CN102998088B - 一种极远紫外光源校准装置 - Google Patents

一种极远紫外光源校准装置 Download PDF

Info

Publication number
CN102998088B
CN102998088B CN201210478703.6A CN201210478703A CN102998088B CN 102998088 B CN102998088 B CN 102998088B CN 201210478703 A CN201210478703 A CN 201210478703A CN 102998088 B CN102998088 B CN 102998088B
Authority
CN
China
Prior art keywords
ultraviolet
mirror
pendulum
light source
pendulum mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210478703.6A
Other languages
English (en)
Other versions
CN102998088A (zh
Inventor
王加朋
孙红胜
宋春晖
张玉国
李世伟
魏建强
孙广尉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhenxing Metrology and Test Institute
Original Assignee
Beijing Zhenxing Metrology and Test Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Zhenxing Metrology and Test Institute filed Critical Beijing Zhenxing Metrology and Test Institute
Priority to CN201210478703.6A priority Critical patent/CN102998088B/zh
Publication of CN102998088A publication Critical patent/CN102998088A/zh
Application granted granted Critical
Publication of CN102998088B publication Critical patent/CN102998088B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种极远紫外光源校准装置,包括光源、汇聚摆镜单元、紫外单色仪单元、探测器单元和压力差分单元。其中,汇聚摆镜单元包括一汇聚摆镜,其包括摆镜和旋转位移平台,摆镜为两块非反射面贴合的凹面反射镜,其反射镜中心轴线重合,其中一块反射镜的反射面A镀30nm~200nm反射膜,另一块反射镜的反射面B镀60nm~200nm反射膜。利用本发明可以实现30nm~200nm范围内光源光谱辐射参数校准。本发明提供的整个装置体积小巧,接口丰富,在极紫外和远紫外辐射度校准和消除高级次光谱上有独特的设计,提高了极紫外和远紫外辐射校准的精度。

Description

一种极远紫外光源校准装置
技术领域
本发明涉及一种极远紫外光源校准装置,属于光学测试技术领域。
背景技术
紫外波段按照能否在大气中进行传播,广义上分为真空紫外波段(10nm~200nm)和非真空紫外波段(200nm~400nm)。200nm以下的紫外波段在空气中会被强烈吸收,所以欲进行真空波段的光学计量,必须采用真空仓,以产生真空紫外波段计量测试的环境。在真空紫外波段又细分为远紫外(80nm~200nm)和极紫外波段(10nm~80nm),两个波段划分界限比较模糊。本发明所涉及到的极紫外和远紫外辐射校准标准装置覆盖30nm~200nm波段。
极紫外和远紫外(简称极远紫外)波段的辐射特性不同于可见光和红外波段,它在空间探测领域具有不可替代的优势,随着探月工程、深空探测计划、以及火星探测等计划的相续发展,受到越来越多的关注。
极紫外和远紫外的最高辐射标准为同步辐射,但是同步辐射整个系统比较复杂,运行困难,接口较少,针对极远紫外光学载荷,它的测试过程相对繁多,使用同步辐射就多有不便。美国军方的紫外校准试验室建在美国海军试验室,但主要是为美空军的侦察卫星中的紫外探测仪器进行校准。美国海军试验室建立了一套极紫外和远紫外校准系统,包括极紫外和远紫外探测器校准装置、极紫外和远紫外成像仪/成像光谱仪校准装置、真空热环境控制仓及其它相关辅助设施等,专门为美国空军国防气象卫星中的有效载荷地球大气紫外临边成像仪、紫外地球观测仪的校准服务。
在国内NSRL和计量院联合建立基于同步辐射的极紫外和远紫外校准装置中,主要侧重于对标准器件的校准,接口方式、校准时间都不够灵活,覆盖的波段范围也不完全,环境测试能力尚不具备,不能对整机进行校准,急需在国防系统内乃至国内建立一套能满足实际应用需求的极紫外和远紫外校准系统,填补国内空白。
发明内容
本发明的目的在于克服现有技术不足,提供了一种极远紫外光源校准装置。
本发明的技术解决方案;
一种极远紫外光源校准装置,包括光源、汇聚摆镜单元、紫外单色仪单元和探测器单元;
所述光源包括标准极远紫外光源和待测极远紫外光源;
所述汇聚摆镜单元包括一汇聚摆镜,其位于汇聚摆镜真空仓内,所述汇聚摆镜包括摆镜和旋转位移平台,所述摆镜包括两块非反射面贴合的凹面反射镜,其反射镜中心轴线重合,所述凹面反射镜曲面半径范围为50mm~5000mm,其中一块反射镜的反射面A镀30nm~200nm反射膜,另一块反射镜的反射面B镀60nm~200nm反射膜;
所述光源发射出的光线射入所述汇聚摆镜真空仓,经所述汇聚摆镜反射后射入所述紫外单色仪单元,经所述紫外单色仪单元色散分光后被所述探测器单元接收。
所述紫外单色仪单元包括一紫外光栅,其位于紫外单色仪真空仓内,所述紫外单色仪真空仓上有一紫外单色仪入射狭缝和紫外单色仪出射狭缝。
所述探测器单元包括一标准探测器,其位于探测器校准真空仓内。
所述光源和汇聚摆镜真空仓之间有一压力差分单元。
所述光源包括标准极远紫外光源和待测极远紫外光源。
所述汇聚摆镜真空仓、紫外单色仪真空仓和探测器校准真空仓、紫外单色仪单元、标准极远紫外光源和标准探测器的法兰接口尺寸形状一致。
所述摆镜的口径范围为10mm~500mm,半径范围为50mm~5000mm。
所述摆镜的两个反射镜反射面中心间距范围为1mm~200mm。
所述摆镜的两个反射面的反射膜为高反膜。
所述摆镜通过旋转位移平台进行平移和旋转运动。
所述在压力差分单元和汇聚摆镜真空仓之间还有一调节波纹管。
本发明与现有技术相比的有益效果:
(1)本发明通过在摆镜仓内将两块能量汇聚反射镜背靠背安装,并在两块反射镜镀有不同的光学薄膜,使其在不同的工作谱段使用不同的反射镜,避免了二级光谱的干扰。同时可利用一块摆镜实现标准光源与待测光源的快速切换;
(2)本发明考虑到一个真空仓的有限空间和进行多参数计量测试的需要,将整个光学传输系统设计为反射式最小布局,各个会聚、色散、成像的器件设计为模块化形式,根据测试参数和需求进行组合,大大减小了系统空间体积,减少了系统复杂程度,提高了光路对准的精度。
(3)本发明考虑到极远紫外光源和探测器接口形式的多样性,在设计过程中预留多个可外接端口和调节波纹管,以适应不同种类器件的校准工作。
(4)真空法兰接口模块化设计是在计量装置设计时,将真空仓、单色仪、标准光源和探测器的法兰接口都设计为相同形式,便于在进行多个真空紫外参数测量时进行各种器件的组合变换;使得系统中所有的部件处在一个真空系统中,可以利用一个真空仓抽真空系统进行抽真空,使系统设计简单化。
(5)本发明的探测器单元设计有一个带有多个工位的转台,可以放置多个待测探测器,并且每个工位都带有三维调节装置,可以根据被测器件外观尺寸灵活进行调节,使得被测器件的中心在光轴上,且与光学传输系统的距离符合设计要求。这种设计形式可以对任意接口形式的被测器件进行真空紫外参数的光谱计量测试,调整方便,使用非常灵活,且被测器件可以形式多样,包括光源、探测器、成像器、光谱辐射计等。
附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施例,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种极远紫外光源校准装置结构原理示意图;
图2为本发明汇聚摆镜结构示意图;
图3为位移平台结构原理示意图;
图4为本发明测量标准光源摆镜位置示意图;
图5为图4摆镜逆时针旋转2α位置示意图;
图6为图5摆镜向上平移L位置示意图;
图7为本发明计算机控制处理单元原理示意图。
1.标准极远紫外光源、2.待测极远紫外光源、3.汇聚摆镜真空仓、4.汇聚摆镜、5.紫外单色仪入射狭缝、6.紫外单色仪真空仓、7.紫外光栅、8.紫外单色仪出射狭缝、9.标准探测器、10.待校准探测器、11.调节波纹管、12.电动旋转平台、13.探测器校准真空仓、14.压力差分单元
具体实施方式
下面将结合附图对本发明的具体实施例进行详细说明。在下面的描述中,出于解释而非限制性的目的,阐述了具体细节,以帮助全面地理解本发明。然而,对本领域技术人员来说显而易见的是,也可以在脱离了这些具体细节的其它实施例中实践本发明。
在此需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
下面参照附图对本发明的实施例进行说明。
如图1所示,一种极远紫外光源校准装置,工作波段在30nm~200nm,包括光源、汇聚摆镜单元、紫外单色仪单元和探测器单元。
其中,所述光源为极远紫外辐射光源,包括标准极远紫外光源1和待测极远紫外光源2,其中,标准极远紫外光源1可以为空心阴极光源、潘宁放电离子源、氘灯、射频光源等紫外光源。这些光源的特点是高电压、低真空度条件下稀有气体放电,气体放电会带来大量的热,所以光源系统一般配有水循环或风冷系统。本实施例中选选用空心阴极光源,该光源是可以利用分子和稀有气体进行连续气体放电的稳定光源。它无电子噪音,在极紫外到25nm(50eV)之间有丰富的光谱谱线。它能够产生强度高的离子线。光源阴极和阳极都采用水冷却,阴极为不锈钢材料,阳极为铝材料。在阳极顶部有一个1/8常温常压抽头孔用来安装真空规进行气体压力监测。采用一个2000v直流电源给光源供电,它的电流范围:250mA~500mA,稳定性可以控制在8小时内漂移0.05%,电源电压可以在0~2000v之间任意调整。标准的极远紫外光源在正式工作之前要送到国家计量部门校准。
在极远紫外波段现有的光学玻璃已经不能适应30nm~200nm的光谱透射传输,所有的光学系统均采用反射式光学结构,所使用的光源也为无窗口式光源。
本发明中,标准极远紫外光源1和待测极远紫外光源2的角度为4α,其中α的范围为5°~85°。
所述汇聚摆镜单元,如图2所示,包括汇聚摆镜4和汇聚摆镜真空仓3,所述汇聚摆镜4位于汇聚摆镜真空仓3内。汇聚摆镜真空仓3有两个输入端口,一个为所述标准极远紫外光源1的光线输入端口,另一个为所述待测极远紫外光源2的的光线输入端口。
所述汇聚摆镜仓3为所述汇聚摆镜4的工作室,采用不锈钢材料加工,上部安装舱门便于调试摆镜。所述汇聚摆镜包括摆镜和旋转位移平台,所述摆镜位于旋转位移平台上,通过旋转位移平台进行平移和旋转运动。所述摆镜包括两块凹面反射镜安装在一起,具体安装方式为两个非反射面贴合在一起,并且保证反射镜中心轴线重合。所述摆镜的两个反射镜反射面中心间距范围为1mm~200mm。两块凹面反射镜曲面半径范围为50mm~5000mm。两块反射镜其中一块反射镜的反射面A镀30nm~200nm反射膜,主要在30nm~60nm使用,另一块反射镜的反射面B镀60nm~200nm反射膜,60nm以下光谱反射率较低,主要在60nm~200nm使用。反射膜可以采用高反膜。点光源经过该摆镜后,可以将发散光汇聚到另一个焦点处。摆镜材料为融石英,所述摆镜的口径范围为10mm~500mm,半径范围为50mm~5000mm。
所述旋转位移台为电动旋转位移平台,分为两个运动,如图3所示,一个为直线位移运动另一个为旋转运动。所述摆镜通过旋转位移平台进行平移和旋转运动。所选用的电动位移平台行程为25mm,灵敏度为10μm。所选用的电动旋转平台12转角为70°,角度误差为0.01°。
本发明所述的汇聚摆镜使用时应将其置于汇聚摆镜仓中,汇聚摆镜仓为摆镜的工作室,采用不锈钢材料加工,上部安装舱门便于调试摆镜。
由于光源的工作真空度较低,而后续装置的真空度较高,需要在光源和汇聚摆镜单元中间增加一套压力差分单元14,压力差分单元14位于光源和所述汇聚摆镜真空仓3之间,它的作用是使光源一侧的稀有气体尽量少的进入紫外单色仪单元,影响真空度和校准精度。所述压力差分单元14为一圆盘,中心带有矩形缝隙,光源辐射由此进入后续装置。
在压力差分单元14和汇聚摆镜真空仓3之间有一调节波纹管11,用于灵活调节压力差分单元和汇聚摆镜仓相对位置,所述调节波纹管11可以进行多维调节而不影响测试光路。
所述紫外单色仪单元包括紫外单色仪真空仓6和紫外光栅7,所述紫外单色仪真空仓6内安装有紫外光栅7,光栅驱动机构和相关电气接口,比如电机驱动电源接口、位置传感器信号接口等。整个所述紫外单色仪焦距200mm,光谱分辨率0.1nm,波长准确度:0.1nm,f/#4.5,光谱范围30nm~500nm。所述紫外光栅7为一IV型凹面全息光栅,可以在30nm~200nm波长范围内工作,光栅刻线在1200G/mm。光栅转动机构选择正弦机构,可以实现光栅的高精度转动控制。所述紫外单色仪真空仓6输入端口为紫外单色仪入射狭缝5,输出端口为紫外单色仪出射狭缝8;所述入射和出射狭缝尺寸从10um~5mm连续可调。
所述探测器单元包括一极远紫外标准探测器9,其位于探测器校准真空仓13内;所述极远紫外标准探测器9为硅光电二极管极远紫外探测器,经过计量单位标定作为标准探测器使用。其波长范围105nm~500nm,敏感面积100mm2,封装类型陶瓷。
本发明的所述探测器单元还包括一个电动旋转平台12,其上有若干个均匀分布的放置探测器的工位。在该电动旋转平台12上除放置标准探测器外,还可以在其它工位放置待校准探测器,用于校准待校准探测器。在探测器相对光谱响应度校准中,如图4所示,标准光源稳定后,首先设置光源校准光谱范围(30nm~200nm),旋转摆镜此时工作面为A面,使标准光源1置于工作光路中,紫外单色仪单元扫描30nm~60nm波段,标准探测器9探测接收,记录下标准光源的光谱强度曲线。在切换模块控制下,旋转摆镜旋转180°,旋转摆镜此时工作面为B面,使标准光源置于工作光路中,所述紫外单色仪单元扫描60nm~200nm波段,所述探测器探测接收,记录下标准光源的光谱强度曲线。这样就完成了30nm~200nm标准光源光谱的记录,作为标准光谱响应度曲线。标准探测器9工作后,通过电动旋转平台12将待校准探测器10切换到工作光路中,与上述标准探测器9光谱测量一样,所述紫外单色仪单元扫描输出整个校准光谱,待校准探测器10探测接收,记录下光源的光谱强度曲线,通过比较运算和相关因子修正,就可以实现待校准探测器10的相对光谱响应度校准。
本发明还包括一计算机控制单元,用于对标准探测器采集的光谱信号进行处理,如图7所示,其至少包括信号采集模块、光谱扫描控制模块、切换控制模块、数据存储模块、数据处理模块和计算机,其中所述信号采集模块用于对标准探测器接收到光源的光谱强度曲线信号进行采集。光谱扫描控制模块用于对光栅转角和位置的实时控制。切换控制模块用于摆镜旋转位移实现光源切换。数据存储模块用于采集数据的存储和记录。数据处理模块用于标准光源数据和待测光源数据之间的量值传递,将测量数据送入校准数学模型,经过运算后输出。本发明涉及的计算机控制单元为本领域公知的技术手段,此处不再赘述。
本发明将汇聚摆镜真空仓3、紫外单色仪真空仓6和探测器校准真空仓13、紫外单色仪单元、标准极远紫外光源1和标准探测器9的法兰接口尺寸可以都设计为相同尺寸,将便于在进行多个真空紫外参数测量时进行各种器件的组合变换。
本发明的各真空仓还包括液氮加注装置和循环水装置,带有三级抽真空系统,分别是机械泵、罗茨泵、分子泵,极限真空度可到9×10-5Pa,最低温度可到-100℃。模块化的真空法兰接口设计使得系统中所有的部件处在一个真空系统中,可以利用一个真空仓抽真空系统进行抽真空,使系统设计简单化。其中,真空仓中液氮加注装置和循环水装置为本领域的惯用技术,此处不再赘述。
本发明的光线走向和工作原理:
所述光源发射出的光线射入所述汇聚摆镜真空仓3,经所述汇聚摆镜4反射后射入所述紫外单色仪单元的输入端口紫外单色仪入射狭缝5,经所述紫外光栅7色散分光后,经所述紫外单色仪单元的输出端口紫外单色仪出射狭缝8输出,然后被所述探测器单元接收。
下面介绍本发明的工作原理:
在光源光谱辐亮度校准中,如图4所示,标准光源稳定后,首先设置光源校准光谱范围(30nm~200nm),旋转摆镜此时工作面为A面,使标准光源置于工作光路中,紫外单色仪单元扫描30nm~60nm波段,探测器探测接收,记录下标准光源的光谱强度曲线。在切换模块控制下,旋转摆镜旋转180°,旋转摆镜此时工作面为B面,使标准光源置于工作光路中,所述紫外单色仪单元扫描60nm~200nm波段,所述探测器探测接收,记录下标准光源的光谱强度曲线。这样就完成了30nm~200nm标准光源光谱的记录。
待校准光源与标准光源的为待校准光源稳定后,首先设置光源校准光谱范围(30nm~200nm),图4中摆镜以摆镜中心O为旋转中心,逆时针旋转2α使待测光源入射到摆镜表面,如图5所示,此时反射镜面反射光线无法进入单色仪的入射狭缝,需要纵向平移。如图6所示,图5中摆镜向上平移L,使反射光线可以沿横向中心线进入紫外单色仪入射狭缝5。其中,L数值可以根据摆镜厚度、标准光源和待测光源的夹角以及光线出射光线关系进行计算,为本领域惯用手段,此处不再赘述。紫外单色仪单元进行30nm~60nm波段扫描,探测器探测接收,记录下待校准光源的光谱强度曲线。至此,完成30nm~60nm波段的测量。
然后,以摆镜中心O为轴进行180°旋转切换,旋转摆镜此时工作面为B面,待测光源置于工作光路中,使反射镜面反射光线进入所述紫外单色仪入射狭缝5,使紫外单色仪单元进行60nm~200nm波段扫描,所述探测器探测接收,记录下待校准光源的光谱强度曲线,完成60nm~200nm波段的测量。这样就完成了30nm~200nm待测光源光谱的测量。
将标准光源和待校准光源数据输入到校准数学模型,通过比较运算和相关因子修正,就可以实现待校准光源的光谱辐亮度校准。此为本领域惯用的技术手段,此处不再赘述。
本发明的实施例的许多特征和优点根据该详细描述是清楚的,因此所附权利要求旨在覆盖这些实施例的落入其真实精神和范围内的所有这些特征和优点。此外,由于本领域的技术人员容易想到很多修改和改变,因此不是要将本发明的实施例限于所例示和描述的精确结构和操作,而是可以涵盖落入其范围内的所有合适修改和等同物。
本发明未详细说明部分为本领域技术人员公知技术。

Claims (9)

1.一种极远紫外光源校准装置,其特征在于包括光源、汇聚摆镜单元、紫外单色仪单元和探测器单元;
所述光源包括标准极远紫外光源(1)和待测极远紫外光源(2);
所述汇聚摆镜单元包括一汇聚摆镜(4),其位于汇聚摆镜真空仓(3)内,所述汇聚摆镜(4)包括摆镜和旋转位移平台,所述摆镜包括两块非反射面贴合的凹面反射镜,其反射镜中心轴线重合,所述凹面反射镜曲面半径范围为50mm~5000mm,其中一块反射镜的反射面A镀30nm~200nm反射膜,另一块反射镜的反射面B镀60nm~200nm反射膜;所述摆镜通过旋转位移平台进行平移和旋转运动;
所述光源发射出的光线射入所述汇聚摆镜真空仓(3),经所述汇聚摆镜(4)反射后射入所述紫外单色仪单元,经所述紫外单色仪单元色散分光后被所述探测器单元接收。
2.根据权利要求1所述的一种极远紫外光源校准装置,其特征在于所述紫外单色仪单元包括一紫外光栅(7),其位于紫外单色仪真空仓(6)内,所述紫外单色仪真空仓(6)上有一紫外单色仪入射狭缝(5)和紫外单色仪出射狭缝(8)。
3.根据权利要求1所述的一种极远紫外光源校准装置,其特征在于所述探测器单元包括一标准探测器(9),其位于探测器校准真空仓(13)内。
4.根据权利要求1所述的一种极远紫外光源校准装置,其特征在于所述光源和汇聚摆镜真空仓(3)之间有一压力差分单元(14)。
5.根据权利要求1所述的一种极远紫外光源校准装置,其特征在于所述汇聚摆镜真空仓(3)、紫外单色仪真空仓(6)和探测器校准真空仓(13)、紫外单色仪单元、标准极远紫外光源(1)和标准探测器(9)的法兰接口尺寸形状一致。
6.根据权利要求1所述的一种极远紫外光源校准装置,其特征在于所述摆镜的口径范围为10mm~500mm,半径范围为50mm~5000mm。
7.根据权利要求1所述的一种极远紫外光源校准装置,其特征在于所述摆镜的两个反射镜反射面中心间距范围为1mm~200mm。
8.根据权利要求1所述的一种极远紫外光源校准装置,其特征在于所述摆镜的两个反射面的反射膜为高反膜。
9.根据权利要求4所述的一种极远紫外光源校准装置,其特征在于所述在压力差分单元(14)和汇聚摆镜真空仓(3)之间还有一调节波纹管(11)。
CN201210478703.6A 2012-11-23 2012-11-23 一种极远紫外光源校准装置 Active CN102998088B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210478703.6A CN102998088B (zh) 2012-11-23 2012-11-23 一种极远紫外光源校准装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210478703.6A CN102998088B (zh) 2012-11-23 2012-11-23 一种极远紫外光源校准装置

Publications (2)

Publication Number Publication Date
CN102998088A CN102998088A (zh) 2013-03-27
CN102998088B true CN102998088B (zh) 2015-11-25

Family

ID=47926943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210478703.6A Active CN102998088B (zh) 2012-11-23 2012-11-23 一种极远紫外光源校准装置

Country Status (1)

Country Link
CN (1) CN102998088B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245488B (zh) * 2013-04-02 2015-09-30 中国科学院长春光学精密机械与物理研究所 一种宽波段大尺寸平面光栅衍射效率测试仪
CN103344416A (zh) * 2013-06-28 2013-10-09 中国科学院长春光学精密机械与物理研究所 一种体全息透射光栅衍射效率测试仪
CN106527016A (zh) * 2015-09-10 2017-03-22 上海傲蕊光电科技有限公司 灯光发生器、影像设备、影像系统及灯光发生控制方法
CN106644070A (zh) * 2015-11-02 2017-05-10 北京振兴计量测试研究所 真空紫外成像光谱仪校准装置
CN106706129A (zh) * 2016-12-30 2017-05-24 中国科学院西安光学精密机械研究所 一种标准模块化星载光谱仪
CN109407028A (zh) * 2018-11-29 2019-03-01 中国南方电网有限责任公司超高压输电公司检修试验中心 一种手持式紫外标准源
CN113967608B (zh) * 2021-12-22 2022-04-26 南京英田光学工程股份有限公司 星载mems光束控制摆镜的地面筛选测试装置及方法
CN117387763B (zh) * 2023-12-05 2024-03-29 安徽创谱仪器科技有限公司 光谱仪测试标定方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85107948A (zh) * 1985-10-14 1987-04-15 株式会社岛津制作所 单色仪
CN101216345A (zh) * 2007-12-29 2008-07-09 中国科学院长春光学精密机械与物理研究所 紫外-真空紫外光谱辐射传输特性测试装置
CN201203477Y (zh) * 2008-05-04 2009-03-04 中国科学院空间科学与应用研究中心 满足空间极紫外仪器定标测试用实验室19.5nm极紫外光源系统
CN102109412A (zh) * 2009-12-28 2011-06-29 佳能企业股份有限公司 校准光源的方法
CN202110132U (zh) * 2011-07-06 2012-01-11 杨文菊 紫外—可见光—近红外波长范围谱线准确度自校准装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172568A (ja) * 2003-12-10 2005-06-30 Canon Inc 光学装置及びそれを有する測定装置
DE102006003683B3 (de) * 2006-01-24 2007-09-13 Xtreme Technologies Gmbh Anordnung und Verfahren zur Erzeugung von EUV-Strahlung hoher Durchschnittsleistung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85107948A (zh) * 1985-10-14 1987-04-15 株式会社岛津制作所 单色仪
CN101216345A (zh) * 2007-12-29 2008-07-09 中国科学院长春光学精密机械与物理研究所 紫外-真空紫外光谱辐射传输特性测试装置
CN201203477Y (zh) * 2008-05-04 2009-03-04 中国科学院空间科学与应用研究中心 满足空间极紫外仪器定标测试用实验室19.5nm极紫外光源系统
CN102109412A (zh) * 2009-12-28 2011-06-29 佳能企业股份有限公司 校准光源的方法
CN202110132U (zh) * 2011-07-06 2012-01-11 杨文菊 紫外—可见光—近红外波长范围谱线准确度自校准装置

Also Published As

Publication number Publication date
CN102998088A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
CN102998088B (zh) 一种极远紫外光源校准装置
CN102998089B (zh) 一种极远紫外探测器校准装置
CN101713639B (zh) 基于四边形子面板四点支撑的射电望远镜共相检测方法
CN103528797A (zh) 一种用于光学系统镜片透过率和反射率检测的新系统
CN103471820A (zh) 便携式多光谱光电设备实时标校测试仪
Cersullo et al. A new infrared Fabry-Pérot-based radial-velocity-reference module for the SPIRou radial-velocity spectrograph
CN103873856B (zh) 一种空间遥感器在轨红外焦平面自反射定标方法
CN102155994A (zh) 红外辐射计校准装置及其校准方法
CN102507148A (zh) 多象限光电探测器检测系统
CN104048620A (zh) 一种射电望远镜天线面形绝对定标装置和方法
CN103308282A (zh) 反射式望远系统透过率高效测量系统及方法
CN110926601B (zh) 一种光辐射传感器角度响应特性测试装置
Laggner et al. Absolute calibration of the Lyman-α measurement apparatus at DIII-D
CN114136444B (zh) 一种基于低温辐射计的宽波段探测器光谱响应度校准装置
CN109029718B (zh) 具备自校准功能的太赫兹源发散角测量装置及测量方法
CN103134443B (zh) 一种大口径大径厚比反射镜面形自准直检测装置及方法
CN103175677A (zh) 一种紫外多参数校准装置
CN107561008A (zh) 一种用于真空紫外漫反射板brdf特性测量的装置
Deng et al. Overview of AC servo control system for the large telescope
EP3465270B1 (en) Compact optical apparatus for laser radar sensors in hostile environments
Stauffer et al. Broadband measurement of electron cyclotron emission in TFTR using a quasioptical light collection system and a polarizing Michelson interferometer
Brun et al. Composite mirror facets for ground based gamma ray astronomy
CN113865716A (zh) 一种红外热像仪测试系统
Yu et al. Laboratory-based reflectometer using line spectra of an RF-induced gas-discharge lamp in 30-to 200-nm wavelength range
CN114295332A (zh) 大口径望远镜标校系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant