the buffer solution with a certain pH is 2.0-9.0; the buffer solution used for measuring is acetic acid buffer solution, lemon Acid buffer solution, carbonic acid buffer solution, phosphate buffer solution, Tris buffer solution; the reagents that can make metal nanomaterials gather are hydrogen peroxide, potassium permanganate, potassium dichromate, sodium hypochlorite, ammonium peroxodisulfate, used The concentration of the reagent capable of aggregating metal nanomaterials is 2×10 -4 -5×10 -2 mol/L.

本发明所涉及的“抗聚集”型纳米探针能够有效的避免溶液中其它因素造成的金属纳米材料聚集的干扰,选择性大大提高。该方法测定时间只需5分钟,并且所用试剂简单、廉价,成本较低。The "anti-aggregation" nanometer probe involved in the present invention can effectively avoid the interference of metal nanomaterial aggregation caused by other factors in the solution, and the selectivity is greatly improved. The determination time of the method only needs 5 minutes, and the reagents used are simple, cheap and low in cost.

附图说明:Description of drawings:

图1是发明制备的多聚磷酸钠修饰的AgNPs加入不同浓度碘离子和过氧化氢后的颜色变化。Figure 1 is the color change of AgNPs modified by sodium polyphosphate prepared by the invention after adding different concentrations of iodide ion and hydrogen peroxide.

图2是发明制备的柠檬酸三钠修饰的AgNPs加入不同浓度碘离子和过氧化氢后的吸收光谱变化。Fig. 2 is the absorption spectrum change of trisodium citrate modified AgNPs prepared by the invention after adding different concentrations of iodide ions and hydrogen peroxide.

图3是发明制备的PSS修饰的AgNPs的吸光度随碘离子浓度变化的关系图。Fig. 3 is a graph showing the relationship between the absorbance of the PSS-modified AgNPs prepared by the invention and the iodide ion concentration.

图4是发明制备的柠檬酸三钠修饰的AgNPs对其他阴离子的吸收光谱响应图。Fig. 4 is the absorption spectrum response diagram of AgNPs modified by trisodium citrate prepared by the invention to other anions.

具体实施方式:Detailed ways:

实施实例1:Implementation example 1:

a、在溶有0.1mM的50mL硝酸银溶液中加入5mL0.01M的多聚磷酸钠作为表面修饰剂,将0.2mM的50mL邻苯二酚溶液加入到上述混合液中,回流反应1h,得多聚磷酸钠修饰的水溶性银纳米材料;a. Add 5mL of 0.01M sodium polyphosphate in 50mL of silver nitrate solution with 0.1mM as a surface modifier, add 50mL of catechol solution of 0.2mM into the above mixed solution, and reflux for 1h. Sodium polyphosphate modified water-soluble silver nanomaterials;

b、取2mL纳米银加入0.1mL,0.1M(pH 2.2)的醋酸缓冲溶液,一定浓度的待测碘离子标准溶液,随后,加入10μL 30%过氧化氢水溶液后,显色反应5分钟。b. Take 2mL of nano-silver and add 0.1mL, 0.1M (pH 2.2) acetic acid buffer solution, a certain concentration of iodide ion standard solution to be tested, and then add 10μL of 30% hydrogen peroxide aqueous solution, and develop a color reaction for 5 minutes.

实施实例2:Implementation example 2:

a、在溶有0.1mM的25mL硝酸银溶液中加入1mL 0.01M的柠檬酸三钠作为表面修饰剂,将0.2mM的10mL的盐酸多巴胺加入到上述混合液中,常温下反应8h,得柠檬酸三钠修饰的水溶性银纳米材料;a. Add 1mL of 0.01M trisodium citrate in 25mL of silver nitrate solution with 0.1mM as a surface modifier, add 10mL of 0.2mM dopamine hydrochloride into the above mixture, and react at room temperature for 8h to obtain citric acid Trisodium-modified water-soluble silver nanomaterials;

b、取2mL纳米银加入0.1mL 0.1M(pH 4.0)的醋酸缓冲溶液,一定浓度的待测碘离子标准溶液,随后,加入1mL0.2mM高锰酸钾溶液后,显色反应5分钟。b. Take 2mL of nano-silver and add 0.1mL of 0.1M (pH 4.0) acetic acid buffer solution, a certain concentration of iodide ion standard solution to be tested, and then add 1mL of 0.2mM potassium permanganate solution for color reaction for 5 minutes.

实施实例3:Implementation example 3:

a、在溶有0.1mM的50mL氯金酸溶液中加入5mL 0.01M的十二烷基硫酸钠作为表面修饰剂,将0.2mM的20mL的苯酚溶液加入到上述混合液中,加入0.1M的氢氧化钠溶液调节混合液的pH为8.0,常温下反应24h,得十二烷基硫酸钠修饰的水溶性金纳米材料;a. Add 5mL of 0.01M sodium lauryl sulfate in 50mL of 0.1mM chloroauric acid solution as a surface modifier, add 20mL of 0.2mM phenol solution into the above mixture, and add 0.1M of hydrogen Sodium oxide solution adjusts the pH of the mixed solution to 8.0, and reacts at room temperature for 24 hours to obtain a water-soluble gold nanomaterial modified with sodium dodecyl sulfate;

b、取2mL纳米金加入0.1mL,0.1M(pH 9.0)的柠檬酸缓冲溶液,一定浓度的待测碘离子标准溶液,随后,加入1mL 0.2mM的过氧化氢溶液后,显色反应5分钟。b. Take 2mL of nano-gold and add 0.1mL, 0.1M (pH 9.0) citric acid buffer solution, a certain concentration of iodide ion standard solution to be tested, and then add 1mL of 0.2mM hydrogen peroxide solution, and react for 5 minutes for color development .

Claims (4)

1.碘离子的快速、高效检测方法,其特征在于:1. the fast, efficient detection method of iodide ion, it is characterized in that: a、在选自十二烷基硫酸钠,多聚磷酸钠,十六烷基三甲基溴化铵,PDDA聚合物,PSS聚合物中的一种作为修饰剂的条件下,通过取自苯酚、邻苯二酚、多巴胺、没食子酸中的一种作为还原剂还原硝酸银或氯金(III)酸的溶液以制备功能性银/金纳米材料;a. Under the condition of being selected from sodium lauryl sulfate, sodium polyphosphate, cetyltrimethylammonium bromide, PDDA polymer, and PSS polymer as a modifying agent, by taking from phenol , one of catechol, dopamine, and gallic acid is used as a reducing agent to reduce the solution of silver nitrate or chloroauric (III) acid to prepare functional silver/gold nanomaterials; b、取一定体积的上述制备的金属纳米材料加入一定体积的具有一定pH的缓冲溶液,一定浓度的待测碘离子标准溶液,随后,加入一定浓度的取自过氧化氢、高锰酸钾、重铬酸钾、次氯酸钠、过二硫酸铵中的一种作为使纳米材料聚集的试剂,室温下显色5分钟。B, get a certain volume of the metal nanomaterial prepared above and add a certain volume of buffer solution with a certain pH, a certain concentration of iodide ion standard solution to be measured, and then add a certain concentration of hydrogen peroxide, potassium permanganate, One of potassium dichromate, sodium hypochlorite, and ammonium peroxodisulfate is used as a reagent for aggregating the nanomaterials, and the color is developed for 5 minutes at room temperature. 2.根据权利要求1所述的碘离子的快速、高效检测方法,其特征在于所述的具有一定pH的缓冲溶液的pH范围为2.0-9.0。2. The fast and efficient detection method of iodide ion according to claim 1, characterized in that the pH range of the buffer solution with a certain pH is 2.0-9.0. 3.根据权利要求1所述的碘离子的快速、高效检测方法,其特征在于所述的具有一定pH的缓冲溶液为醋酸缓冲溶液、柠檬酸缓冲溶液、碳酸缓冲溶液、磷酸缓冲溶液、Tris缓冲溶液。3. the fast, efficient detection method of iodide ion according to claim 1, it is characterized in that described buffer solution with certain pH is acetate buffer solution, citric acid buffer solution, carbonic acid buffer solution, phosphoric acid buffer solution, Tris buffer solution. 4.根据权利要求1所述的碘离子的快速、高效检测方法,其特征在于所述的加入一定浓度的取自过氧化氢、高锰酸钾、重铬酸钾、次氯酸钠、过二硫酸铵中的一种作为使纳米材料聚集的试剂的浓度为2×10-4-5×10-2mol/L。4. the fast, efficient detection method of iodide ion according to claim 1 is characterized in that described adding certain concentration is taken from hydrogen peroxide, potassium permanganate, potassium dichromate, sodium hypochlorite, ammonium peroxodisulfate The concentration of one of them as a reagent for aggregating nanomaterials is 2×10 -4 -5×10 -2 mol/L.
CN201210527677.1A 2012-12-06 2012-12-06 Method for measuring iodide ions quickly and efficiently Expired - Fee Related CN103018238B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210527677.1A CN103018238B (en) 2012-12-06 2012-12-06 Method for measuring iodide ions quickly and efficiently

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210527677.1A CN103018238B (en) 2012-12-06 2012-12-06 Method for measuring iodide ions quickly and efficiently

Publications (2)

Publication Number Publication Date
CN103018238A CN103018238A (en) 2013-04-03
CN103018238B true CN103018238B (en) 2015-04-22

Family

ID=47967086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210527677.1A Expired - Fee Related CN103018238B (en) 2012-12-06 2012-12-06 Method for measuring iodide ions quickly and efficiently

Country Status (1)

Country Link
CN (1) CN103018238B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020164A (en) * 2014-06-06 2014-09-03 重庆大学 Method for detecting content of trace iodine ions in chlorin-alkali brine and industrial salt
CN104111309B (en) * 2014-06-23 2015-12-09 神马实业股份有限公司 The method for rapidly testing of iodide ion content in nylon polymer
CN106404766A (en) * 2016-08-30 2017-02-15 中南林业科技大学 Preparation method of nanogold colorimetric probe and method for detecting iodide ions by using nanogold colorimetric probe
HU231183B1 (en) 2018-06-15 2021-07-28 Ioi Auranae Kft. Process and kit for quick and inexpensive detection of iodide ions in aqueous solutions
CN113340888B (en) * 2021-07-02 2023-11-21 长沙塞克陆德医疗科技有限公司 Reagent, kit and detection method for quantitative detection of blood iodine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821752A (en) * 2006-03-30 2006-08-23 湖南大学 A nanosensor for detecting phenolic substances and its detection method
CN102221529A (en) * 2011-03-31 2011-10-19 吉林大学 Method for rapidly detecting residuals of organophosphorus pesticides in vegetables by utilizing Au nano-particle colorimetric method
CN102224819A (en) * 2011-04-02 2011-10-26 中国科学院海洋研究所 A kind of nano-silver graphene oxide composite fungicide and its preparation and application
CN102288568A (en) * 2011-07-29 2011-12-21 广西师范大学 Method for rapidly measuring nanogold catalysis-silver nitrate reduction luminosity of UO2<2+> in water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050147963A1 (en) * 2003-12-29 2005-07-07 Intel Corporation Composite organic-inorganic nanoparticles and methods for use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821752A (en) * 2006-03-30 2006-08-23 湖南大学 A nanosensor for detecting phenolic substances and its detection method
CN102221529A (en) * 2011-03-31 2011-10-19 吉林大学 Method for rapidly detecting residuals of organophosphorus pesticides in vegetables by utilizing Au nano-particle colorimetric method
CN102224819A (en) * 2011-04-02 2011-10-26 中国科学院海洋研究所 A kind of nano-silver graphene oxide composite fungicide and its preparation and application
CN102288568A (en) * 2011-07-29 2011-12-21 广西师范大学 Method for rapidly measuring nanogold catalysis-silver nitrate reduction luminosity of UO2<2+> in water

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Anti-agrregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity;Yan Li et.al.;《Analyst》;20111231;第136卷;196-200 *
郑林玲等.碘诱导AgAgI复合纳米颗粒的形成及碘离子的可视化分析.《分析化学》.2012,第40卷(第9期),1385-1390. *

Also Published As

Publication number Publication date
CN103018238A (en) 2013-04-03

Similar Documents

Publication Publication Date Title
CN103018238B (en) Method for measuring iodide ions quickly and efficiently
CN102565050B (en) Method for detecting copper ions
Yaling et al. A sensitive and selective method for visual chronometric detection of copper (II) ions using clock reaction
Hu et al. Optical and electrochemical detection of biothiols based on aggregation of silver nanoparticles
Bothra et al. Pyridoxal derivative functionalized gold nanoparticles for colorimetric determination of zinc (ii) and aluminium (iii)
CN103163095A (en) Visual multifunctional detection method based on nano-silver
CN103592276A (en) Quantum dot fluorescence sensor for cadmium ion detection, and detection method of fluorescence sensor
CN104614370B (en) A method for rapid detection of nitrite based on nano-gold
CN108458981A (en) A kind of method that methyl hydroximic acid photometry detects iron content in water sample
Gholivand et al. Chromium (III) ion selective electrode based on oxalic acid bis (cyclohexylidene hydrazide)
Deng et al. An IMPLICATION logic gate based on citrate-capped gold nanoparticles with thiocyanate and iodide as inputs
Firdaus et al. Quantitative analysis of Cr (III) and Cr (VI) using gold nanoparticles with UV-vis spectrometry and smartphone colorimetric-sensing
Gao et al. Selective and sensitive colorimetric detection of copper ions based on anti-aggregation of the glutathione-induced aggregated gold nanoparticles and its application for determining sulfide anions
CN103323450B (en) Rapid determination method of iodide ion by using nano-gold as logic gate developing probe
CN106596504B (en) A kind of method of cyanide in super sensitivity detection water body
CN103267761B (en) Method for measuring cobalt content in steel
Xia et al. Laccase-mimicking activity of octahedral Mn3O4 nanoparticles and fluorescence of carbon dots as dual-mode signals for the specific detection of arsenic (V) in environmental water samples
CN113984726A (en) Method for detecting mercury ions by amino phenylboronic acid functionalized magnetic beads/glyoxal modified DNA
CN102661943B (en) Method for Measuring Cystine Using Surface Enhanced Raman Spectroscopy
Jian-feng et al. Ultra-sensitive fluorescence determination of chromium (VI) in aqueous solution based on selectively etching of protein-stabled gold nanoclusters
CN102928353B (en) Preparation method and using method for developing detection piece for determining copper ions in water
Lv et al. Target-induced click conjugation for attomolar electronic monitoring of Cu (II) using horseradish peroxidase as indicator and nanogold particles as enhancer
CN102539352A (en) Determination method of cyanogen in thiocyanate
Lei et al. Nano-fluorescent probes based on DNA-templated copper nanoclusters for fast sensing of thiocyanate
CN102519884A (en) Method for easily and quickly measuring hydrogen peroxide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20181206

CF01 Termination of patent right due to non-payment of annual fee