CN103014157B - Method for identifying plant parasitic nematode by single nematode polypide or single nematode ovum - Google Patents
Method for identifying plant parasitic nematode by single nematode polypide or single nematode ovum Download PDFInfo
- Publication number
- CN103014157B CN103014157B CN201210518233.1A CN201210518233A CN103014157B CN 103014157 B CN103014157 B CN 103014157B CN 201210518233 A CN201210518233 A CN 201210518233A CN 103014157 B CN103014157 B CN 103014157B
- Authority
- CN
- China
- Prior art keywords
- nematode
- nematodes
- pcr
- egg
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 241000244206 Nematoda Species 0.000 title claims abstract description 217
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000003071 parasitic effect Effects 0.000 title claims abstract description 21
- 108010000912 Egg Proteins Proteins 0.000 title claims 3
- 102000002322 Egg Proteins Human genes 0.000 title claims 3
- 210000004681 ovum Anatomy 0.000 title claims 3
- 239000006166 lysate Substances 0.000 claims abstract description 24
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 235000013601 eggs Nutrition 0.000 claims description 41
- 238000006243 chemical reaction Methods 0.000 claims description 28
- 239000012153 distilled water Substances 0.000 claims description 18
- 108050008072 Cytochrome c oxidase subunit IV Proteins 0.000 claims description 14
- 241000238631 Hexapoda Species 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 13
- 238000011144 upstream manufacturing Methods 0.000 claims description 13
- 230000003321 amplification Effects 0.000 claims description 12
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 12
- 108090000623 proteins and genes Proteins 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000001976 enzyme digestion Methods 0.000 claims description 10
- 238000001962 electrophoresis Methods 0.000 claims description 9
- 230000002438 mitochondrial effect Effects 0.000 claims description 8
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 125000006850 spacer group Chemical group 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 238000012163 sequencing technique Methods 0.000 claims description 4
- 238000013518 transcription Methods 0.000 claims description 4
- 230000035897 transcription Effects 0.000 claims description 4
- 238000004925 denaturation Methods 0.000 claims description 3
- 230000036425 denaturation Effects 0.000 claims description 3
- 238000012257 pre-denaturation Methods 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 238000013461 design Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000008961 swelling Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 10
- 238000011160 research Methods 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 9
- 102000004190 Enzymes Human genes 0.000 abstract description 7
- 108090000790 Enzymes Proteins 0.000 abstract description 7
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 6
- 238000002474 experimental method Methods 0.000 abstract description 5
- 238000005520 cutting process Methods 0.000 abstract description 3
- 239000000969 carrier Substances 0.000 abstract description 2
- 238000012795 verification Methods 0.000 abstract 2
- 230000000694 effects Effects 0.000 abstract 1
- 241000196324 Embryophyta Species 0.000 description 41
- 239000000047 product Substances 0.000 description 25
- 241000243786 Meloidogyne incognita Species 0.000 description 23
- 241000243785 Meloidogyne javanica Species 0.000 description 20
- 239000012634 fragment Substances 0.000 description 14
- 108091023242 Internal transcribed spacer Proteins 0.000 description 11
- 241000243771 Bursaphelenchus xylophilus Species 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 9
- 241000399948 Ditylenchus destructor Species 0.000 description 9
- 108091008146 restriction endonucleases Proteins 0.000 description 8
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 7
- 240000007594 Oryza sativa Species 0.000 description 7
- 235000007164 Oryza sativa Nutrition 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 241000399949 Ditylenchus dipsaci Species 0.000 description 6
- 238000000246 agarose gel electrophoresis Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 235000009566 rice Nutrition 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 241000702971 Rotylenchulus reniformis Species 0.000 description 5
- 108091036078 conserved sequence Proteins 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 241000134843 Aphelenchoides besseyi Species 0.000 description 4
- 108010067770 Endopeptidase K Proteins 0.000 description 4
- 241000243784 Meloidogyne arenaria Species 0.000 description 4
- 241000234295 Musa Species 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- 241000201375 Radopholus similis Species 0.000 description 4
- 241001540480 Rotylenchulus Species 0.000 description 4
- 241000855019 Tylenchorhynchus Species 0.000 description 4
- 230000009089 cytolysis Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 241001148481 Helicotylenchus Species 0.000 description 3
- 240000008436 Ipomoea aquatica Species 0.000 description 3
- 235000019004 Ipomoea aquatica Nutrition 0.000 description 3
- 241001143352 Meloidogyne Species 0.000 description 3
- 241000831628 Meloidogyne enterolobii Species 0.000 description 3
- 241001143337 Meloidogyne graminicola Species 0.000 description 3
- 240000005561 Musa balbisiana Species 0.000 description 3
- 241001130173 Paralongidorus maximus Species 0.000 description 3
- 241001148650 Paratylenchus Species 0.000 description 3
- 241000193943 Pratylenchus Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 241000998504 Xiphidorus Species 0.000 description 3
- 238000009585 enzyme analysis Methods 0.000 description 3
- 239000003147 molecular marker Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 235000017060 Arachis glabrata Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 235000018262 Arachis monticola Nutrition 0.000 description 2
- 241000255789 Bombyx mori Species 0.000 description 2
- 244000000626 Daucus carota Species 0.000 description 2
- 235000002767 Daucus carota Nutrition 0.000 description 2
- 241001110017 Filenchus Species 0.000 description 2
- 241001220360 Longidorus Species 0.000 description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 2
- 235000011613 Pinus brutia Nutrition 0.000 description 2
- 241000018646 Pinus brutia Species 0.000 description 2
- 241000244200 Rhabditida Species 0.000 description 2
- 241000223104 Trypanosoma Species 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 235000020232 peanut Nutrition 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 230000009182 swimming Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 244000144730 Amygdalus persica Species 0.000 description 1
- 244000080767 Areca catechu Species 0.000 description 1
- 235000006226 Areca catechu Nutrition 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 101100329008 Artemia franciscana COI gene Proteins 0.000 description 1
- 241000244203 Caenorhabditis elegans Species 0.000 description 1
- 241001212534 Cosmopolites sordidus Species 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 241000459000 Drimia rotunda Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 241000512802 Mesocriconema inaratum Species 0.000 description 1
- 241001268433 Mesocriconema ornatum Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241001132771 Rotylenchus buxophilus Species 0.000 description 1
- 241001220308 Trichodorus Species 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 241001242944 Xiphinema americanum Species 0.000 description 1
- 241000529915 Xylophilus Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000007403 mPCR Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003250 oocyst Anatomy 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000024241 parasitism Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 238000013081 phylogenetic analysis Methods 0.000 description 1
- 244000000003 plant pathogen Species 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 108700022487 rRNA Genes Proteins 0.000 description 1
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
本发明公开了一种用单条线虫虫体或单个线虫虫卵鉴定植物寄生线虫的方法,属于分子生物学检测鉴定技术领域。在分子生物学实验中由于线虫个体小,在提取单条线虫DNA模板的过程中存在容易混入其它试剂污染或者将单条线虫切断处理过程中易发生材料损失严重。本发明包含了一步直接在PCR管中简单刺破线虫虫体或虫卵的操作,不需要进行把线虫裂解液从其它载体转移到PCR管中,这样保证了线虫及其裂解物的存在,即DNA模板的存在,模板制备效率高。本发明对目前在植物寄生线虫鉴定研究等多个方面的分子诊断标记进行了PCR验证和部分进一步的酶切实验验证,效果显著。本发明还首次公布了用单个线虫虫卵作为模板进行植物寄生线虫的鉴定。
The invention discloses a method for identifying plant parasitic nematodes by using a single nematode body or a single nematode egg, and belongs to the technical field of molecular biology detection and identification. In molecular biology experiments, due to the small size of nematodes, it is easy to be contaminated by other reagents in the process of extracting a single nematode DNA template or to cause serious material loss during the process of cutting a single nematode. The present invention includes a step of directly piercing the nematode body or egg in the PCR tube without transferring the nematode lysate from other carriers to the PCR tube, thus ensuring the existence of the nematode and its lysate, namely With the presence of DNA templates, the efficiency of template preparation is high. The present invention carries out PCR verification and partial further enzyme cutting experiment verification on molecular diagnostic markers currently used in multiple aspects of plant parasitic nematode identification research, etc., and the effect is remarkable. The invention also discloses for the first time that a single nematode egg is used as a template to identify plant parasitic nematodes.
Description
技术领域technical field
本发明属于分子生物学检测鉴定技术领域,具体涉及一种用单条线虫虫体或单个线虫虫卵鉴定植物寄生线虫的方法。The invention belongs to the technical field of molecular biology detection and identification, and in particular relates to a method for identifying plant parasitic nematodes by using a single nematode body or a single nematode egg.
背景技术Background technique
植物寄生性线虫是世界范围内一类危害农林业生产的植物病原生物。到目前为止,大约有4100种植物线虫被描述,约占已描述的所有线虫种类的15%(Decraemer&Hunt,2006)。很多植物寄生线虫,如香蕉穿孔线虫(Radopholussimilis)、根结线虫(Meloidogyne spp.)和松材线虫(Bursaphelenchus xylophilus)等都是破坏性强的病原物,已经在很多粮食作物、观赏植物、蔬菜和林业树木上引起严重的危害,所以,很多国家将这些植物线虫列为检疫性有害生物(CABI&EPPO,1998)。传统的植物寄生线虫分类鉴定依赖形态特征,该方法需要丰富的分类鉴定经验,在种类水平上,一些近似种的准确鉴定更是比较复杂和困难。自从发明PCR技术,且秀丽小杆线虫(Caenorhabditis elegans)的基因组被完全测序后,分子诊断和鉴定方法已经被广泛应用于自由生活线虫、动物寄生线虫和植物寄生线虫,并为这些线虫的系统进化和分类研究提供了更丰富的信息(Floyd et al,2002;Powers,2004;Abebe et al,2011)。Plant parasitic nematodes are a class of plant pathogens that endanger agricultural and forestry production worldwide. About 4100 species of plant nematodes have been described so far, accounting for about 15% of all nematode species described (Decraemer & Hunt, 2006). Many plant-parasitic nematodes, such as Radopholus similis, Meloidogyne spp. Forestry trees cause serious damage, so many countries have listed these plant nematodes as quarantine pests (CABI & EPPO, 1998). The traditional classification and identification of plant parasitic nematodes relies on morphological characteristics. This method requires rich experience in classification and identification. At the species level, the accurate identification of some similar species is more complicated and difficult. Since the invention of PCR technology and the complete sequencing of the genome of Caenorhabditis elegans, molecular diagnostic and identification methods have been widely used in free-living nematodes, animal-parasitic nematodes and plant-parasitic nematodes, and for the phylogenetic evolution of these nematodes. and classification studies provide richer information (Floyd et al, 2002; Powers, 2004; Abebe et al, 2011).
在线虫分类上,核糖体RNA的排列和其间隔区以及线粒体基因组一些区间的序列特征常被用来作为鉴定的依据。根据序列区间的保守性,目前很多通用或者特异引物已经被设计出来用于线虫的鉴定或者系统进化分析。例如,用内转录间隔区(ITS)通用引物扩增的序列作为鉴定的标记,用28S rRNA基因D2-D3扩展区的通用引物扩增的序列分析线虫系统进化,此外,还有一些用于系统进化分析的线粒体细胞色素氧化酶基因的一些保守区间的特异引物(CI O或COII)(Powers&Harris,1993;Al-Banna et al,1997;Subbotin et al,2000;Powers,2004;Subbotin et al,2005a;De Ley et al,2005)。In the taxonomy of nematodes, the arrangement of ribosomal RNA and its spacer and the sequence characteristics of some intervals in the mitochondrial genome are often used as the basis for identification. According to the conservation of the sequence interval, many general or specific primers have been designed for the identification or phylogenetic analysis of nematodes. For example, sequences amplified with universal primers for the internal transcribed spacer (ITS) as markers for identification, sequences amplified with universal primers for the D2-D3 extension region of the 28S rRNA gene were used to analyze nematode phylogenetic evolution. Specific primers (CI O or COII) for some conserved intervals of the mitochondrial cytochrome oxidase gene for evolutionary analysis (Powers & Harris, 1993; Al-Banna et al, 1997; Subbotin et al, 2000; Powers, 2004; Subbotin et al, 2005a ; De Ley et al, 2005).
植物寄生线虫的分子鉴定,需要先获得DNA模板。从自然界的土壤中、植物组织中通常一次能分离到多个种类混合的植物线虫,所以单条植物寄生线虫的DNA提取在分类学、系统进化和线虫检测鉴定等研究方面更有意义。单条植物线虫DNA的获得通常包括两个步骤,一是获得线虫裂解物,二是获得DNA粗提液。对于第一步,常用的方法就是挑取单条虫到载玻片上,在体视显微镜下切成2~3段,用移液器移到线虫裂解液(WLB)中,有的还会再把裂解物再进行反复冻融,使虫体组织充分裂解(Subbotin et al,2000;Wawyenberge et al,2000;Elbadri et al,2002;Bert et al,2008;Troccoli et al,2008;Huang et al,2010);也可以把线虫虫体碎段或整条虫放入线虫简易裂解液中(如聚合酶的1倍缓冲液)(Subbotin et al,2005,2006),获得线虫裂解物。第二步就是将获得的线虫裂解液,用蛋白酶K进行消化约1h,然后再灭活蛋白酶,最终得到DNA模板粗提液,进行下一步PCR反应。此外,其它一些简单和快速获得线虫裂解液的方法也有报道,例如利用NaOH和Triton X-100直接裂解整条虫(Stantonet al,1998;Floyd et al,2002),或用SDS裂解液整条虫(Sakai,2010;Sakai etal,2011),然后直接用于PCR反应。总之,这些方法在PCR反应之前都需要加入试剂,所以相对耗时和操作复杂,且痕量的试剂残留可能会影响PCR的反应或后续的操作。而且由于植物寄生线虫虫体细小,成熟雌雄虫一般0.5-1.2mm,虫体直径为30-60μm,使得上述提及的单条线虫碎断转移过程使样本模板量损失很大或丢失,存在导致实验用PCR中DNA模板量不足的缺陷。Molecular identification of plant-parasitic nematodes requires DNA templates. Plant nematodes mixed with multiple species can usually be isolated from soil and plant tissues in nature at one time, so the DNA extraction of a single plant parasitic nematode is more meaningful in taxonomy, phylogenetic evolution, and nematode detection and identification. The acquisition of single plant nematode DNA usually includes two steps, one is to obtain the nematode lysate, and the other is to obtain the crude DNA extract. For the first step, the common method is to pick a single worm on a glass slide, cut it into 2 to 3 sections under a stereo microscope, and transfer it to the nematode lysate (WLB) with a pipette. The lysate was then repeatedly frozen and thawed to fully lyse the parasite tissue (Subbotin et al, 2000; Wawyenberge et al, 2000; Elbadri et al, 2002; Bert et al, 2008; Troccoli et al, 2008; Huang et al, 2010 ); You can also put nematode body fragments or whole worms into a simple nematode lysis solution (such as 1 times polymerase buffer) (Subbotin et al, 2005, 2006) to obtain nematode lysates. The second step is to digest the obtained nematode lysate with proteinase K for about 1 hour, and then inactivate the protease to finally obtain the crude extract of DNA template for the next step of PCR reaction. In addition, other simple and rapid methods for obtaining nematode lysates have also been reported, such as direct lysis of whole worms with NaOH and Triton X-100 (Stanton et al, 1998; Floyd et al, 2002), or whole worms with SDS lysate (Sakai, 2010; Sakai et al, 2011), and then directly used in PCR reactions. In a word, these methods all need to add reagents before the PCR reaction, so they are relatively time-consuming and complicated to operate, and trace reagent residues may affect the PCR reaction or subsequent operations. Moreover, due to the small size of plant parasitic nematodes, mature male and female worms are generally 0.5-1.2mm, and the diameter of the worm body is 30-60μm, so that the above-mentioned single nematode fragmentation and transfer process will cause a large loss or loss of sample templates, which may lead to experimental results. Use the defect of insufficient amount of DNA template in PCR.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种用单条线虫虫体或单个线虫虫卵鉴定植物寄生线虫的方法,该方法即可实现简单、快速PCR反应鉴定,又能保证PCR目的片段的酶切及测序等后续试验操作不受影响。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a method for identifying plant-parasitic nematodes with a single nematode body or a single nematode egg. This method can realize simple and fast PCR reaction identification, and can ensure the PCR target fragment Subsequent test operations such as enzyme digestion and sequencing will not be affected.
本发明通过以下技术方案实现上述目的:The present invention realizes above-mentioned object through following technical scheme:
一种用单条线虫虫体或单个线虫虫卵鉴定植物寄生线虫的方法,为以单条线虫虫体或单个线虫虫卵为PCR模板,扩增得到保守序列,鉴定后确定线虫种类的方法。具体步骤如下:A method for identifying plant-parasitic nematodes by using a single nematode body or a single nematode egg is a method for using a single nematode body or a single nematode egg as a PCR template, amplifying a conserved sequence, and determining the nematode species after identification. Specific steps are as follows:
(1)植物线虫样品的洗涤:在无菌的载玻片上滴无菌去离子水,用线虫挑针挑入单条线虫或单个虫卵;(1) Washing of plant nematode samples: drop sterile deionized water on a sterile glass slide, and pick in a single nematode or a single egg with a nematode needle;
(2)PCR模板制备:将三蒸水滴到PCR管内壁上,挑入步骤(1)洗涤过的单条线虫或单个虫卵,用无菌昆虫针在体视显微镜下扎破线虫虫体或虫卵,把线虫裂解液甩入管底,该线虫裂解液作为PCR模板直接使用或者放入-80℃超低温冰箱中保存备用;为防止无菌昆虫针将线虫虫体或虫卵带走,最好在线虫裂解液甩入管底后,在显微镜下检查管底是否有线虫虫体或虫卵;(2) PCR template preparation: drop three-distilled water onto the inner wall of the PCR tube, pick a single nematode or a single egg washed in step (1), and use a sterile insect needle to puncture the nematode body or worm under a stereomicroscope. Eggs, throw the nematode lysate into the bottom of the tube. The nematode lysate can be used directly as a PCR template or stored in a -80°C ultra-low temperature refrigerator for later use; After the worm lysate is thrown into the bottom of the tube, check under the microscope whether there are nematode worms or eggs at the bottom of the tube;
(3)PCR反应:选取线虫的保守区域设计引物,以步骤(2)制备的PCR模板为模板,进行PCR;(3) PCR reaction: select the conserved region of nematodes to design primers, and use the PCR template prepared in step (2) as a template to perform PCR;
(4)鉴定:将得到的PCR产物进行分析,从而确定线虫的种类。(4) Identification: The obtained PCR product is analyzed to determine the type of nematode.
步骤(2)中所述的三蒸水的量根据线虫大小而定,对于线形虫态的线虫虫体或虫卵,虫体短于1.5mm的线虫和虫卵三蒸水用量为6μl,虫体长于1.5mm的线虫三蒸水用量为12μl;对于膨大成球形、梨形等较大的非线形虫态的虫体,三蒸水用量为24μl;The amount of triple-distilled water described in step (2) depends on the size of the nematode. For the nematode body or eggs of nematodes, the amount of triple-distilled water for nematodes and eggs shorter than 1.5mm is 6 μl. The amount of triple-distilled water for nematodes longer than 1.5 mm is 12 μl; for larger non-nematodes such as spherical and pear-shaped worms, the amount of triple-distilled water is 24 μl;
步骤(2)中所述的三蒸水滴到PCR管内壁的位置,优选为水滴在距管口1cm左右的位置;The position where the three-distilled water drops onto the inner wall of the PCR tube in step (2), preferably the position where the water drop is about 1 cm away from the mouth of the tube;
步骤(2)中所述的昆虫针优选为不锈钢昆虫针1号;The insect needle described in step (2) is preferably stainless steel insect needle No. 1;
步骤(2)中所述的无菌昆虫针是指将昆虫针用无水酒精浸泡,然后在酒精灯火焰灼烧处理;The sterile insect needle described in step (2) refers to soaking the insect needle in absolute alcohol, and then burning it in the flame of an alcohol lamp;
步骤(2)中所述的线虫裂解液为扎破的线虫虫体或虫卵得到的线虫裂解物和三蒸水的混合液;The nematode lysate described in step (2) is a mixture of nematode lysates obtained from punctured nematode bodies or eggs and three-distilled water;
步骤(3)中所述的保守区域优选为线粒体细胞色素氧化酶基因Ⅱ与LrRNA基因序列、内转录间隔区ITS序列、28S D2-D3扩增区序列和植物线虫细胞色素氧化酶基因Co Ⅰ区间序列中的一种或至少两种;The conserved region described in step (3) is preferably mitochondrial cytochrome oxidase gene II and LrRNA gene sequence, internal transcription spacer ITS sequence, 28S D2-D3 amplification region sequence and plant nematode cytochrome oxidase gene Co Ⅰ interval one or at least two of the sequence;
所述的线粒体细胞色素氧化酶基因Ⅱ与LrRNA基因序列的引物如下:The primers of the mitochondrial cytochrome oxidase gene II and LrRNA gene sequences are as follows:
上游引物#C2F3:5’-GGTCAATGTTCAGAAATTTGTGG-3’Upstream primer #C2F3: 5'-GGTCAATGTTCAGAAATTTGTGG-3'
下游引物#1108:5’-TACCTTTGACCAATCACGCT-3’;Downstream primer #1108: 5'-TACCTTTGACCAATCACGCT-3';
所述的内转录间隔区ITS序列的引物如下:The primers of the internal transcription spacer ITS sequence are as follows:
上游引物:5’-CGTAACAAGGTAGCTGTAG-3’Upstream primer: 5'-CGTAACAAGGTAGCTGTAG-3'
下游引物:5’-TTTCACTCGCCGTTACTAAGG-3’;Downstream primer: 5'-TTTCACTCGCCGTTACTAAGG-3';
所述的28S D2-D3扩增区序列的引物如下:The primers of the 28S D2-D3 amplification region sequence are as follows:
上游引物:5’-ACAAGTACCGTGAGGGAAAGTTG-3’Upstream primer: 5'-ACAAGTACCGTGAGGGAAAGTTG-3'
下游引物:5’-TCGGAAGGAACCAGCTACTA-3’;Downstream primer: 5'-TCGGAAGGAACCAGCTACTA-3';
所述的植物线虫细胞色素氧化酶基因Co Ⅰ区间序列的引物如下:The primers of the plant nematode cytochrome oxidase gene Co I interval sequence are as follows:
上游引物:5’-CCTACTATGATTGGTGGTTTTGGTAATTG-3’Upstream primer: 5'-CCTACTATGATTGGTGGTTTTGGTAATTG-3'
下游引物:5’-GTAGCAGCAGTAAAATAAGCACG-3’;Downstream primer: 5'-GTAGCAGCAGTAAAATAAGCACG-3';
步骤(3)中所述的PCR反应的反应条件如下:94℃3min预变性;98℃变性10sec,52℃~55℃退火30sec,68℃延伸1min,35个循环;然后68℃再延伸10min;The reaction conditions of the PCR reaction described in step (3) are as follows: pre-denaturation at 94°C for 3 minutes; denaturation at 98°C for 10 sec, annealing at 52°C to 55°C for 30 sec, extension at 68°C for 1 min, 35 cycles; and extension at 68°C for 10 min;
步骤(4)中所述的分析包括电泳分析、酶切分析以及测序分析。The analysis described in step (4) includes electrophoresis analysis, enzyme digestion analysis and sequencing analysis.
所述的用单条线虫虫体或单个线虫虫卵鉴定植物寄生线虫的方法由于能以单条线虫虫体或单个线虫虫卵制备得到PCR模板进行保守序列的扩增,因此,也能通过此方法得到所需的线虫DNA序列。The method for identifying plant-parasitic nematodes with a single nematode body or a single nematode egg can also be obtained by using a single nematode body or a single nematode egg to prepare a PCR template for amplification of a conserved sequence. Desired nematode DNA sequence.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)与传统的单条植物寄生线虫鉴定PCR相比,本发明不需要使用试剂配制的线虫裂解液(WLB)或碱裂解或者反复冻融法先进行1h的蛋白酶K裂解,所以本发明避免了其它试剂的污染,节省了操作步骤,节约了PCR准备的时间,提高了工作效率。(1) Compared with the traditional single plant parasitic nematode identification PCR, the present invention does not need to use nematode lysate (WLB) prepared by reagents or alkaline lysis or repeated freezing and thawing for 1 h of proteinase K cleavage, so the present invention avoids The pollution of other reagents saves the operation steps, saves the time of PCR preparation, and improves the work efficiency.
(2)与其它已报道的不用配制裂解液处理的单条植物寄生线虫PCR相比,本发明的方法避免了先在载玻片上将线虫切碎,再转移到PCR管中,因为该过程易发生线虫材料丢失和DNA降解。本发明包含了一步直接在PCR管中简单刺破虫体或虫卵的操作,这样既保证了线虫虫体或虫卵及其裂解物的存在,即DNA模板的存在,也不需要进行把线虫裂解液从其它载体转移到PCR管中,所以鉴定成功率更高。(2) Compared with other reported single plant parasitic nematodes that do not need to be prepared with lysate for PCR, the method of the present invention avoids first chopping up the nematodes on the glass slide and then transferring them to the PCR tube, because this process is easy to occur Nematode material loss and DNA degradation. The present invention includes a step of directly piercing the worm body or egg in the PCR tube, which not only ensures the existence of the nematode body or egg and its lysate, that is, the existence of the DNA template, but also does not need to carry out the nematode The lysate is transferred from other carriers to PCR tubes, so the identification success rate is higher.
(3)已报道的方法,多数单一用于某一个基因组区间的扩增实验,未有系统、广泛进行应用研究的报道,应用范围和实用性不明确。本发明对目前在植物寄生线虫鉴定和系统进化研究等多个方面的分子诊断标记进行了验证,并且对进一步的酶切实验也进行了验证,所以该方法实用性明确、应用范围广。此外,本发明首次报道了用单个虫卵可以扩增目的片段。(3) Most of the reported methods are only used for the amplification experiment of a certain genomic interval, and there are no reports of systematic and extensive application research, and the scope of application and practicability are not clear. The present invention verifies the current molecular diagnostic markers in various aspects such as plant parasitic nematode identification and phylogenetic research, and also verifies further enzyme cutting experiments, so the method has clear practicability and wide application range. In addition, the present invention reports for the first time that a single worm egg can be used to amplify the target fragment.
附图说明Description of drawings
图1是使用Co Ⅱ-LrRNA基因通用引物扩增根结线虫的PCR产物电泳结果图,其中:图(1)中泳道1~2为南方根结线虫卵,泳道3~4为南方根结线虫幼虫,泳道5~6为南方根结线虫雌虫,泳道7~10为南方根结线虫雄虫;图(2)中泳道1为南方根结线虫二龄虫,泳道2为禾谷根结线虫二龄虫,泳道3为爪哇根结线虫二龄虫,泳道4为象耳豆根结线虫二龄虫,泳道5为花生根结线虫二龄虫;图中泳道M为Marker DL2000。Figure 1 is the electrophoresis results of PCR products of root-knot nematode amplified with Co Ⅱ-LrRNA gene universal primers, in which: lanes 1-2 in Figure (1) are eggs of M. incognita, and lanes 3-4 are M. incognita Nematode larvae, lanes 5-6 are females of M. incognita, lanes 7-10 are males of M. incognita; lane 1 in Figure (2) is the second instar of M. incognita, and lane 2 is M. incognita Second instars, lane 3 is second instars of root-knot nematode javanica, lane 4 is second instars of root-knot nematode elegans, and lane 5 is second instars of root-knot nematode peanut; lane M in the figure is Marker DL2000.
图2是利用不同裂解方法使用Co Ⅱ-LrRNA基因通用引物扩增南方根结线虫的PCR产物电泳结果图,其中:图A为利用本专利方法扩增南方根结线虫二龄幼虫,泳道1~10为不同根结二龄幼虫虫体;图B利用传统方法扩增南方根结线虫二龄幼虫,1~10为不同根结线虫二龄幼虫虫体。Figure 2 is the result of electrophoresis of the PCR products of Meloidogyne incognita amplified by using Co Ⅱ-LrRNA gene universal primers using different cleavage methods, wherein: Figure A is the second instar larvae of Meloidogyne incognita amplified by the patented method, lanes 1- 10 is the second instar larvae of different root-knot nematodes; Figure B uses the traditional method to amplify the second instar larvae of M. incognita, and 1-10 are the second instar larvae of different root-knot nematodes.
图3是使用ITS通用引物扩增植物寄生线虫的PCR产物电泳结果图,其中:图中泳道标号M为Marker DL2000;1.腐烂茎线虫虫体,2.腐烂茎线虫虫体,3.香蕉穿孔线虫虫体,4.香蕉穿孔线虫虫卵,5.短体线虫虫体,6.短锥线虫虫体,7.矮化线虫虫体,8.螺旋线虫虫体,9.南方根结线虫二龄虫,10.南方根结线虫雌虫,11.南方根结线虫雄虫,12.小环线虫虫体,13.盘小环线虫虫体,14.松材线虫虫体,15.滑刃线虫虫体,16.剑针线虫虫体,17.毛刺线虫虫体,18.针属线虫虫体,19.肾状线虫虫体,20.小杆线虫虫体。Figure 3 is the result of electrophoresis of PCR products of plant parasitic nematodes amplified using ITS universal primers, in which: the lane label M in the figure is Marker DL2000; Nematode worm body, 4. Egg of banana perforator nematode, 5. Short body nematode body, 6. Short trypanosoma worm body, 7. Dwarf nematode body, 8. Spiral worm body, 9. Meloidogyne incognita II Instars, 10. Meloidogyne incognita female, 11. Meloidogyne incognita male, 12. Microcircle nematode body, 13. Discocircle nematode body, 14. Pine wood nematode body, 15. Slippery blade Nematode worm body, 16. sword needle nematode worm body, 17. burr nematode worm body, 18. needle nematode worm body, 19. reniform nematode worm body, 20. small rod nematode worm body.
图4是使用28SD2-D3通用引物扩增植物寄生线虫的PCR产物电泳结果图,其中:图中泳道标号1.丝尾线虫虫体,2.腐烂茎线虫虫体,3.起绒草茎线虫虫体,4.短体线虫虫体,5.香蕉穿孔线虫雌虫,6.香蕉穿孔线虫虫卵,7.矮化线虫虫体,8.螺旋线虫虫体,9.南方根结线虫二龄虫,10.南方根结线虫虫卵,11.盘小环线虫虫体,12.肾状线虫虫体,13.针属线虫虫体,14.剑针线虫虫体,M为Marker DL2000。Figure 4 is the result of electrophoresis of PCR products amplified by 28SD2-D3 universal primers of plant parasitic nematodes, wherein: the lane numbers in the figure are 1. silkworm body, 2. D. destructor body, and 3. D. rotunda Insect body, 4. Short nematode body, 5. Banana perforator female, 6. Banana perforator egg, 7. Dwarf nematode body, 8. Spiral worm body, 9. Meloidogyne incognita second instar Worms, 10. Meloidogyne incognita worms, 11. Discocycline worm body, 12. Reniform worm body, 13. Acupunculus worm body, 14. Sword needle worm body, M is Marker DL2000.
图5是使用细胞色素Co Ⅰ通用引物扩增植物寄生线虫的PCR产物电泳电泳图,其中:图中泳道编号1.起绒草茎线虫虫体;2.短体线虫虫体;3.矮化线虫虫体;4~5.肾状线虫虫体;6.松材线虫虫体;7.水稻干尖线虫虫体;M:Marker DL2000。Fig. 5 is the electrophoresis electrophoresis diagram of the PCR products of plant parasitic nematodes amplified using cytochrome Co Ⅰ universal primers, wherein: the number of swimming lanes in the figure is 1. D. velvetis worm body; 2. Short-bodied nematode worm body; 3. Dwarfing Nematode worm body; 4-5. Reniform nematode body; 6. Pine wood nematode body;
图6是使用限制性酶对PCR产物进行酶切分析的结果电泳图,其中:图中泳道标号内转录间隔区ITS:1.腐烂茎线虫虫体,2.短体线虫虫体,3.香蕉穿孔线虫虫体,4.短锥线虫虫体;CO Ⅰ基因:5.短体线虫虫体,6.肾状线虫虫体,7.水稻干尖线虫虫体,8.松材线虫虫体;D2-D3扩展区:9.起绒草茎线虫虫体,10.短体线虫虫体,11.盘小环线虫虫体,12.肾状线虫虫体,13.南方根结线虫虫体;A为PCR产物用Hinf Ⅰ进行酶切处理;B为PCR产物用Alu Ⅰ进行酶切处理;M:Marker DL2000。Figure 6 is an electrophoresis diagram of the results of enzyme digestion analysis of PCR products using restriction enzymes, wherein: in the figure, the ITS of the transcriptional spacer in the label of the swimming lane: 1. D. destructor worm body, 2. Brachynematode worm body, 3. Banana Perforator nematode body, 4. Trypanosoma brevis body; CO Ⅰ gene: 5. Brachyderm nematode body, 6. Reniform nematode body, 7. Rice stem tip nematode body, 8. Pine wood nematode body; D2-D3 extension area: 9. D. velvet worm body, 10. Brachyphyllum worm body, 11. Discocircle worm body, 12. Renal nematode body, 13. Meloidogyne incognita worm body; A: PCR products were digested with Hinf Ⅰ; B: PCR products were digested with Alu Ⅰ; M: Marker DL2000.
具体实施方式Detailed ways
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below with reference to the examples and drawings, but the implementation of the present invention is not limited thereto.
实施例材料中涉及的种类:Kinds involved in the example material:
香蕉穿孔线虫(Radopholus similis)、腐烂茎线虫(又名甘薯茎线虫,Ditylenchusdestructor)、短体线虫(Pratylenchus spp.)、螺旋线虫(Helicotylenchus spp.)、肾状线虫(Rotylenchulus spp.)、南方根结线虫(Meloidogyne incognita)、爪哇根结线虫(M.javanica)、矮化线虫(Tylenchorhynchus spp.)、丝尾线虫(Filenchus spp.)、滑刃线虫(Ahelenchoides spp.)、小杆线虫(Rhabditida),已在文献“刘一帆,徐春玲,张超,苏秀敏,谢辉.从混合线虫样品和植物组织中直接检测香蕉穿孔线虫的ITS-PCR方法.中国农业科学,2011,44(19):3991-3998”公开。Banana punch nematode (Radopholus similis), Ditylenchus destructor (aka sweet potato stem nematode, Ditylenchus destructor), Bratylenchus spp., Helicotylenchus spp., Rotylenchulus spp., Southern root-knot nematode Meloidogyne incognita, M. javanica, Tylenchorhynchus spp., Filenchus spp., Ahelenchoides spp., Rhabditida, It has been published in the literature "Liu Yifan, Xu Chunling, Zhang Chao, Su Xiumin, Xie Hui. ITS-PCR method for direct detection of banana perforator nematode from mixed nematode samples and plant tissues. Chinese Agricultural Sciences, 2011, 44 (19): 3991- 3998" public.
起绒草茎线虫(又名鳞球茎茎线虫,Ditylenchus dipsaci),已在文献“赵立荣,徐春玲,胡学难,钟国强.武目涛.截获的鳞球茎茎线虫的检验鉴定.植物检疫,2011,25(5):45-47”公开。Ditylenchus dipsaci (also known as Ditylenchus dipsaci), has been published in the literature "Zhao Lirong, Xu Chunling, Hu Xuenan, Zhong Guoqiang. Wu Mutao. Inspection and identification of intercepted Ditylenchus dipsaci. Plant Quarantine, 2011 , 25(5):45-47” Open.
水稻干尖线虫(Aphelenchoides besseyi),已在文献“裴艳艳,程曦,徐春玲,杨再福,谢辉.中国水稻干尖线虫部分群体对水稻的致病力测定.中国水稻科学,2012,26(2):218-226”公开。Aphelenchoides besseyi has been published in the literature "Pei Yanyan, Cheng Xi, Xu Chunling, Yang Zaifu, Xie Hui. Determination of the pathogenicity of some populations of rice Aphelenchoides besseyi to rice. Chinese Rice Science, 2012, 26 (2 ): 218-226" Open.
象耳豆根结线虫(M.enterolobii),已在文献“Hu M.X.,Zhuo K.,and Liao J.L..Multiplex PCR for the simultaneous identification and detection of Meloidogyneincognita,M.enterolobii,and M.javanica using DNA extracted directly fromindividual galls.Pytopathology,2011,101(11):1270-1277”公开。Root-knot nematode (M.enterolobii) has been described in the literature "Hu M.X., Zhuo K., and Liao J.L.. Multiplex PCR for the simultaneous identification and detection of Meloidogyneincognita, M.enterolobii, and M.javanica using DNA extracted directly fromindividual galls. Pytopathology, 2011, 101(11):1270-1277" published.
花生根结线虫(M.arenaria),已在文献“文艳华,冯志新,陈立,徐汉虹.三尖杉枝叶粉末防治花生根结线虫病.植物保护学报,2004,31(2),161-165”公开。Peanut root-knot nematode (M.arenaria), has been published in the literature "Wen Yanhua, Feng Zhixin, Chen Li, Xu Hanhong. The control of peanut root-knot nematode by the powder of three-pointed fir branches and leaves. Acta Plant Protection, 2004, 31 (2), 161- 165" open.
松材线虫(Bursaphelenchus xylophilus),已在文献“Wang Xin-rong,ChengXi,Li Ya-dong,Zhang Jin-ai,Zhang Zhi-fen,Wu Han-rong.Cloning arginine kinasegene and its RNAi in Bursaphelenchus xylophilus causing pine wilt disease.Eur JPlant Pathol,2012,134:521–532”公开。Pine wood nematode (Bursaphelenchus xylophilus), has been published in the literature "Wang Xin-rong, ChengXi, Li Ya-dong, Zhang Jin-ai, Zhang Zhi-fen, Wu Han-rong. Cloning arginine kinasegene and its RNAi in Bursaphelenchus xylophilus causing pine wilt disease. Eur JPlant Pathol, 2012, 134:521–532” published.
禾谷根结线虫(又名拟禾本科根结线虫,M.graminicola),已在文献“刘国坤,王玉,肖顺,张绍升.水稻根结线虫病的病原鉴定及其侵染源的研究.中国水稻科学,2011,25(4):420-426”公开。Root-knot nematode graminearum (also known as root-knot nematode Gramineae, M.graminicola), has been published in the literature "Liu Guokun, Wang Yu, Xiao Shun, Zhang Shaosheng. Pathogen identification and infection source of rice root-knot nematode. China Rice Science, 2011, 25(4): 420-426" published.
针属线虫(Paratylenchus spp.),已在文献“陈立杰,刘维志,秦博.中国针属线虫的寄主植物种类和地域分布研究.辽宁农业科学,2002,3:4-8”公开。Paratylenchus spp. has been published in the literature "Chen Lijie, Liu Weizhi, Qin Bo. Research on the host plant species and geographical distribution of Chinese needle nematodes. Liaoning Agricultural Sciences, 2002, 3:4-8".
剑针线虫(Longidorus spp.)和毛刺线虫(Tricodorus spp.),已在文献“迟远丽,张卫东,吴长坤,邵晓勇,廖力,陈其文.广东省园林植物长针科和毛刺科线虫调查初报.植物检疫,2011,25(4):87-83”公开。Longidorus spp. and Tricodorus spp. have been published in the literature "Chi Yuanli, Zhang Weidong, Wu Changkun, Shao Xiaoyong, Liao Li, Chen Qiwen. Preliminary investigation report on the nematodes of Longidorus and Tricodorus spp. in garden plants in Guangdong Province . Phytosanitary, 2011, 25(4): 87-83" published.
盘小环线虫(Discocriconemella spp.),已在文献“Powers T.O.,Harris T.,Higgins R.,Sutton L.,Powers K.S..Morphological and molecular characterizationof Discocriconemella inarata,an endemic nematode from North American Nativetallgrass prairies.Journal ofNematology,2010,42(1):35–45”公开。Discocriconemella spp. has been published in the literature "Powers T.O., Harris T., Higgins R., Sutton L., Powers K.S.. Morphological and molecular characterization of Discocriconemella inarata, an endemic nematode from North American Nativetallgrassournprairies.Journal , 2010, 42(1):35–45” published.
小环线虫(Criconernella spp.),已在文献“Nyczepir A.P.,Reilly C.C.,Motsinger R.E.,Okie W.R..Behavior,parasitism,morphology,and biochemistry ofCriconernella xenoplax and C.ornata on peach.Journal ofNematology,1988,20(1):40-46”公开。Criconernella spp. has been published in the literature "Nyczepir A.P., Reilly C.C., Motsinger R.E., Okie W.R..Behavior, parasitism, morphology, and biochemistry of Criconernella xenoplax and C.ornata on peach. Journal of Nematology, 2( ):40-46" open.
短锥线虫(Brachydorus spp.),已在文献“Koshy P.K.,Raski D.j.,andSosamma V.K..Brachydorus swarupi sp.n.(Nematoda:Dolichodorinae)from Soilabout Roots ofArecanut Palm in Kerala State,India.Journal ofNematology,1981,13(3):401-404”公开。Brachydorus spp., has been described in the literature "Koshy P.K., Raski D.j., and Sosamma V.K.. Brachydorus swarupi sp.n. (Nematoda: Dolichodorinae) from Soilabout Roots of Arecanut Palm in Kerala State, India. Journal of Nematology, 131, 198 (3):401-404" open.
实施例1根结线虫(Meloidogynespp.)线粒体细胞色素氧化酶基因Ⅱ(CoⅡ)与LrRNA基因保守序列的扩增Example 1 Amplification of the Conserved Sequences of the Meloidogynes pp. Mitochondrial Cytochrome Oxidase Gene II (CoII) and LrRNA Gene
该线粒体细胞色素氧化酶基因Ⅱ(Co Ⅱ)与LrRNA基因保守序列目前常用来鉴定农业生产上危害较大的植物寄生线虫——根结线虫。The conserved sequences of mitochondrial cytochrome oxidase gene Ⅱ (Co Ⅱ) and LrRNA gene are commonly used to identify root-knot nematode, a plant parasitic nematode that is more harmful to agricultural production.
(1)研究材料(1) Research materials
1)线虫种群:供试南方根结线虫(Meloidogyne incognita)、禾谷根结线虫(M.graminicola)、爪哇根结线虫(M.javanica)、象耳豆根结线虫(M.enterolobii)和花生根结线虫(M.arenaria)种群均为华南农业大学植物线虫研究室保存在空心菜根系上的种群。1) Nematode populations: Meloidogyne incognita, M.graminicola, M.javanica, M.enterolobii and peanut root The populations of knot nematodes (M.arenaria) were all preserved on the roots of water spinach by the Plant Nematode Research Laboratory of South China Agricultural University.
2)引物:Co Ⅱ-LrRNA通用引物见文献[Powers TO,Harris TS.1993.Apolymerase chain reaction method for identification of five major Meloidogynespecies.Journal of Nematology 25(1):1-6]中所示,具体如下:2) Primers: Co Ⅱ-LrRNA general primers are shown in the literature [Powers TO, Harris TS.1993. Apolymerase chain reaction method for identification of five major Meloidogyne species. Journal of Nematology 25(1):1-6], details are as follows :
上游引物#C2F3:5’-GGTCAATGTTCAGAAATTTGTGG-3’Upstream primer #C2F3: 5'-GGTCAATGTTCAGAAATTTGTGG-3'
下游引物#1108:5’-TACCTTTGACCAATCACGCT-3’。Downstream primer #1108: 5'-TACCTTTGACCAATCACGCT-3'.
(2)试验方法(2) Test method
1)根结线虫的分离和收集1) Isolation and collection of root-knot nematodes
拔取接种根结线虫的空心菜,清洗根部基质土,把有根结的部分切下来,放入培养皿内,在体视显微镜下,解剖出雌虫,并获得部分雄虫;此外,在体视显微镜下,分离雌虫末端的卵囊,获取卵,并把部分卵放入水中孵化,2~3天后收集二龄幼虫;Pull out the water spinach inoculated with root-knot nematodes, clean the root substrate soil, cut off the part with root knots, put it in a petri dish, dissect out the female insects under a stereo microscope, and obtain some male insects; Under the microscope, separate the oocysts at the end of the female, obtain the eggs, and put some eggs into the water to hatch, and collect the second instar larvae after 2 to 3 days;
2)线虫样品的洗涤2) Washing of nematode samples
在无菌的载玻片上滴无菌去离子水,用线虫挑针,将上述步骤1)中获得的雌虫、雄虫、二龄幼虫和卵挑入其中进行清洗;Drop sterile deionized water on a sterile glass slide, pick the needle with nematodes, and pick the females, males, second-instar larvae and eggs obtained in the above step 1) into it for cleaning;
3)PCR模板制备3) PCR template preparation
用微量移液器吸取6μl三蒸水滴到PCR管内壁距管口1cm左右的位置上,然后分别挑入步骤2)中洗涤过的单个卵、幼虫或雄虫;吸取24μl三蒸水滴到PCR管内壁距管口1cm左右的位置,然后挑入步骤2)中洗涤过的单头膨大成梨形的雌虫。用无菌不锈钢昆虫针1号在体式显微镜下扎破线虫虫体或线虫卵,然后把线虫裂解液甩入管底,并在显微镜下检查管底是否有线虫虫体,若有则作为PCR模板直接使用,或者放入-80℃超低温冰箱中保存备用;Use a micropipette to draw 6 μl triple-distilled water and drop it on the inner wall of the PCR tube about 1 cm away from the tube opening, and then pick the single eggs, larvae or males washed in step 2) respectively; draw 24 μl triple-distilled water and drop it into the PCR tube The wall is about 1cm away from the mouth of the nozzle, and then the single pear-shaped female worm that has been washed in step 2) is picked. Use a sterile stainless steel insect needle No. 1 to puncture the nematode body or nematode egg under a stereomicroscope, then throw the nematode lysate into the bottom of the tube, and check under the microscope whether there is a nematode body at the bottom of the tube, and if so, use it as a PCR template Use directly, or store in a -80°C ultra-low temperature freezer for later use;
4)PCR反应4) PCR reaction
配制PCR反应体系为:模板6μl,12.5μl 2×buffer(2倍缓冲液),5μl 2.0mM dNTP(TOYOBO,日本),0.75μl上游引物(10μM),0.75μl下游引物(10μM),0.5μl KOD酶(TOYOBO,日本),其余用灭菌三蒸水补足。Prepare the PCR reaction system as follows: template 6 μl, 12.5 μl 2×buffer (2 times buffer), 5 μl 2.0mM dNTP (TOYOBO, Japan), 0.75 μl upstream primer (10 μM), 0.75 μl downstream primer (10 μM), 0.5 μl KOD Enzyme (TOYOBO, Japan), and the rest was supplemented with sterilized three-distilled water.
PCR反应程序为:94℃3min预变性,98℃变性10sec,52℃退火30sec,68℃延伸1min,35个循环,然后68℃再延伸10min。The PCR reaction program was: pre-denaturation at 94°C for 3 min, denaturation at 98°C for 10 sec, annealing at 52°C for 30 sec, extension at 68°C for 1 min, 35 cycles, and then extension at 68°C for 10 min.
配好体系的反应产物,放入伯乐C-1000PCR仪上进行PCR扩增。Prepare the reaction product of the system and put it into the Bio-Rad C-1000 PCR instrument for PCR amplification.
5)PCR反应结果检测5) Detection of PCR reaction results
取5μl PCR产物使用质量体积比1%的琼脂糖凝胶电泳对PCR结果进行检测,在凝胶成像系统上观察PCR产物扩增片段的大小和有无(图1)。由图1(1)可知使用该方法可以扩增到南方根结线虫雌虫、雄虫、卵和二龄幼虫的保守区段,扩增效率高,目的条带非常清晰。此外,由图1(2)可知,使用该方法扩增不同种类的根结线虫,也可以非常明显的扩增到目的片段,该目的片段与文献报道的一致。Take 5 μl of PCR products and use agarose gel electrophoresis with a mass volume ratio of 1% to detect the PCR results, and observe the size and presence or absence of the amplified fragments of the PCR products on a gel imaging system (Figure 1). It can be seen from Figure 1 (1) that this method can amplify the conserved segments of females, males, eggs, and second-instar larvae of M. incognita. The amplification efficiency is high, and the target band is very clear. In addition, it can be seen from Fig. 1 (2) that different species of root-knot nematodes can be amplified using this method, and the target fragment can also be amplified very obviously, and the target fragment is consistent with that reported in the literature.
实施例2比较不同裂解方法扩增根结线虫线粒体Co Ⅱ与LrRNA基因保守序列Example 2 Comparison of different lysis methods to amplify the conserved sequences of Co Ⅱ and LrRNA genes in root-knot nematode mitochondria
(1)研究材料(1) Research materials
1)线虫种群:供试南方根结线虫(Meloidogyne incognita)为华南农业大学植物线虫研究室保存在空心菜根系上的种群。1) Nematode population: The root-knot nematode (Meloidogyne incognita) used in the test is a population preserved on the roots of water spinach by the Plant Nematode Research Laboratory of South China Agricultural University.
2)引物:同实施例1。2) Primers: Same as Example 1.
(2)试验方法(2) Test method
1)根结线虫的分离和收集、洗涤1) Isolation, collection and washing of root-knot nematodes
同实施例1。With embodiment 1.
2)PCR模板制备2) PCR template preparation
A组:为本发明提供的方法,同实施例1步骤(2)3)。Group A: the method provided by the present invention, the same as step (2) 3) of Example 1.
B组:传统方法:挑取单条二龄幼虫到滴有一小滴无菌水的无菌玻片上,然后用酒精灯火焰烧过的解剖刀在体视镜下快速将线虫虫体切成2~3段,并迅速用移液器吸走悬浮液到预冷的PCR管中,加入1×聚合酶缓冲液(Takara)至10μl,放入超低温培养箱冷冻处理30min以上。取出冷冻处理过的线虫裂解液,再加入蛋白酶K于65℃消化1h,然后95℃处理10min,使蛋白酶K失活,通过这些步骤获得PCR模板。Group B: traditional method: pick a single second-instar larva on a sterile glass slide dripped with a small drop of sterile water, and then quickly cut the nematode body into 2~2~ 3 sections, and quickly use a pipette to suck the suspension into a pre-cooled PCR tube, add 1× polymerase buffer (Takara) to 10 μl, and put it into an ultra-low temperature incubator for freezing treatment for more than 30 minutes. Take out the frozen nematode lysate, add proteinase K to digest at 65°C for 1 hour, then treat at 95°C for 10 minutes to inactivate proteinase K, and obtain PCR template through these steps.
3)PCR反应3) PCR reaction
同实施例1。With embodiment 1.
4)PCR反应结果检测4) Detection of PCR reaction results
取5μl PCR产物使用质量体积比1%的琼脂糖凝胶电泳对PCR结果进行检测,在凝胶成像系统上观察PCR产物扩增片段的大小和有无(图2A和B)。由图2A可知使用该方法可以带到100%的扩增效率,目的条带非常清晰,PCR产物含量高;图2B可知使用传统方法个别重复扩增不出条带,有些扩增出条带,但PCR目的片段含量少,所以条带亮度弱。Take 5 μl of PCR products and use agarose gel electrophoresis with a mass volume ratio of 1% to detect the PCR results, and observe the size and presence or absence of amplified fragments of the PCR products on a gel imaging system (Figure 2A and B). It can be seen from Figure 2A that this method can bring 100% amplification efficiency, the target band is very clear, and the content of PCR products is high; Figure 2B shows that using the traditional method, some bands cannot be amplified repeatedly, and some bands are amplified. However, the content of PCR target fragments is small, so the brightness of the bands is weak.
结果显示本发明所用的制备线虫DNA模板的方法相比上述B组的传统方法在PCR扩增结果上有很大的进步和显著的优势。The results show that the method for preparing the nematode DNA template used in the present invention has great progress and significant advantages in PCR amplification results compared with the traditional method of the above-mentioned group B.
实施例3植物寄生线虫内转录间隔区(ITS)的PCR扩增Example 3 PCR Amplification of Transcribed Spacer (ITS) in Plant Parasitic Nematodes
ITS序列是内转录间隔区,不表达,包含内转录间隔区ITS1、ITS2和中间的5.8S基因,是目前植物线虫分子鉴定的重要分子标记。The ITS sequence is an internal transcribed spacer, not expressed, including the internal transcribed spacer ITS1, ITS2 and the 5.8S gene in the middle, and is currently an important molecular marker for molecular identification of plant nematodes.
(1)研究材料(1) Research materials
1)线虫种群:腐烂茎线虫(Ditylenchus destructor)、香蕉穿孔线虫(Radopholus similis)、短体线虫(Pratylenchus sp.)、短锥线虫(Brachydorus sp.)、矮化线虫(Tylenchorhynchus sp.)、螺旋线虫(Helicotylenchus sp.)、南方根结线虫(Meloidogyne incognita)、小环线虫(Criconemella sp.)、盘小环线虫(Discocrionemella sp.)、松材线虫(Bursaphelenchus xylophilus)、水稻干尖线虫(Aphelenchoides besseyi)、剑针线虫(Xiphidorus sp.)、毛刺线虫(Trichodorussp.)、针属线虫(Paratylenchus sp.)、肾状线虫(Rotylenchulus sp.)及小杆目线虫(Rhabditida),这些种群除腐烂茎线虫、香蕉穿孔线虫、松材线虫和南方根结线虫为华南农业大学植物线虫研究室保存种群,其余分离自华南农业大学树木园根际土壤中。1) Nematode populations: Ditylenchus destructor, Radopholus similis, Pratylenchus sp., Brachydorus sp., Tylenchorhynchus sp., Spiral nematodes (Helicotylenchus sp.), Meloidogyne incognita, Criconemella sp., Discocrinemella sp., Bursaphelenchus xylophilus, Aphelenchoides besseyi , Xiphidorus sp., Trichodorus sp., Paratylenchus sp., Rotylenchulus sp. and Rhabditida, except for D. destructor, Banana borer nematode, pine wood nematode and root-knot nematode incognita were preserved populations in the Plant Nematode Laboratory of South China Agricultural University, and the rest were isolated from the rhizosphere soil of the Arboretum of South China Agricultural University.
2)引物:ITS扩增反应通用引物如文献[Ferris VR,Ferris JM,and FaghihiJ.1993.Variation in spacer ribosomal DNA in some cyst-forming species of plantparasitic nematodes.Fundamental and Applied Nemato 14logy 16:177-184;VrainTC,Wakarchuk DA,Levesque AC,Hamilton RI.1992.Intraspecific rDNA restrictionfragment length polymorphism in the Xiphinema americanum group.FundamentalandAppliedNematology 15:563-573.]所示,具体如下:2) Primers: General primers for ITS amplification reactions such as literature [Ferris VR, Ferris JM, and FaghihiJ.1993. VrainTC, Wakarchuk DA, Levesque AC, Hamilton RI.1992. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology 15:563-573.], as follows:
上游引物:5’-CGTAACAAGGTAGCTGTAG-3’Upstream primer: 5'-CGTAACAAGGTAGCTGTAG-3'
下游引物:5’-TTTCACTCGCCGTTACTAAGG-3’;Downstream primer: 5'-TTTCACTCGCCGTTACTAAGG-3';
(2)试验方法(2) Test method
1)植物线虫的分离1) Isolation of plant nematodes
使用胡萝卜愈伤组织培养的腐烂茎线虫和香蕉穿孔线虫,以及使用真菌培养的松材线虫,直接在培养皿内加无菌水,然后可以获得大量不同虫态的虫体。南方根结线虫的获得同实施例1。其它土壤内线虫使用贝曼漏斗法进行分离[谢辉.2005.植物线虫分类学(第二版).北京:高等教育出版社,p 38-40]。Using carrot callus to culture D. destructor and banana perforator nematodes, and using fungi to culture pine xylophilus, add sterile water directly to the petri dish, and then obtain a large number of worms in different stages. The acquisition of M. incognita was the same as in Example 1. Other soil nematodes were isolated using the Behmann funnel method [Xie Hui. 2005. Plant Nematode Taxonomy (Second Edition). Beijing: Higher Education Press, p 38-40].
2)线虫样品的洗涤2) Washing of nematode samples
在无菌的载玻片上滴上几滴无菌去离子水,将上述步骤1)中获得的线虫虫体和线虫卵,用线虫挑针挑入无菌去离子水中进行清洗;Drop a few drops of sterile deionized water on a sterile glass slide, and pick the nematode worms and nematode eggs obtained in the above step 1) into sterile deionized water for cleaning;
3)PCR模板制备3) PCR template preparation
长于1.5mm的剑针线虫(Xiphidorus sp.)虫体挑入装有12μl三蒸水的PCR管中进行刺破外,其它线虫的方法同实施例1。The method for other nematodes is the same as in Example 1 except that Xiphidorus sp. worms longer than 1.5 mm are picked into a PCR tube filled with 12 μl of triple-distilled water for puncturing.
4)PCR反应4) PCR reaction
反应体系同实施例1。反应程序除退火温度为55℃外,其它同实施例1。The reaction system is the same as in Example 1. The reaction procedure is the same as in Example 1 except that the annealing temperature is 55°C.
5)PCR反应结果检测5) Detection of PCR reaction results
取5μl PCR产物使用质量体积比1%的琼脂糖凝胶电泳对PCR结果进行检测,在凝胶成像系统上观察PCR产物扩增片段的大小和有无(图3)。由图3可知,用此方法可以扩增出所有种群线虫的目的条带,条带浓度高。Take 5 μl of PCR products and use agarose gel electrophoresis with a mass volume ratio of 1% to detect the PCR results, and observe the size and presence or absence of amplified fragments of the PCR products on a gel imaging system (Figure 3). It can be seen from Figure 3 that the target bands of all populations of nematodes can be amplified by this method, and the band concentration is high.
实施例4植物寄生线虫28S基因D2-D3扩展区的PCR扩增Example 4 PCR Amplification of Plant Parasitic Nematode 28S Gene D2-D3 Extension Region
植物线虫28S D2-D3扩增区序列是变异比较快的区间,但种内保守,是用来研究植物线虫分子进化的重要分子标记。The sequence of the 28S D2-D3 amplification region of plant nematodes is a region that mutates relatively quickly, but is conserved within the species, and is an important molecular marker for studying the molecular evolution of plant nematodes.
(1)材料(1) Materials
1)线虫种群:1) Nematode population:
丝尾线虫(Filenchus sp.)、腐烂茎线虫(Ditylenchus destructor)、起绒草茎线虫(D.dipsaci)香蕉穿孔线虫(Radopholus similis)、短体线虫(Pratylenchussp.)、矮化线虫(Tylenchorhynchus sp.)、螺旋线虫(Helicotylenchus sp.)、南方根结线虫(Meloidogyne incognita)、盘小环线虫(Discocrionemella sp.)、剑针线虫(Xiphidorus sp.)、针属线虫(Paratylenchus sp.)、肾状线虫(Rotylenchulus sp.),种群来源获得同实施例3。Silkworm (Filenchus sp.), Ditylenchus destructor, Ditylenchus destructor (D. dipsaci), Radopholus similis, Pratylenchus sp., Tylenchorhynchus sp. ), Helicotylenchus sp., Meloidogyne incognita, Discocrionemella sp., Xiphidorus sp., Paratylenchus sp., Reniform nematodes (Rotylenchulus sp.), the population source is obtained with embodiment 3.
2)引物:使用扩增D2D3的通用引物如文献[Kaplan DT,Thomas WK,FrisseLM,SarahJL,Stanton JM,Speijer PR,Marin DH,Opperman CH.2000.Phylogenetic analysis of geographically diverse Radopholus similis via DNAsequence reveals a monomorphic motif.Journal ofNematology 32(2):134-142]所示:2) Primers: Use general primers for amplifying D2D3 such as literature [Kaplan DT, Thomas WK, FrisseLM, SarahJL, Stanton JM, Speijer PR, Marin DH, Opperman CH.2000. motif.Journal of Nematology 32(2):134-142] as shown:
上游引物:5’-ACAAGTACCGTGAGGGAAAGTTG-3’Upstream primer: 5'-ACAAGTACCGTGAGGGAAAGTTG-3'
下游引物:5’-TCGGAAGGAACCAGCTACTA-3’;Downstream primer: 5'-TCGGAAGGAACCAGCTACTA-3';
(2)试验方法(2) Test method
1)植物线虫的分离1) Isolation of plant nematodes
同实施例3。With embodiment 3.
2)线虫样品的洗涤2) Washing of nematode samples
同实施例1。With embodiment 1.
3)PCR模板制备3) PCR template preparation
同实施例1。With embodiment 1.
4)PCR反应4) PCR reaction
反应体系同实施例3。Reaction system is with embodiment 3.
5)PCR反应结果检测5) Detection of PCR reaction results
取5μl PCR产物使用质量体积比1%的琼脂糖凝胶电泳对PCR结果进行检测,在凝胶成像系统上观察PCR产物扩增片段的大小和有无(图4)。由图4可知,用此方法可以扩增出所有种群线虫的目的条带,条带浓度高。Take 5 μl of PCR products and use agarose gel electrophoresis with a mass volume ratio of 1% to detect the PCR results, and observe the size and presence or absence of the amplified fragments of the PCR products on a gel imaging system (Figure 4). It can be seen from Figure 4 that the target bands of all populations of nematodes can be amplified by this method, and the band concentration is high.
实施例5植物寄生线虫细胞色素氧化酶基因Co Ⅰ区间的扩增Example 5 Amplification of the Co Ⅰ interval of the plant parasitic nematode cytochrome oxidase gene
植物线虫细胞色素氧化酶基因Co Ⅰ区间序列也是保守,是用来研究植物线虫分子进化的重要分子标记。The Co Ⅰ interval sequence of plant nematode cytochrome oxidase gene is also conserved, which is an important molecular marker for studying the molecular evolution of plant nematodes.
(1)材料(1) Materials
1)线虫种群:1) Nematode population:
起绒草茎线虫(Ditylenchus dipsaci)、短体线虫(Pratylenchus sp.)、矮化线虫(Tylenchorhynchus sp.)、肾状线虫(Rotylenchulus sp.)、松材线虫(Bursaphelenchus xylophilus)和水稻干尖线虫(Aphelenchoides besseyi),其中短体线虫、矮化线虫和肾状线虫是分离自华南农业大学树木园根际土壤,其它为华南农业大学植物线虫研究室保存种群。Ditylenchus dipsaci, Pratylenchus sp., Tylenchorhynchus sp., Rotylenchulus sp., Bursaphelenchus xylophilus and Rice stem-point nematode ( Aphelenchoides besseyi), among which the short body nematodes, dwarf nematodes and reniform nematodes were isolated from the rhizosphere soil of the Arboretum of South China Agricultural University, and the others were preserved populations of the Plant Nematode Research Laboratory of South China Agricultural University.
2)引物:使用扩增细胞色素氧化酶CO Ⅰ基因保守区间的通用引物(Kanzaki&Futai,2002):2) Primers: Use universal primers that amplify the conserved region of the cytochrome oxidase CO Ⅰ gene (Kanzaki & Futai, 2002):
上游引物:5’-CCTACTATGATTGGTGGTTTTGGTAATTG-3’Upstream primer: 5'-CCTACTATGATTGGTGGTTTTGGTAATTG-3'
下游引物:5’-GTAGCAGCAGTAAAATAAGCACG-3’;Downstream primer: 5'-GTAGCAGCAGTAAAATAAGCACG-3';
(2)试验方法(2) Test method
1)植物线虫的分离1) Isolation of plant nematodes
水稻干尖线虫也为胡萝卜组织培养保存的种群,分离方法同实施例3。其它线虫种群的分离同实施例3。Oryza sativa is also a population preserved in carrot tissue culture, and the isolation method is the same as in Example 3. The isolation of other nematode populations was the same as in Example 3.
2)线虫样品的洗涤2) Washing of nematode samples
同实施例1。With embodiment 1.
3)PCR模板制备3) PCR template preparation
同实施例1。With embodiment 1.
4)PCR反应4) PCR reaction
反应体系同实施例3。Reaction system is with embodiment 3.
5)PCR反应结果检测5) Detection of PCR reaction results
取5μl PCR产物使用质量体积比1%的琼脂糖凝胶电泳对PCR结果进行检测,在凝胶成像系统上观察PCR产物扩增片段的大小和有无(图5)。由图5可知,用此方法可以扩增出这些种群线虫的目的条带,条带浓度高。Take 5 μl of PCR product and use agarose gel electrophoresis with a mass volume ratio of 1% to detect the PCR result, and observe the size and presence or absence of the amplified fragment of the PCR product on a gel imaging system (Figure 5). It can be seen from Figure 5 that the target bands of these populations of nematodes can be amplified by this method, and the band concentration is high.
实施例6PCR产物的限制性酶切分析Restriction enzyme analysis of embodiment 6 PCR product
PCR产物是否纯,是否含有不利于后续分子生物学试验操作的试剂,使用限制性酶进行酶切分析是一个手段,另外,限制性酶切分析也是检测条带多样性的一种工具,用途较广。Whether the PCR product is pure, whether it contains reagents that are not conducive to the operation of subsequent molecular biology experiments, restriction enzyme digestion analysis is a means, in addition, restriction enzyme digestion analysis is also a tool for detecting band diversity, and its use is relatively large. wide.
(1)试验材料(1) Test material
来自实施例1~3中的PCR产物。PCR products from Examples 1-3.
限制性酶:Hinf Ⅰ和Alu Ⅰ(Takara,大连宝生物工程有限公司)。Restriction enzymes: Hinf Ⅰ and Alu Ⅰ (Takara, Dalian Bao Biological Engineering Co., Ltd.).
(2)试验方法(2) Test method
限制性酶切分析体系Restriction Enzyme Analysis System
配制20μl的酶切体系:取PCR产物10μl,分别加入限制性酶Hinf Ⅰ和AluⅠ各1μl,加入相应酶Buffer H和Buffer L各2μl,其余用超纯水补足。Prepare 20 μl enzyme digestion system: Take 10 μl of PCR product, add 1 μl each of restriction enzymes Hinf Ⅰ and Alu Ⅰ, add 2 μl each of corresponding enzymes Buffer H and Buffer L, and make up the rest with ultrapure water.
配好的酶切体系在C-1000PCR仪中进行,设置程序为37℃1h,然后用95℃5min。The prepared enzyme digestion system was carried out in the C-1000 PCR instrument, and the program was set at 37°C for 1h, and then at 95°C for 5min.
(3)酶切结果分析(3) Analysis of enzyme digestion results
酶切完的体系,取5μl反应产物,在质量体积比2%的琼脂糖凝胶电泳上进行电泳,在凝胶成像系统上观察PCR产物扩增片段的大小(图6)。由于选择的两种酶都是植物线虫目的片段限制性酶切分析中常用的酶,很多酶切结果已经报道分析过。由图6可知,所有目的PCR片段都可以很好的进行酶切,酶切条带位置说明酶切位点被准确识别。After the digested system, 5 μl of the reaction product was taken, electrophoresed on agarose gel electrophoresis with a mass volume ratio of 2%, and the size of the amplified fragment of the PCR product was observed on a gel imaging system (Figure 6). Since the two selected enzymes are commonly used enzymes in restriction enzyme analysis of fragments of the order Nematodes, many enzyme digestion results have been reported and analyzed. It can be seen from Figure 6 that all target PCR fragments can be digested well, and the positions of the restriction bands indicate that the restriction sites are accurately identified.
以上实施例的结果说明,以单条线虫虫体或单个线虫虫卵能有效扩增得到线虫的基因序列,而且扩增得到的基因序列能进行酶切。因此,本发明所提供的发明能应用于线虫的种类的鉴定。The results of the above examples show that the nematode gene sequence can be effectively amplified from a single nematode body or single nematode egg, and the amplified gene sequence can be digested with enzymes. Therefore, the invention provided by the present invention can be applied to the identification of nematode species.
以上实施例为本发明较佳的实施方式,用于解释本发明的技术方案,但不对本发明做任何形式上的限制,在其他未背离本发明实质的前提下所作的任何改变例如修饰、替代、组合、简化等方式均应包含在本发明的保护范围之内。The above embodiment is a preferred embodiment of the present invention, which is used to explain the technical solution of the present invention, but does not limit the present invention in any form, and any changes made under the premise of other not departing from the essence of the present invention, such as modification and substitution , combination, simplification and other ways should be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210518233.1A CN103014157B (en) | 2012-12-05 | 2012-12-05 | Method for identifying plant parasitic nematode by single nematode polypide or single nematode ovum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210518233.1A CN103014157B (en) | 2012-12-05 | 2012-12-05 | Method for identifying plant parasitic nematode by single nematode polypide or single nematode ovum |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103014157A CN103014157A (en) | 2013-04-03 |
CN103014157B true CN103014157B (en) | 2015-05-20 |
Family
ID=47963269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210518233.1A Expired - Fee Related CN103014157B (en) | 2012-12-05 | 2012-12-05 | Method for identifying plant parasitic nematode by single nematode polypide or single nematode ovum |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103014157B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104004748A (en) * | 2014-06-11 | 2014-08-27 | 天津出入境检验检疫局动植物与食品检测中心 | Lysis solution used for plant parasitic nematode genome DNA micro-extraction and application thereof |
CN104450892A (en) * | 2014-11-18 | 2015-03-25 | 宁波检验检疫科学技术研究院 | Universal detection primer and DNA barcode molecular identification method for bursaphelenchus xylophilus and similar species thereof |
CN106399467B (en) * | 2016-05-18 | 2019-06-25 | 华南农业大学 | The loop-mediated isothermal amplification (LAMP) primer and its kit of three kinds of Pratylenchidaes on a set of identification sugarcane |
CN106191254A (en) * | 2016-07-15 | 2016-12-07 | 聊城大学 | A kind of method identifying sea nematode |
CN107419023A (en) * | 2017-08-22 | 2017-12-01 | 宁波检验检疫科学技术研究院 | Distinguish the PCR RFLP methods of 4 kinds of Pratylenchidaes |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101792755A (en) * | 2010-02-25 | 2010-08-04 | 中国农业科学院植物保护研究所 | Detection method of early molecule of radopholus similes thorne |
CN102766687A (en) * | 2012-07-05 | 2012-11-07 | 华南农业大学 | Primers and method for directly and simultaneously detecting Meloidogyne and Rotylenchulus reniformis in soil |
CN102796825A (en) * | 2012-09-03 | 2012-11-28 | 湖南农业大学 | Specificity polymerase chain reaction (PCR) method for detecting heterodera elachista ohshima |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101886113B (en) * | 2009-05-13 | 2012-10-17 | 中国农业科学院兰州兽医研究所 | Detection kit for detection of Lyme disease pathogen in ticks |
-
2012
- 2012-12-05 CN CN201210518233.1A patent/CN103014157B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101792755A (en) * | 2010-02-25 | 2010-08-04 | 中国农业科学院植物保护研究所 | Detection method of early molecule of radopholus similes thorne |
CN102766687A (en) * | 2012-07-05 | 2012-11-07 | 华南农业大学 | Primers and method for directly and simultaneously detecting Meloidogyne and Rotylenchulus reniformis in soil |
CN102796825A (en) * | 2012-09-03 | 2012-11-28 | 湖南农业大学 | Specificity polymerase chain reaction (PCR) method for detecting heterodera elachista ohshima |
Also Published As
Publication number | Publication date |
---|---|
CN103014157A (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103014157B (en) | Method for identifying plant parasitic nematode by single nematode polypide or single nematode ovum | |
Maleita et al. | Biometrical, biochemical, and molecular diagnosis of Portuguese Meloidogyne hispanica isolates | |
CN110951838B (en) | Primer, probe and kit for detecting meloidogyne incognita based on RPA-LFD technology and application | |
Htay et al. | The development and molecular characterization of a rapid detection method for rice root-knot nematode (Meloidogyne graminicola) | |
Peng et al. | Sensitive and direct detection of Heterodera filipjevi in soil and wheat roots by species-specific SCAR-PCR assays | |
Baidoo et al. | Mitochondrial haplotype-based identification of root-knot nematodes (Meloidogyne spp.) on cut foliage crops in Florida | |
Smith et al. | Identification of the peach root-knot nematode, Meloidogyne floridensis, using mtDNA PCR-RFLP | |
CN103255222A (en) | Primers and method for identifying greenhouse trialeurodes vaporariorum and bemisia tabaci by utilizing mitochondria SCAR (sequence characterized amplified regions) marker | |
CN107988383B (en) | A LAMP primer set and method for rapid detection of D. destructor from complex samples | |
CN103898217B (en) | The specificity amplification primer of the parasitic Dactylogyrus lamellatus in a kind of grass carp gill portion to and application | |
CN108559783B (en) | An RPA primer, kit and detection method for detecting four common root-knot nematodes | |
CN106520995B (en) | A LAMP primer set for rapid detection and identification of chrysanthemum leaf blight nematode and its detection method | |
Issa et al. | Rapid method for DNA extraction from the honey bee Apis mellifera and the parasitic bee mite Varroa destructor using lysis buffer and proteinase K | |
CN103898225A (en) | Primers and method of identifying cryptic specie of bemisia tabaci and trialeurodes vaporariorum | |
CN117660665A (en) | A primer-probe combination and detection method for Meloidogyne incognita based on droplet digital PCR technology | |
CN109055596B (en) | LAMP detection primer for sweet potato blast bacteria and visual detection method thereof | |
Poon et al. | Optimization of CTAB-based RNA Extraction for in planta Fusarium oxysporum f. sp. cubense Gene Expression Study | |
CN103740857B (en) | Rapid PCR (Polymerase Chain Reaction) molecular detection method for ditylenchus destructor thorne and application of rapid PCR molecular detection method | |
CN107254536B (en) | A kind of primer and method for rapid detection of symbiotic bacteria Cardinium in Q Bemisia tabaci | |
CN103436527A (en) | Method for obtaining meloidogyne spp. resisting genes from capsicum | |
Davies et al. | A rapid single-step multiplex method for discriminating between Trichogramma (Hymenoptera: Trichogrammatidae) species in Australia | |
CN104928372B (en) | Philips's cyst roundworm Taqman MGB probe for real-time fluorescence quantitative PCR detecting methods and its application | |
Mi-Sun et al. | Pathogen detection and phylogenetic analysis of Aethina tumida Murray in South Korea | |
CN103923995A (en) | PCR (polymerase chain reaction) detection primers for Arceuthobium sichuanense, application of PCR detection primers and PCR detection method | |
CN102367484A (en) | Method for detecting single root knot of enterolobium cyclocarpum meloidogyne and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150520 Termination date: 20201205 |