CN103001113A - 473nm电光调Q激光器 - Google Patents

473nm电光调Q激光器 Download PDF

Info

Publication number
CN103001113A
CN103001113A CN2012105800729A CN201210580072A CN103001113A CN 103001113 A CN103001113 A CN 103001113A CN 2012105800729 A CN2012105800729 A CN 2012105800729A CN 201210580072 A CN201210580072 A CN 201210580072A CN 103001113 A CN103001113 A CN 103001113A
Authority
CN
China
Prior art keywords
spectroscope
electro
laser diode
laser
coupling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105800729A
Other languages
English (en)
Other versions
CN103001113B (zh
Inventor
陈卫标
黄晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naijing Zhongke Shenguang Technology Co., Ltd.
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201210580072.9A priority Critical patent/CN103001113B/zh
Publication of CN103001113A publication Critical patent/CN103001113A/zh
Application granted granted Critical
Publication of CN103001113B publication Critical patent/CN103001113B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

一种473nm电光调Q激光器,包括本振级,放大级和腔外倍频三部分。本振级的谐振腔采用适用于高功率激光输出的凸凹腔,双端脉冲泵浦键合掺钕钇铝石榴石(Nd:YAG)晶体,电光调Q产生946nm基频光,再经过放大级获得高功率946nm激光,最后通过两块级联方式放置的LBO晶体产生473nm蓝光激光。本发明具有重复频率高、脉冲宽度窄、单脉冲能量高、光束质量好的特点,适用于高精度激光雷达水下测量。

Description

473nm电光调Q激光器
技术领域
本发明属于固体激光器,具体涉及一种473nm电光调Q激光器
背景技术
激光水下通信具有抗干扰能力强、数据传送率高、保密性好等优点。海水对激光具有散射和吸收特性,其中蓝光激光的衰减系数最低,是海水的窗口。因此473nm蓝光激光器是激光水下通信和探测的重要光源。
采用掺钕钇铝石榴石(Nd:YAG)作为增益介质,利用4F3/24I9/2之间的准三能级激光跃迁,能够获得波长为946nm的基频光,再通过非线性晶体倍频技术,可以得到473nm蓝光激光输出。这也是目前产生蓝光激光的主要方法。但对脉冲473nm激光器的报道中,多采用被动调Q或声光调Q,还没有电光调Q473nm激光器的报道。与被动调Q和声光调Q相比,电光调Q更容易获得窄脉宽和高峰值功率,且输出脉冲时刻可控,稳定性更好,可以提高激光测距精度。
发明内容
本发明为填补上述空白,提出一种473nm电光调Q激光器,以获得脉冲473nm激光输出,该激光器应具有重复频率高、脉冲宽度窄、单脉冲能量高、光束质量好的特点,适用于高精度激光雷达水下测量。
本发明的基本思想是:
本振级的谐振腔采用适用于高功率激光输出的凸凹腔,双端脉冲泵浦掺钕钇铝石榴石激光晶体,电光调Q产生脉冲输出的946nm基频光,经过放大级,946nm激光功率得到放大,最后通过两块级联方式放置的LBO晶体产生473nm蓝光激光。
本发明的技术解决方案如下:
一种473nm电光调Q激光器,特点在于其构成包括本振级、放大级和腔外倍频三部分:
所述的本振级由平凸后腔镜、电光调Q晶体、1/4波片和布鲁斯特起偏器、第一激光二极管泵浦源、第一泵浦耦合系统、第一分光镜、第一增益介质、第二分光镜、第二泵浦耦合系统、第二激光二极管泵浦源和平凹输出镜组成,上述元部件的位置关系如下:
共水平光路依次的第一激光二极管泵浦源、第一泵浦耦合系统、第一分光镜、第一增益介质、第二分光镜、第二泵浦耦合系统和第二激光二极管泵浦源,所述的第一分光镜和第二分光镜均对808nm-885nm宽带增透,对1064nm增透,对946nm高反,与光路成45°放置,所述的第一激光二极管泵浦源和第二激光二极管泵浦源对所述的第一增益介质进行双端泵浦;
共垂直光路依次的平凸后腔镜、电光调Q晶体、1/4波片和布鲁斯特起偏器,该布鲁斯特起偏器与所述的光路成45°,该垂直光路经所述的布鲁斯特起偏器与所述的第一分光镜相交,所述的第一分光镜与所述的布鲁斯特起偏器平行;
所述的平凹输出镜位于第二分光镜的反射光方向并与该反射光方向垂直,经该平凹输出镜输出的光束经所述的第四分光镜反射进入所述的放大级;
所述的放大级依次由共水平光路的第三激光二极管泵浦源、第三泵浦耦合系统、第三分光镜、第二增益介质、第四分光镜、第四泵浦耦合系统和第四激光二极管泵浦源组成,所述的第三分光镜和第四分光镜均对808nm-885nm宽带增透,对1064nm增透,对946nm高反,与光路成45°角放置;
所述的腔外倍频部分由在所述的第三分光镜的反射光方向依次的平面输出镜、第一非线性晶体、第二非线性晶体和平面全反镜组成。
所述的第一激光二极管泵浦源、第二激光二极管泵浦源、第三激光二极管泵浦源和第四激光二极管泵浦源的发射波长为808nm或885nm,工作在脉冲方式。
所述的第一泵浦耦合系统、第二泵浦耦合系统、第三泵浦耦合系统和第四泵浦耦合系统均对808nm-885nm宽带增透,对946nm-1064nm宽带高反。
所述的平凸后腔镜对808nm-885nm宽带增透,对1064nm的透过率为90%,对946nm高反。
所述的第一增益介质和第二增益介质均为键合掺钕钇铝石榴石晶体,掺杂浓度1at.%,中心掺杂长度为3mm,两端不掺杂。
所述的平凹输出镜对1064nm的透过率为90%,对946nm的透过率为3%。
所述的电光调Q晶体为磷酸氧钛铷(RTP),与布鲁斯特起偏器构成电光Q开关,镀有对946nm高透膜。
所述的第一非线性晶体和第二非线性晶体均为三硼酸锂(LBO)。
本发明具有以下优点:
1、与被动调Q和声光调Q相比,电光调Q更容易获得窄脉宽和高峰值功率,且输出脉冲时刻可控,稳定性好,可以提高激光测距精度。
2、采用凸凹腔双端泵浦加放大的方式,能够提高946nm基频光功率密度,从而得到高功率和高单脉冲能量。
3、采用非线性晶体级联的方式,能够增大单块晶体二倍频的动态范围,提高倍频效率。
本发明具有输出功率大、频率高、脉宽窄的特点,适用于高精度激光雷达水下测量。
附图说明
图1为本发明电光调Q473nm激光器的结构示意图。
具体实施方式
下面结构附图对本发明的具体实施方式作进一步说明,但不应以此限制本发明的保护范围。
如图1所示,本发明473nm电光调Q激光器,特征在于其结构包括本振级1、放大级2和腔外倍频3三部分:
所述的本振级1由平凸后腔镜1-1、电光调Q晶体1-2、1/4波片1-3和布鲁斯特起偏器1-4、第一激光二极管泵浦源1-5、第一泵浦耦合系统1-6和1-7、第一分光镜1-8、第一增益介质1-9、第二分光镜1-10、第二泵浦耦合系统1-11和1-12、第二激光二极管泵浦源1-13和平凹输出镜1-14组成,上述元部件的位置关系如下:
共水平光路依次的第一激光二极管泵浦源1-5、第一泵浦耦合系统1-6和1-7、第一分光镜1-8、第一增益介质1-9、第二分光镜1-10、第二泵浦耦合系统1-11和1-12和第二激光二极管泵浦源1-13,所述的第一分光镜1-8和第二分光镜1-10均对808nm-885nm宽带增透,对1064nm增透,对946nm高反,与光路成45°放置,所述的第一激光二极管泵浦源1-5和第二激光二极管泵浦源1-13对所述的第一增益介质1-9进行双端泵浦;
共垂直光路依次的平凸后腔镜1-1、电光调Q晶体1-2、1/4波片1-3和布鲁斯特起偏器1-4,该布鲁斯特起偏器1-4与该垂直光路成45°,该垂直光路经所述的布鲁斯特起偏器1-4与所述的第一分光镜1-8相交,所述的第一分光镜1-8与所述的布鲁斯特起偏器1-4平行;
所述的平凹输出镜1-14位于第二分光镜1-10的反射光方向并与该反射光方向垂直,经该平凹输出镜1-14输出的光束经所述的第四分光镜2-6反射进入所述的放大级2;
所述的放大级2依次由共水平光路的第三激光二极管泵浦源2-1、第三泵浦耦合系统2-2和2-3、第三分光镜2-4、第二增益介质2-5、第四分光镜2-6、第四泵浦耦合系统2-7和2-8和第四激光二极管泵浦源2-9组成,所述的第三分光镜2-4和第四分光镜2-6均对808nm-885nm宽带增透,对1064nm增透,对946nm高反,与光路成45°角放置;
所述的腔外倍频部分(3)由在所述的第三分光镜的反射光方向依次的平面输出镜3-1、第一非线性晶体3-2、第二非线性晶体3-3和平面全反镜3-4组成。
所述的第一激光二极管泵浦源1-5、第二激光二极管泵浦源1-13、第三激光二极管泵浦源2-1和第四激光二极管泵浦源2-9的发射波长为808nm或885nm,工作在脉冲方式。
所述的473nm电光调Q激光器,其特征在于所述的第一泵浦耦合系统1-6和1-7、第二泵浦耦合系统1-11和1-12、第三泵浦耦合系统2-2和2-3和第四泵浦耦合系统2-7和2-8均对808nm-885nm宽带增透,对946nm-1064nm宽带高反。
所述的平凸后腔镜1-1对808nm-885nm宽带增透,对1064nm的透过率为90%,对946nm高反。
所述的第一增益介质1-9和第二增益介质2-5均为键合掺钕钇铝石榴石(Nd:YAG)晶体,掺杂浓度1at.%,中心掺杂长度为3mm,两端不掺杂。
所述的平凹输出镜1-14对1064nm的透过率为90%,对946nm的透过率为3%。
所述的电光调Q晶体1-2为磷酸氧钛铷(RTP),与布鲁斯特起偏器1-4构成电光Q开关,镀有946nm高透膜。
所述的第一非线性晶体3-2和第二非线性晶体3-3均为三硼酸锂(LBO)。
下面是本发明具体实施的参数:
本振级和放大级的激光晶体均为掺杂浓度为1at.%的键合Nd:YAG晶体,中心掺杂长度为3mm,两端不掺杂,具体尺寸为3×3×9mm3,晶体两面镀膜对808nm-885nm宽带增透,T>99%946nm,R<5%1064nm。泵浦源采用中心波长为808nm的脉冲运转激光二极管。两块非线性晶体均为I类相位匹配的LBO晶体,具体尺寸为4×4×10mm3。平凸腔镜曲率半径为150mm,镀膜对808nm-885nm宽带增透,T=90%1064nm,R>99.8%946nm。平凹输出镜曲率半径为1000mm,T=3%946nm,T=90%1064nm。经过本振级电光调Q和放大级,再经过级联方式放置的两块LBO晶体,就可获得高功率窄脉冲的473nm蓝光激光。
综上所述,本发明具有重复频率高、脉冲宽度窄、单脉冲能量高、光束质量好的特点,适用于高精度激光雷达水下测量。

Claims (8)

1.一种473nm电光调Q激光器,特征在于其结构包括本振级(1)、放大级(2)和腔外倍频(3)三部分:
所述的本振级(1)由平凸后腔镜(1-1)、电光调Q晶体(1-2)、1/4波片(1-3)和布鲁斯特起偏器(1-4)、第一激光二极管泵浦源(1-5)、第一泵浦耦合系统(1-6和1-7)、第一分光镜(1-8)、第一增益介质(1-9)、第二分光镜(1-10)、第二泵浦耦合系统(1-11和1-12)、第二激光二极管泵浦源(1-13)和平凹输出镜(1-14)组成,上述元部件的位置关系如下:
依次的第一激光二极管泵浦源(1-5)、第一泵浦耦合系统(1-6和1-7)、第一分光镜(1-8)、第一增益介质(1-9)、第二分光镜(1-10)、第二泵浦耦合系统(1-11和1-12)和第二激光二极管泵浦源(1-13)共水平光路,所述的第一分光镜(1-8)和第二分光镜(1-10)均对808nm-885nm宽带增透,对1064nm增透,对946nm高反,与光路成45°放置,所述的第一激光二极管泵浦源(1-5)和第二激光二极管泵浦源(1-13)对所述的第一增益介质(1-9)进行双端泵浦;
依次的平凸后腔镜(1-1)、电光调Q晶体(1-2)、1/4波片(1-3)和布鲁斯特起偏器(1-4)共垂直光路,该布鲁斯特起偏器(1-4)与所述的光路成45°,该垂直光路经所述的布鲁斯特起偏器(1-4)与所述的第一分光镜(1-8)相交,所述的第一分光镜(1-8)与所述的布鲁斯特起偏器(1-4)平行;
所述的平凹输出镜(1-14)位于第二分光镜(1-10)的反射光方向并与该反射光方向垂直,经该平凹输出镜(1-14)输出的光束经所述的第四分光镜(2-6)反射进入所述的放大级(2);
所述的放大级(2)依次由共水平光路的第三激光二极管泵浦源(2-1)、第三泵浦耦合系统(2-2和2-3)、第三分光镜(2-4)、第二增益介质(2-5)、第四分光镜(2-6)、第四泵浦耦合系统(2-7和2-8)和第四激光二极管泵浦源(2-9)组成,所述的第三分光镜(2-4)和第四分光镜(2-6)均对808nm-885nm宽带增透,对1064nm增透,对946nm高反,与光路成45°角放置;
所述的腔外倍频部分(3)由在所述的第三分光镜的反射光方向依次的平面输出镜(3-1)、第一非线性晶体(3-2)、第二非线性晶体(3-3)和平面全反镜(3-4)组成。
2.根据权利要求1所述的473nm电光调Q激光器,其特征在于所述的第一激光二极管泵浦源(1-5)、第二激光二极管泵浦源(1-13)、第三激光二极管泵浦源(2-1)和第四激光二极管泵浦源(2-9)的发射波长为808nm或885nm,工作在脉冲方式。
3.根据权利要求1所述的473nm电光调Q激光器,其特征在于所述的第一泵浦耦合系统(1-6和1-7)、第二泵浦耦合系统(1-11和1-12)、第三泵浦耦合系统(2-2和2-3)和第四泵浦耦合系统(2-7和2-8)均对808nm-885nm宽带增透,对946nm-1064nm宽带高反。
4.根据权利要求1所述的473nm电光调Q激光器,其特征在于所述的平凸后腔镜(1-1)对808nm-885nm宽带增透,对1064nm的透过率为90%,对946nm高反。
5.根据权利要求1所述的473nm电光调Q激光器,其特征在于所述的第一增益介质(1-9)和第二增益介质(2-5)均为键合掺钕钇铝石榴石晶体,掺杂浓度1at.%,中心掺杂长度为3mm,两端不掺杂。
6.根据权利要求1所述的473nm电光调Q激光器,其特征在于所述的平凹输出镜(1-14)对1064nm的透过率为90%,对946nm的透过率为3%。
7.根据权利要求1所述的473nm电光调Q激光器,其特征在于所述的电光调Q晶体(1-2)为磷酸氧钛铷,与布鲁斯特起偏器(1-4)构成电光Q开关,镀有对946nm高透膜。
8.根据权利要求1所述的473nm电光调Q激光器,其特征在于所述的第一非线性晶体(3-2)和第二非线性晶体(3-3)均为三硼酸锂。
CN201210580072.9A 2012-12-27 2012-12-27 473nm电光调Q激光器 Active CN103001113B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210580072.9A CN103001113B (zh) 2012-12-27 2012-12-27 473nm电光调Q激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210580072.9A CN103001113B (zh) 2012-12-27 2012-12-27 473nm电光调Q激光器

Publications (2)

Publication Number Publication Date
CN103001113A true CN103001113A (zh) 2013-03-27
CN103001113B CN103001113B (zh) 2014-08-13

Family

ID=47929390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210580072.9A Active CN103001113B (zh) 2012-12-27 2012-12-27 473nm电光调Q激光器

Country Status (1)

Country Link
CN (1) CN103001113B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199431A (zh) * 2013-04-25 2013-07-10 哈尔滨工业大学 高性能的双末端泵浦单掺Ho:YAG固体激光器
CN108321672A (zh) * 2018-03-12 2018-07-24 中国科学院苏州生物医学工程技术研究所 一种高峰值功率的钬激光系统
CN108873008A (zh) * 2018-06-12 2018-11-23 天津大学 一种基于双光梳干涉的水下距离高精度测量方法
CN110459950A (zh) * 2019-09-25 2019-11-15 深圳市杰普特光电股份有限公司 可级联的激光行波放大器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154472A (en) * 1997-10-08 2000-11-28 Jds Uniphase Corporation High efficiency decoupled tuning configuration intracavity doubled laser and method
US6304584B1 (en) * 1998-11-06 2001-10-16 The Regents Of The University Of California Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition
CN1492547A (zh) * 2003-09-02 2004-04-28 �Ϻ���ͨ��ѧ 以多通道倍频周期超晶格为变频晶体的固体蓝光激光器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154472A (en) * 1997-10-08 2000-11-28 Jds Uniphase Corporation High efficiency decoupled tuning configuration intracavity doubled laser and method
US6304584B1 (en) * 1998-11-06 2001-10-16 The Regents Of The University Of California Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition
CN1492547A (zh) * 2003-09-02 2004-04-28 �Ϻ���ͨ��ѧ 以多通道倍频周期超晶格为变频晶体的固体蓝光激光器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199431A (zh) * 2013-04-25 2013-07-10 哈尔滨工业大学 高性能的双末端泵浦单掺Ho:YAG固体激光器
CN108321672A (zh) * 2018-03-12 2018-07-24 中国科学院苏州生物医学工程技术研究所 一种高峰值功率的钬激光系统
CN108873008A (zh) * 2018-06-12 2018-11-23 天津大学 一种基于双光梳干涉的水下距离高精度测量方法
CN110459950A (zh) * 2019-09-25 2019-11-15 深圳市杰普特光电股份有限公司 可级联的激光行波放大器

Also Published As

Publication number Publication date
CN103001113B (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
CN203747233U (zh) 种子注入式表面垂直发射太赫兹参量产生器
CN104201556A (zh) 一种高功率单纵模紫外全固态激光器
CN101179176A (zh) 半导体双端面泵浦三次谐波紫外激光器
CN109687266A (zh) 一种高峰值功率2.79微米铒激光器
CN109586153B (zh) 掺钕氟化锂钇纳秒脉冲蓝光激光器
CN103001113B (zh) 473nm电光调Q激光器
CN103825189A (zh) 种子注入式表面垂直发射太赫兹参量产生器及其应用
CN103346472B (zh) 100MHz高重频、1ns窄脉宽窄线宽激光混合放大装置及其方法
US20140301417A1 (en) Pulsed, Internal Optical Mixer
CN102646920A (zh) 种子光注入的腔内倍频532nm单纵模激光器
CN105048270A (zh) 一种基于铌酸锂晶体的激光放大器及其应用
CN103151684A (zh) 一种脉冲泵浦型驻波谐振腔纳秒脉冲激光器
CN202423819U (zh) 一种激光二极管端面泵浦紫外激光发生装置
CN110556702B (zh) 一种固体蓝光激光器
CN106058632B (zh) 一种基于键合晶体的脉冲能量可调的被动调q拉曼激光系统
CN102097737A (zh) 一种高重复频率超短脉冲激光方法
CN103414100A (zh) 一种偏振功率比可调的正交偏振激光器
Ma et al. Highly efficient H-β Fraunhofer line optical parametric oscillator pumped by a single-frequency 355 nm laser
CN105098589A (zh) 一种双波长拉曼锁模激光器
CN109462138A (zh) 一种高重频短脉冲红外激光器
CN201149952Y (zh) 自拉曼倍频固体黄光激光器
CN102299469A (zh) 一种通过控制泵浦光特性实现亚纳秒调q输出的激光器
CN111224311A (zh) 一种百纳秒级快速切换的双波长拉曼激光器
CN203056358U (zh) 一种脉冲泵浦型驻波谐振腔纳秒脉冲激光器装置
CN202444176U (zh) Ld端面泵浦电光调q绿光激光器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161202

Address after: 210038 Nanjing economic and Technological Development Zone, Jiangsu Road, No. 19

Patentee after: Naijing Zhongke Shenguang Technology Co., Ltd.

Address before: 201800 Jiading District 800-211 post office box, Shanghai

Patentee before: Shanghai Optical Precision Machinery Inst., Chinese Academy of Sciences