CN102998346B - 一种湿型砂含水量测量方法 - Google Patents

一种湿型砂含水量测量方法 Download PDF

Info

Publication number
CN102998346B
CN102998346B CN201210508664.XA CN201210508664A CN102998346B CN 102998346 B CN102998346 B CN 102998346B CN 201210508664 A CN201210508664 A CN 201210508664A CN 102998346 B CN102998346 B CN 102998346B
Authority
CN
China
Prior art keywords
sand
green
cylinder
sample
sample cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210508664.XA
Other languages
English (en)
Other versions
CN102998346A (zh
Inventor
石德全
高桂丽
李大勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201210508664.XA priority Critical patent/CN102998346B/zh
Publication of CN102998346A publication Critical patent/CN102998346A/zh
Application granted granted Critical
Publication of CN102998346B publication Critical patent/CN102998346B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种湿型砂含水量测量方法,它涉及铸造湿型砂含水量测量领域。它要解决现有湿型砂含水量测量精度不高的问题。测量方法:一、砂样制取装置由制样样筒和底座构成,下样筒内对壁镶嵌激励电极,下样筒放于辅样筒内,上样筒对齐放置在下样筒上,得到砂样制取装置;二、湿型砂装入制样样筒中,使用压头压实湿型砂,将下样筒从辅样筒中取出;三、下样筒安装在交流激励源接入机构上,触头与下样筒内对壁激励电极相连,下样筒上并联电容C,再串联一个精密电阻R,测得精密电阻上的电压降,经计算得到湿型砂砂样的电容值,进而推得湿型砂含水量。本发明湿型砂含水量测量方法提高了湿型砂含水量的测量精度,主要应用于湿型砂含水量的测量。

Description

一种湿型砂含水量测量方法
技术领域
本发明涉及铸造湿型砂含水量测量领域,具体是提供一种提升简单的湿型砂含水量测量精度的方法。
背景技术
湿型砂铸造因具有工序简单、生产率高等优点而成为目前主要的铸造方法,型砂的性能及其稳定性直接影响铸件的质量和生产成本。在决定型砂主要性能指标的组分中,最重要和最敏感的参数是含水量。因此,发展了多种测量湿型砂含水量的方法,如电容法、电阻法、电感法、成型性法、微波法等。其中,由于电容法的传感器结构简单,成为目前最为常用的湿型砂含水量电测量方法,它是在高频交流源激励下,测量湿型砂砂样的电容值,然后根据含水量与电容值间的关系来间接计算湿型砂的含水量。然而,湿型砂的电容值受砂样堆密度、尺寸、激励电极形状的影响;更为严重的是湿型砂中含有诸如粘土、煤粉、碳酸盐等不确定的电导因素,它们严重影响了电容值的准确测量,进而使湿型砂含水量的测量精度大大降低。因此,为了准确测得湿型砂的含水量,在排除砂样堆密度、尺寸、激励电极影响的同时,必须消除不确定电导因素的影响,即消除电容法测量湿型砂含水量等效回路的复数导纳中无功分量的影响。对于消除电导因素的影响,通常的做法是提高交流激励源的频率,但是不管频率怎样的提高,并不能完全消除湿型砂的电导;而且,随着频率的提高,一些寄生效应如集肤效应、邻近效应等随之产生,这反过来又影响了湿型砂电容的准确测量。
发明内容
本发明的目的是为了解决现有湿型砂含水量测量精度不高的问题,而提供一种湿型砂含水量测量方法。
本发明一种湿型砂含水量测量方法是通过下列步骤实现:
一、组装湿型砂方柱形砂样制取装置:湿型砂方柱形砂样制取装置由制样样筒和底座构成,其中制样样筒包含下样筒、上样筒和辅样筒,下样筒的内对壁分别镶嵌一对正方形激励电极,构成平行板电容器,下样筒外壁包裹接地的方柱形电磁隔离套,将辅样筒连接到底座上,将下样筒放于辅样筒内,再把上样筒对齐放置在下样筒上,得到湿型砂方柱形砂样制取装置;
二、利用湿型砂方柱形砂样制取装置获得湿型砂砂样:将湿型砂松散地装入制样样筒中,使用装有与上样筒横截面形状相适应的紧实压头的紧实气缸将湿型砂压实,然后将下样筒和上样筒从辅样筒中取出,包含在下样筒中的湿型砂作为湿型砂砂样;
三、组装湿型砂砂样电容值的测量电路:将包含有湿型砂砂样的下样筒安装在交流激励源接入机构上,其中交流激励源接入机构包含两个触头和处在触头下的压缩弹簧,压缩弹簧保证触头与下样筒内对壁镶嵌的正方形激励电极紧密接触,下样筒外壁包裹的方柱形电磁隔离套通过导线与大地连接,两个触头分别通过屏蔽导线与频率为ω的交流激励源u相连,在包含有湿型砂砂样的下样筒上并联一个通过开关K控制其闭合与断开的高精密电容C,然后再串联一个低温度系数的精密电阻R,断开开关,测得精密电阻R上电压输出平均值u1,闭合开关,测得精密电阻R上电压输出的平均值u2,经过计算得到湿型砂砂样的电容值Cx,然后根据湿型砂含水量与电容值的关系得到湿型砂含水量w;
其中步骤一所述的下样筒、上样筒和辅样筒的外形均为方柱形,下样筒的高度小于上样筒高度,上样筒的内孔尺寸与下样筒内孔尺寸相同,且与辅样筒内壁留有0.3~1mm的间隙,正方形激励电极的高度与下样筒的高度相同;
步骤三所述的高精密电容C的容值漂移小于±0.01pF,电阻R的温度系数小于±0.2ppm/℃。
本发明一种湿型砂含水量测量方法,将包含湿型砂砂样的下样筒安装在交流激励源的接入机构上,此时湿型砂砂样可等效为电阻和电容的并联模型,经过计算得到湿型砂砂样的电容值,进而推算得到湿型砂含水量。
本发明测量湿型砂含水量所用的湿型砂方柱形砂样制取装置结构简易,砂样电容值的测量电路简单,避免了由于激励源频率提高而带来的寄生效应。通过本发明的湿型砂方柱形砂样制取装置可保证制得的砂样具有相同的堆密度和尺寸,在湿型砂砂样电容值的测量电路中保证湿型砂与电极紧密接触,固定尺寸的激励电极最大限度的增大了电容器极板的面积,而电磁隔离套可降低外界干扰源的干扰,利用本发明能够最大程度的提高湿型砂含水量的测量精度,当湿型砂含水量在2%~8%时,测量精度可达±0.1%。本发明主要应用于湿型砂含水量的测量。
附图说明
图1是具体实施方式七步骤一使用的湿型砂方柱形砂样制取装置的示意图,1-下样筒,2-上样筒,3-辅样筒,7-正方形激励电极,8-电磁隔离套,9-底座;
图2是具体实施方式七步骤一使用的湿型砂方柱形砂样制取装置A-A处横截面示意图,7—正方形激励电极,8—电磁隔离套;
图3是具体实施方式七步骤二使用的紧实气缸示意图,4—紧实压头,5—压力传感器,6—紧实气缸;
图4是具体实施方式七步骤三湿型砂砂样交流激励源接入机构的示意图,1—下样筒,7—正方形激励电极,8—电磁隔离套,10—湿型砂砂样,11—交流激励源接入机构,11-1—触头,11-2—压缩弹簧,11-3—屏蔽导线,11-4—屏蔽导线;
图5是具体实施方式七湿型砂砂样电容值的测量电路,虚线框中并联的电阻Rx和电容Cx为湿型砂砂样的等效物理模型。
具体实施方式
根据说明书附图1、附图2、附图3和附图4对本发明的实施方式进行说明。
具体实施方式一:本实施方式湿型砂含水量测量方法是通过下列步骤实施:
一、组装湿型砂方柱形砂样制取装置:湿型砂方柱形砂样制取装置由制样样筒和底座9构成,其中制样样筒包含下样筒1、上样筒2和辅样筒3,下样筒1的内对壁分别镶嵌一对正方形激励电极7,构成平行板电容器,下样筒1外壁包裹接地的方柱形电磁隔离套8,将辅样筒3连接到底座9上,将下样筒1放于辅样筒3内,再把上样筒2对齐放置在下样筒1上,得到湿型砂方柱形砂样制取装置;
二、利用湿型砂方柱形砂样制取装置获得湿型砂砂样10:将湿型砂松散地装入制样样筒中,使用装有与上样筒2横截面形状相适应的紧实压头4的紧实气缸6将湿型砂压实,然后将下样筒1和上样筒2从辅样筒3中取出,包含在下样筒1中的湿型砂作为湿型砂砂样10;
三、组装湿型砂砂样10电容值的测量电路:将包含有湿型砂砂样10的下样筒1安装在交流激励源接入机构11上,其中交流激励源接入机构11包含两个触头11-1和处在触头下的压缩弹簧11-2,压缩弹簧11-2保证触头11-1与下样筒1内对壁镶嵌的正方形激励电极7紧密接触,下样筒1外壁包裹的方柱形电磁隔离套8通过导线与大地连接,两个触头11-1分别通过屏蔽导线11-3和11-4与频率为ω的交流激励源u相连,在包含有湿型砂砂样10的下样筒1上并联一个通过开关K控制其闭合与断开的高精密电容C,然后再串联一个低温度系数的精密电阻R,断开开关,测得精密电阻R上电压输出平均值u1,闭合开关,测得精密电阻R上电压输出的平均值u2,经过计算得到湿型砂砂样的电容值Cx,然后根据湿型砂含水量与电容值的关系得到湿型砂含水量w;
其中步骤一所述的下样筒1、上样筒2和辅样筒3的外形均为方柱形,下样筒1的高度小于上样筒2高度,上样筒2的内孔尺寸与下样筒1内孔尺寸相同,且与辅样筒3内壁留有0.3~1mm的间隙,正方形激励电极7的高度与下样筒1的高度相同;
步骤三所述的高精密电容C的容值漂移小于±0.01pF,电阻R的温度系数小于±0.2ppm/℃。
本实施方式中湿型砂砂样可等效为附图5测量湿型砂砂样含水率的电路图中虚线框中并联的电阻Rx和电容Cx,通过计算得到湿型砂砂样的电容Cx,进而根据经验公式推算出湿型砂砂样中的含水量w。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中下样筒1、上样筒2和辅样筒3的材料为工程塑料。其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤一中正方形激励电极7的材料为铍青铜。其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤一中下样筒1的高度H=50mm,内横截面为50mm×50mm的正方形。其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤二使用装有与上样筒2横截面形状相适应的紧实压头4的紧实气缸6将湿型砂压实,压实压力为1MPa。其它步骤及参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤三触头11-1的材料为铍青铜。其它步骤及参数与具体实施方式一至五之一相同。
具体实施方式七:本实施方式湿型砂含水量测量方法是通过下列步骤实施:
一、组装湿型砂方柱形砂样制取装置:湿型砂方柱形砂样制取装置由制样样筒和底座9构成,其中制样样筒包含下样筒1、上样筒2和辅样筒3,下样筒1的内对壁分别镶嵌一对正方形激励电极7,构成平行板电容器,下样筒1外壁包裹接地的方柱形电磁隔离套8,将辅样筒3连接到底座9上,将下样筒1放于辅样筒3内,再把上样筒2对齐放置在下样筒1上,得到湿型砂方柱形砂样制取装置;
二、利用湿型砂方柱形砂样制取装置获得湿型砂砂样10:将预先配制的含水量为5%的湿型砂松散地装入制样样筒中,使用装有紧实压头4,压头尺寸为49mm×49mm的紧实气缸6,通过紧实气缸6上的压力传感器5恒定紧实压力为1MPa,将湿型砂压实,然后将下样筒1和上样筒2从辅样筒3中取出,包含在下样筒1中的湿型砂作为湿型砂砂样10;
三、组装湿型砂砂样10电容值的测量电路:将包含有湿型砂砂样10的下样筒1安装在交流激励源接入机构11上,其中交流激励源接入机构11包含两个触头11-1和处在触头下的压缩弹簧11-2,压缩弹簧11-2保证触头11-1与下样筒1内对壁镶嵌的正方形激励电极7紧密接触,下样筒1外壁包裹的方柱形电磁隔离套8通过导线与大地连接,两个触头11-1分别通过屏蔽导线11-3和11-4与频率为100MHz、幅值为9.00V的正弦交流激励源u相连,在包含有湿型砂砂样10的下样筒1上并联一个通过开关K控制其闭合与断开的高精密电容C的容值为10.050pF,然后再串联一个低温度系数的精密电阻R=50.001Ω,断开开关,测得精密电阻R上电压输出平均值u1的幅值u1=3.544V,闭合开关,测得精密电阻R上电压输出的平均值u2的幅值|u2|=4.552V,经过下式计算得到湿型砂砂样的电容值Cx=11.038pF;
则u1和u2可表示为:
u 1 = R 1 1 / R x + jω C x + R · u u 2 R 1 1 / R x + jω C x + jωC + R · u
如对u1、u2和u分别取模,则上式可变为:
| u 1 | 2 | u | 2 - | u 1 | 2 = R 2 / R x 2 + ( ωRC x ) 2 1 + 2 R / R x | u 2 | 2 | u | 2 - | u 2 | 2 = R 2 / R x 2 + [ ωR ( C x + C ) ] 2 1 + 2 R / R x
其中步骤一所述的下样筒1、上样筒2和辅样筒3的外形均为方柱形,下样筒1和上样筒2的外横截面尺寸皆为64mm×64mm,辅样筒3的内横截面尺寸为69mm×69mm,辅样筒3的外横截面尺寸为80mm×80mm,下样筒1的高度H=50mm,内横截面为50mm×50mm的正方形,上样筒2高度h=60mm,上样筒2的内孔尺寸与下样筒1内孔尺寸相同,且与辅样筒3内壁留有0.5mm的间隙,以便于下样筒1和上样筒2从辅样筒3顺利分离,正方形激励电极7的高度与下样筒1的高度相同,其中激励电极7的材料为铍青铜,下样筒1、上样筒2和辅样筒3均为聚乙烯塑料;
步骤三所述的高精密电容C的容值漂移为±0.01pF,电阻R的温度系数为±0.2ppm/℃。
然后根据已有的湿型砂含水量w与电容值Cx的经验关系式 w = 1.63960 - 1.08695 C x + 0.26401 C x 2 - 0.01679 C x 3 + 3.93812 × 10 - 4 C x 4 ( 1 % ≤ w ≤ 10 % ) , 得到本实施方式湿型砂含水量为5.074%,显示出采用本发明湿型砂含水量测量方法良好的测量精度。
图1为本实施方式的步骤一使用的湿型砂方柱形砂样制取装置的示意图;
图2为本实施方式步骤一使用的湿型砂方柱形砂样制取装置A-A处横截面示意图;
图3为本实施方式步骤二使用的紧实气缸示意图;
图4为本实施方式步骤三湿型砂砂样交流激励源接入机构的示意图;
图5为本实施方式湿型砂砂样电容值的测量电路;
通过设计的湿型砂方柱形砂样制取装置得到的湿型砂砂样排除了堆密度和尺寸的影响,在砂样上并联一个高精密电容C,并通过开关控制高精密电容C接入状态的方法消除了湿型砂砂样中的电导分量Rx的影响,通过已有的湿型砂电容Cx与含水量之间的关系,可准确的求得湿型砂含水量,当测量的湿型砂含水量在2%~8%时,利用本发明湿型砂含水量测量方法测量湿型砂含水量的精度可达±0.1%,提高了湿型砂含水量的测量精度。

Claims (6)

1.一种湿型砂含水量测量方法,其特征在于一种湿型砂含水量测量方法是通过下列步骤实现:
一、组装湿型砂方柱形砂样制取装置:湿型砂方柱形砂样制取装置由制样样筒和底座(9)构成,其中制样样筒包含下样筒(1)、上样筒(2)和辅样筒(3),下样筒(1)的内对壁分别镶嵌一对正方形激励电极(7),构成平行板电容器,下样筒(1)外壁包裹接地的方柱形电磁隔离套(8),将辅样筒(3)连接到底座(9)上,将下样筒(1)放于辅样筒(3)内,再把上样筒(2)对齐放置在下样筒(1)上,得到湿型砂方柱形砂样制取装置;
二、利用湿型砂方柱形砂样制取装置获得湿型砂砂样(10):将湿型砂松散地装入制样样筒中,使用装有与上样筒(2)横截面形状相适应的紧实压头(4)的紧实气缸(6)将湿型砂压实,然后将下样筒(1)和上样筒(2)从辅样筒(3)中取出,包含在下样筒(1)中的湿型砂作为湿型砂砂样(10);
三、组装湿型砂砂样(10)电容值的测量电路:将包含有湿型砂砂样(10)的下样筒(1)安装在交流激励源接入机构(11)上,其中交流激励源接入机构(11)包含两个触头(11-1)和处在触头下的压缩弹簧(11-2),压缩弹簧(11-2)保证触头(11-1)与下样筒(1)内对壁镶嵌的正方形激励电极(7)紧密接触,下样筒(1)外壁包裹的方柱形电磁隔离套(8)通过导线与大地连接,两个触头(11-1)分别通过第一屏蔽导线(11-3)和第二屏蔽导线(11-4)与频率为ω的交流激励源u相连,在包含有湿型砂砂样(10)的下样筒(1)上并联一个通过开关K控制其闭合与断开的高精密电容C,然后再串联一个低温度系数的精密电阻R,断开开关,测得精密电阻R上电压输出平均值u1,闭合开关,测得精密电阻R上电压输出的平均值u2,经过计算得到湿型砂砂样的电容值Cx,然后根据湿型砂含水量与电容值的关系得到湿型砂含水量w;
其中步骤一所述的下样筒(1)、上样筒(2)和辅样筒(3)的外形均为方柱形,下样筒(1)的高度小于上样筒(2)高度,上样筒(2)的内孔尺寸与下样筒(1)内孔尺寸相同,且与辅样筒(3)内壁留有0.3~1mm的间隙,正方形激励电极(7)的高度与下样筒(1)的高度相同;
步骤三所述的高精密电容C的容值漂移小于±0.01pF,电阻R的温度系数小于±0.2ppm/℃。
2.根据权利要求1所述的一种湿型砂含水量测量方法,其特征在于步骤一中下样筒(1)、上样筒(2)和辅样筒(3)的材料为工程塑料。
3.根据权利要求1或2所述的一种湿型砂含水量测量方法,其特征在于步骤一中正方形激励电极(7)的材料为铍青铜。
4.根据权利要求3所述的一种湿型砂含水量测量方法,其特征在于步骤一中下样筒(1)的高度H=50mm,内横截面为50mm×50mm的正方形。
5.根据权利要求4所述的一种湿型砂含水量测量方法,其特征在于步骤二使用装有与上样筒(2)横截面形状相适应的紧实压头(4)的紧实气缸(6)将湿型砂压实,压实压力为1MPa。
6.根据权利要求5所述的一种湿型砂含水量测量方法,其特征在于步骤三触头(11-1)的材料为铍青铜。
CN201210508664.XA 2012-12-03 2012-12-03 一种湿型砂含水量测量方法 Expired - Fee Related CN102998346B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210508664.XA CN102998346B (zh) 2012-12-03 2012-12-03 一种湿型砂含水量测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210508664.XA CN102998346B (zh) 2012-12-03 2012-12-03 一种湿型砂含水量测量方法

Publications (2)

Publication Number Publication Date
CN102998346A CN102998346A (zh) 2013-03-27
CN102998346B true CN102998346B (zh) 2014-09-17

Family

ID=47927186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210508664.XA Expired - Fee Related CN102998346B (zh) 2012-12-03 2012-12-03 一种湿型砂含水量测量方法

Country Status (1)

Country Link
CN (1) CN102998346B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106092873A (zh) * 2016-08-08 2016-11-09 哈尔滨理工大学 湿型砂紧实率‑含水量‑劈裂强度的测量装置及获取方法
CN108508066B (zh) * 2018-04-03 2020-08-07 烟台北方星空自控科技有限公司 一种电容探头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2627904A1 (de) * 1976-06-22 1978-01-05 Lippke Kg Paul Verfahren und einrichtung zum bestimmen des feuchtigkeitsgehaltes von pulverfoermigem oder koernigem material, insbesondere formsand
JPS54115296A (en) * 1978-02-28 1979-09-07 Sumitomo Electric Ind Ltd Measuring method of moisture content in sand
CN87204350U (zh) * 1987-06-17 1988-03-16 罗炳成 型砂水分测定仪
CN1391101A (zh) * 2002-07-23 2003-01-15 东华大学 型砂混砂过程水分在线测控装置及其使用方法
CN101005911A (zh) * 2004-07-07 2007-07-25 新东工业株式会社 测定型砂水分用的电极机构、型砂水分的测定装置、向型砂混砂机内注水的方法以及注水装置
CN102998160A (zh) * 2012-12-31 2013-03-27 哈尔滨理工大学 一种电容法测量湿型粘土砂含水量的圆柱形制样装置及测量湿型粘土砂含水量的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2627904A1 (de) * 1976-06-22 1978-01-05 Lippke Kg Paul Verfahren und einrichtung zum bestimmen des feuchtigkeitsgehaltes von pulverfoermigem oder koernigem material, insbesondere formsand
JPS54115296A (en) * 1978-02-28 1979-09-07 Sumitomo Electric Ind Ltd Measuring method of moisture content in sand
CN87204350U (zh) * 1987-06-17 1988-03-16 罗炳成 型砂水分测定仪
CN1391101A (zh) * 2002-07-23 2003-01-15 东华大学 型砂混砂过程水分在线测控装置及其使用方法
CN101005911A (zh) * 2004-07-07 2007-07-25 新东工业株式会社 测定型砂水分用的电极机构、型砂水分的测定装置、向型砂混砂机内注水的方法以及注水装置
CN102998160A (zh) * 2012-12-31 2013-03-27 哈尔滨理工大学 一种电容法测量湿型粘土砂含水量的圆柱形制样装置及测量湿型粘土砂含水量的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
湿型砂组分和性能参数检测技术评述;石德全;《哈尔滨理工大学学报》;20111231;第16卷(第6期);第77-82页 *
石德全.湿型砂组分和性能参数检测技术评述.《哈尔滨理工大学学报》.2011,第16卷(第6期),第77-82页.

Also Published As

Publication number Publication date
CN102998346A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
CN102509613B (zh) 可变电容器及使用可变电容器的位置指示器
CN102998160B (zh) 应用一种电容法测量湿型粘土砂含水量的圆柱形制样装置的测量湿型粘土砂含水量的方法
Hrisko Capacitive soil moisture sensor theory, calibration, and testing
CN203396450U (zh) 一种新型电容式传感器
CN102998346B (zh) 一种湿型砂含水量测量方法
CN204758082U (zh) 一种非接触式液位传感器及应用该传感器的智能水杯
CN104457907B (zh) 一种用于测量绝缘容器内液位的非接触式检测装置
CN102928670B (zh) 圆筒型生物离体组织介电特性测量盒
CN103900661A (zh) 一种基于电容数字转换技术的分段液位传感器
CN201673209U (zh) 食用油电导率测定仪
CN104897239A (zh) 一种非接触式液位传感器及应用该传感器的智能水杯
CN102944799B (zh) 一种岩石或矿石标本的电性测量装置
CN109031109A (zh) 基于结构电容动态测量与补偿的断路器弧后电流测量装置及方法
CN202039844U (zh) 油井含水自动连续监测计量装置
CN201060237Y (zh) 测粉状样品介电常数的电容池
CN107643227A (zh) 基于石英晶体微天平的液体密度和粘度的测量装置及方法
CN102519832B (zh) 采用cfo装置测定cmf压降的方法
CN112730540A (zh) 一种基于叉指电容的砂石含水率的测量方法
CN205102773U (zh) 模拟洞室用内壁变形测试装置
CN102997837B (zh) 电容式超大应变传感器
CN206670603U (zh) 一种便于使用的模厚测量仪
US8890549B2 (en) Differential sand compaction sensor
CN208537465U (zh) 一种沥青混凝土含水率检测装置
CN203163821U (zh) 一种平行板多电极电容式油位传感器
CN202676806U (zh) 一种等电压法测电阻装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140917

Termination date: 20161203