CN102993565B - Environment-friendly and flame-retardant glass fibre reinforced PP/PA1010 alloy material with high CTI (comparative tracking index) valve and high GWIT (glow wire ignition temperature) value and preparation method thereof - Google Patents
Environment-friendly and flame-retardant glass fibre reinforced PP/PA1010 alloy material with high CTI (comparative tracking index) valve and high GWIT (glow wire ignition temperature) value and preparation method thereof Download PDFInfo
- Publication number
- CN102993565B CN102993565B CN201210509599.2A CN201210509599A CN102993565B CN 102993565 B CN102993565 B CN 102993565B CN 201210509599 A CN201210509599 A CN 201210509599A CN 102993565 B CN102993565 B CN 102993565B
- Authority
- CN
- China
- Prior art keywords
- glass fibre
- compound
- flame
- raw material
- alloy material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920006152 PA1010 Polymers 0.000 title claims abstract description 63
- 239000003365 glass fiber Substances 0.000 title claims abstract description 35
- 239000000956 alloy Substances 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 239000003063 flame retardant Substances 0.000 title abstract description 20
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title abstract description 9
- 230000000052 comparative effect Effects 0.000 title abstract description 9
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 claims abstract description 52
- 150000001875 compounds Chemical class 0.000 claims abstract description 40
- 239000002994 raw material Substances 0.000 claims abstract description 40
- 238000012545 processing Methods 0.000 claims abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 20
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 claims abstract description 4
- SEQVSYFEKVIYCP-UHFFFAOYSA-L magnesium hypophosphite Chemical compound [Mg+2].[O-]P=O.[O-]P=O SEQVSYFEKVIYCP-UHFFFAOYSA-L 0.000 claims abstract description 4
- 229910001381 magnesium hypophosphite Inorganic materials 0.000 claims abstract description 4
- 230000003647 oxidation Effects 0.000 claims description 27
- 238000007254 oxidation reaction Methods 0.000 claims description 27
- 239000003112 inhibitor Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 21
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 17
- 239000003513 alkali Substances 0.000 claims description 17
- 238000007599 discharging Methods 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 16
- 238000005453 pelletization Methods 0.000 claims description 16
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 15
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims description 15
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical group O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 14
- 239000011152 fibreglass Substances 0.000 claims description 10
- 230000002708 enhancing effect Effects 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 abstract description 57
- -1 flame-retardant compound Chemical class 0.000 abstract description 12
- 230000003078 antioxidant effect Effects 0.000 abstract description 5
- 239000003963 antioxidant agent Substances 0.000 abstract description 4
- 239000004793 Polystyrene Substances 0.000 abstract description 3
- 229920002223 polystyrene Polymers 0.000 abstract description 3
- 230000032683 aging Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- FYYHWMGAXLPEAU-OUBTZVSYSA-N magnesium-25 atom Chemical compound [25Mg] FYYHWMGAXLPEAU-OUBTZVSYSA-N 0.000 abstract 1
- 239000004743 Polypropylene Substances 0.000 description 54
- 229920002292 Nylon 6 Polymers 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920000137 polyphosphoric acid Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 125000006367 bivalent amino carbonyl group Chemical group [H]N([*:1])C([*:2])=O 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920002903 fire-safe polymer Polymers 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003913 materials processing Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000009967 tasteless effect Effects 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/74—Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
- B29B7/7461—Combinations of dissimilar mixers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B9/14—Making granules characterised by structure or composition fibre-reinforced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/04—Particle-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/40—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K3/2279—Oxides; Hydroxides of metals of antimony
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/346—Clay
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/18—Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/02—Polyamides derived from omega-amino carboxylic acids or from lactams thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K21/00—Fireproofing materials
- C09K21/14—Macromolecular materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/9258—Velocity
- B29C2948/9259—Angular velocity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92704—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92876—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
- B29C2948/92885—Screw or gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92876—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
- B29C2948/92895—Barrel or housing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The invention provides an environment-friendly and flame-retardant glass fibre reinforced PP/PA1010 alloy material with a high CTI (comparative tracking index) valve and a high GWIT (glow wire ignition temperature) value, which is prepared from raw materials in percentage by weight: 23-41% of PP (propene polymer), 22-41% of PA1010, 6-20% of a compound flame retardant, 3-15% of antimonous oxide, 20-30% of glass fibres, 2-10% of a compatilizer, 0.1-1% of an antioxidant and 0.1-1% of oxides, wherein the compound flame retardant is composed of substances in the percentage by weight: 50% of BPS (brominated polystyrene), 25% of magnesium hypophosphite and 25% of talcum powder. The invention further provides a preparation method for the material aforementioned. The material and the preparation method provided by the invention have the following advantages that with the adoption of a novel flame-retardant compound system, the GWIT value of the material is increased by 50-100 DEG C, and glow wires at 850 DEG C can pass; due to the addition of the glass fibres, the GWIT value of the material is also obviously increased; simultaneously, the impact performance and the ageing resistance of the material are improved, the processing flowability and the smoothness are enhanced, and the friction coefficient is lowered.
Description
Technical field
The present invention relates to a kind of PP/PA1010 alloy material and preparation method thereof, specifically, is a kind of high CTI value, high GWIT value environment-protection flame-proof fiberglass enhancing PP/PA1010 alloy material and preparation method thereof.
Background technology
Nylon (Nylon), Chinese name polymeric amide, English name polyamide, be called for short PA, be on molecular backbone chain containing recurring amide radical group-[NHCO]-thermoplastic resin general name, its name is determined, as PA-6, PA-66, PA-1010, PA-610 by the carbonatoms that synthon is concrete.The degree of crystallinity of PA is high, fusing point is obvious; Surface hardness is large, abrasion performance, frictional coefficient are little, have self lubricity and sound-deadening properties; Low-temperature performance is good, has certain thermotolerance (can use below 100 DEG C); Nontoxic, odorless, not go rotten, have self-extinguishing, good weatherability, but dyeability is poor.PA1010, Chinese nylon 1010, is obtained through polycondensation by sebacic acid.PA1010 plastics are translucent, light and the crystallization shape white of hard, surface-brightening or micro-yellow particle, relative density and water-absorbent lower than PA6 and PA66, physical strength is high, impelling strength, wear resistance and self lubricity are good, winter hardiness is better than PA6, and fluidity of molten is good, is easy to forming process.PA1010 plastics also have good electric insulating quality and chemical stability, nontoxic, are insoluble to most of non-polar solvent, but are dissolved in intensive polar solvent.
Polypropylene, English name polypropylene, is called for short PP, molecular formula: (C
3h
6) n, be a kind of thermoplastic resin obtained by propylene polymerization.Isotatic polypropylene (isotaetic polyprolene), Atactic Polypropelene (atactic polypropylene) and syndiotactic polypropylene (syndiotatic polypropylene) three kinds is divided into by methyl arrangement position.PP is nontoxic, tasteless, and density is little, and intensity, rigidity, hardness thermotolerance are all better than low pressure polyethylene, can about 100 DEG C uses; There is good electrical property and high-frequency insulation not by humidity effect, be suitable for making common mechanical part, corrosion-resistant part and insulating part.The organic solvents such as common acid, alkali work hardly to it, therefore can be used for tableware.
PP/PA1010 alloy material combines the advantage of PP and PP1010 bi-material.
21 century electronics, electrically, communication, household electrical appliances, electromechanical equipment to high-performance and miniaturization, also more and more higher to the requirement of fire-retardant PP/PA1010 alloy material.Meanwhile, along with the raising of mankind's environmental consciousness, Green Product is subject to common concern.Therefore, the developing direction of fire-retardant PP/PA1010 alloy material is: the fire-retardant PP/PA1010 alloy material of performance functionization becomes main flow; The kind of the fire-retardant PP/PA1010 alloy material of environmental type and demand get more and more; The production of fire-retardant PP/PA1010 alloy material is to multi items seriation future development; The use of fire retardant is to diversification, compound development.The flame-retardant system of some traditional PP/PA1010 alloy materials is (GF+ TDE+antimonous oxide) compound system, (GF+ brominated Polystyrene+antimonous oxide) compound system, but the creepage trace index of these compound systems (CTI value) and glow wire temperature (GWIT value) not high, be not suitable for the power utilization environment of high request, such as, be not suitable for Low-voltage Electronic capacitor case, load break switch, carbon brush supports, breaker of plastic casing field.
Chinese patent literature CN 201010500358.2, applying date 2010-09-30, discloses a kind of fire-retardant enhancing PP/PA matrix material and preparation method thereof, and its composition (parts by weight) is: PP resin 18-20.5%, PA resin 18-20.5%, TDE 15-17%, antimonous oxide 5%, toughner 2.5%, compatilizer 7%, lubricant 2.5%, composite antioxidant 1%, glass fibre 25-30%; Preparation technology is that twin screw melt extrudes granulation.The every physical and mechanical properties of PP/PA matrix material prepared by this invention is excellent, and fire resistance is splendid.
Chinese patent literature CN 200510022571.6, applying date 2005-12-20, disclose a kind of highly fire-retardant polymer PA/PP alloy, it is characterized in that: composition of raw materials (weight) is: major ingredient: (1) nylon 6 (PA6) 50 ~ 60 parts; (2) polypropylene (PP) 25 ~ 35 parts; Auxiliary material: (1) composite flame-retardant agent-polyphosphoric acid amine 4 ~ 6 parts, trimeric cyanamide 1 ~ 3 part and aminosilane 1 part; (2) compatilizer-8 ~ 12 parts, sulfonated polystyrene zinc; (3) oxidation inhibitor-antioxidant 1010/168,0.2/0.2 part.This invention forms for major ingredient adopts compositional flame-retardant technology and compatible technique to plastify granulation through twin screw extruder with PA6 and PP.By the synergy of each component of system, make product have excellent over-all properties, flame retardant properties reaches UL94V-0 standard-required.
But the environment-protection flame-proof fiberglass enhancing PP/PA1010 alloy material at present about the high CTI value of excellent combination property, high GWIT value have not been reported.
Summary of the invention
The object of the invention is for deficiency of the prior art, provide a kind of high CTI value, high GWIT value environment-protection flame-proof fiberglass to strengthen PP/PA1010 alloy material.
Of the present invention again one object be that a kind of preparation method of above-mentioned PP/PA1010 alloy material is provided.
For achieving the above object, the technical scheme that the present invention takes is:
A kind of high CTI value, high GWIT value environment-protection flame-proof fiberglass strengthen PP/PA1010 alloy material, and described material is made up of the raw material of following weight percent:
PP 23-41%,
PA1010 22-41%,
Compound flame redundant 6-20%,
Antimonous oxide 3-15%,
Glass fibre 20-30%,
Compatilizer 2-10%,
Oxidation inhibitor 0.1-1%,
Oxide compound 0.1-1%,
Described compound flame redundant is made up of the material of following weight percent: BPS 50%, magnesium hypophosphite 25%, talcum powder 25%.
Preferably, described material is made up of the raw material of following weight percent:
PP 25%,
PA1010 25.1%,
Compound flame redundant 12%,
Antimonous oxide 4%,
Glass fibre 30%,
Compatilizer 3%,
Oxidation inhibitor 0.4%,
Oxide compound 0.5%.
Preferably, described material is made up of the raw material of following weight percent:
PP 25%,
PA1010 23%,
Compound flame redundant 12%,
Antimonous oxide 4%,
Glass fibre 30%,
Compatilizer 5%,
Oxidation inhibitor 0.4%,
Oxide compound 0.6%,
Preferably, the limiting viscosity of described PA1010 is 2.8dl/g.
Preferably, described glass fibre is the alkali free glass fibre of surface through silane coupling agent process.
Preferably, described compatilizer is maleic anhydride graft PP.
Preferably, described oxidation inhibitor is high molecular weight hindered phenols kind antioxidant.
Preferably, described high molecular weight hindered phenols kind antioxidant is oxidation inhibitor 1330.
Preferably, described oxide compound is ferric oxide.
For realizing above-mentioned second object, the technical scheme that the present invention takes is:
High CTI value as above, high GWIT value environment-protection flame-proof fiberglass strengthen the preparation method of PP/PA1010 alloy material, comprise the following steps:
1) raw material is taken by weight percentage: PP 23-41%, PA1010 22-41%, compound flame redundant 6-20%, antimonous oxide 3-15%, glass fibre 20-30%, compatilizer 2-10%, oxidation inhibitor 0.1-1%, oxide compound 0.1-1%;
2) raw material that step 1) takes is put into high-speed mixer and mixing 2-5 minute, discharging;
3) use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 30-40HZ.
The invention has the advantages that:
1, compared with prior art, the present invention adopts novel flame-retardant compound system, compares with traditional flame-retardant system, and when fire retardant percentage composition is identical, novel built system can make the GWIT value of material improve 50-100 DEG C, can pass through 850 DEG C of glowing filaments;
2, the GWIT value making material that adds of glass fibre significantly improves;
3, the impact property that compatilizer improves material is added;
What 4, oxidation inhibitor adopted is Hinered phenols antioxidant, can improve the ageing resistance of composition in the antioxidant property and use procedure of the course of processing;
5, adopt ferric oxide as the auxiliary agent carrying high CTI value, materials processing mobility can be improved, reduce frictional coefficient, improve slipping, under specific processing conditions, adopt the combination that dispersiveness is better, the residence time is short, shearing is slightly weak simultaneously, can prevent fire retardant from decomposing, thus ensure that the steady quality of material.
In a word, PP/PA1010 alloy material prepared by the present invention has that GWIT value is higher, CTI value is higher, environmental protection, over-all properties equilibrium advantage, the fields such as Low-voltage Electronic capacitor case, load break switch, carbon brush supports, breaker of plastic casing can be widely used in.
Embodiment
Below embodiment provided by the invention is elaborated.
Herein, described PP is polypropylene; Described PA1010 is nylon 1010; The described alkali free glass fibre through silane coupling agent process, be add in silane coupling agent by glass fibre, make its surface through silane coupling agent process, its treatment process is general knowledge known in this field; Compound flame redundant described in embodiment 1-9 and comparative example 3-5 is made up of the material of following weight percent: BPS(brominated Polystyrene) 50%, magnesium hypophosphite 25%, talcum powder 25%; Described glass fibre ECS 13-4.5-534A, purchased from megalith group, is alkali free glass fibre; Described AX8900, purchased from French Arkema, is ethylene-methyl acrylate-glyceryl methacrylate terpolymer, as compatilizer.
embodiment 1 PP/PA1010 alloy material preparation () of the present invention
Take raw material by weight percentage: PP 25%, PA1010(limiting viscosity is 2.8dl/g) 25.1%, compound flame redundant 12%, antimonous oxide 4%, through the alkali free glass fibre 30% of silane coupling agent process, maleic anhydride graft PP 3%, oxidation inhibitor 1,330 0.4%, ferric oxide 0.5%; The raw material taken is put into high-speed mixer and mixing 5 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 35HZ, and concrete processing situation is as shown in the table.
embodiment 2 PP/PA1010 alloy material preparation (two) of the present invention
Take raw material by weight percentage: PP 25%, PA1010(limiting viscosity is 2.8dl/g) 23%, compound flame redundant 12%, antimonous oxide 4%, through the alkali free glass fibre 30% of silane coupling agent process, maleic anhydride graft PP 5%, oxidation inhibitor 1,330 0.4%, ferric oxide 0.6%; The raw material taken is put into high-speed mixer and mixing 2 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 35HZ, and concrete processing situation is as shown in the table.
embodiment 3 PP/PA1010 alloy material preparation (three) of the present invention
Take raw material by weight percentage: PP 23%, PA1010(limiting viscosity is 2.8dl/g) 22%, compound flame redundant 20%, antimonous oxide 4.3%, through the alkali free glass fibre 20% of silane coupling agent process, maleic anhydride graft PP 10%, oxidation inhibitor 1,330 0.1%, ferric oxide 0.6%; The raw material taken is put into high-speed mixer and mixing 2 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 30HZ, and concrete processing situation is as shown in the table.
embodiment 4 PP/PA1010 alloy material preparation (four) of the present invention
Take raw material by weight percentage: PP 41%, PA1010(limiting viscosity is 2.9dl/g) 22%, compound flame redundant 6%, antimonous oxide 6%, through the alkali free glass fibre 21% of silane coupling agent process, maleic anhydride graft PP 2%, oxidation inhibitor 1,330 1%, ferric oxide 1%; The raw material taken is put into high-speed mixer and mixing 5 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 40HZ, and concrete processing situation is as shown in the table.
embodiment 5 PP/PA1010 alloy material preparation (five) of the present invention
Take raw material by weight percentage: PP 26%, PA1010(limiting viscosity is 2.8dl/g) 30%, compound flame redundant 6%, antimonous oxide 10%, through the alkali free glass fibre 25% of silane coupling agent process, maleic anhydride graft PP 2%, oxidation inhibitor 1,330 0.5%, ferric oxide 0.5%; The raw material taken is put into high-speed mixer and mixing 3 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 35HZ, and concrete processing situation is as shown in the table.
embodiment 6 PP/PA1010 alloy material preparation (six) of the present invention
Take raw material by weight percentage: PP 27.8%, PA1010(limiting viscosity is 2.8dl/g) 41%, compound flame redundant 6%, antimonous oxide 3%, through the alkali free glass fibre 20% of silane coupling agent process, maleic anhydride graft PP 2%, oxidation inhibitor 1,330 0.1%, ferric oxide 0.1%; The raw material taken is put into high-speed mixer and mixing 3 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 38HZ, and concrete processing situation is as shown in the table.
embodiment 7 PP/PA1010 alloy material preparation (seven) of the present invention
Take raw material by weight percentage: PP 23%, PA1010(limiting viscosity is 2.8dl/g) 22%, compound flame redundant 10.9%, antimonous oxide 15%, through the alkali free glass fibre 20%, AX8900 8% of silane coupling agent process, oxidation inhibitor 1,330 1%, zinc oxide 0.1%; The raw material taken is put into high-speed mixer and mixing 3 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 38HZ, and concrete processing situation is as shown in the table.
embodiment 8 PP/PA1010 alloy material preparation (eight) of the present invention
Take raw material by weight percentage: PP 25%, PA1010(limiting viscosity is 2.8dl/g) 25.1%, compound flame redundant 12%, antimonous oxide 4%, through the alkali free glass fibre 30% of silane coupling agent process, maleic anhydride graft PP 3%, irgasfos 168 0.4%, ferric oxide 0.5%; The raw material taken is put into high-speed mixer and mixing 5 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 35HZ, and concrete processing situation is as shown in the table.
embodiment 9 PP/PA1010 alloy material preparation (nine) of the present invention
Take raw material by weight percentage: PP 25%, PA1010(limiting viscosity is 3.0dl/g) 23%, compound flame redundant 12%, antimonous oxide 4%, glass fibre ECS13-4.5-534A 30%, maleic anhydride graft PP 5%, oxidation inhibitor 1,330 0.4%, ferric oxide 0.6%; The raw material taken is put into high-speed mixer and mixing 2 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 35HZ, and concrete processing situation is as shown in the table.
comparative example 1
Take raw material by weight percentage: PP 25%, PA1010(limiting viscosity is 2.8dl/g) 25.1%, compound flame redundant (being mixed by the component of following weight percent content: polyphosphoric acid amine 62.5%, trimeric cyanamide 25% and aminosilane 12.5%) 12%, antimonous oxide 4%, through the alkali free glass fibre 30% of silane coupling agent process, maleic anhydride graft PP 3%, oxidation inhibitor 1,330 0.4%, ferric oxide 0.5%; The raw material taken is put into high-speed mixer and mixing 5 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 35HZ, and concrete processing situation is as shown in the table.
comparative example 2
Take raw material by weight percentage: PP 25%, PA1010(limiting viscosity is 2.8dl/g) 23%, GF 6%, TDE 6%, antimonous oxide 4%, through the alkali free glass fibre 30% of silane coupling agent process, maleic anhydride graft PP 5%, oxidation inhibitor 1,330 0.4%, ferric oxide 0.6%; The raw material taken is put into high-speed mixer and mixing 2 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 35HZ, and concrete processing situation is as shown in the table.
comparative example 3
Take raw material by weight percentage: PP 40%, PA1010(limiting viscosity is 2.8dl/g) 38%, compound flame redundant 12%, antimonous oxide 4%, maleic anhydride graft PP 5%, oxidation inhibitor 1,330 0.4%, ferric oxide 0.6%; The raw material taken is put into high-speed mixer and mixing 2 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 35HZ, and concrete processing situation is as shown in the table.
comparative example 4
Take raw material by weight percentage: PP 25%, PA1010(limiting viscosity is 2.8dl/g) 28.1%, compound flame redundant 12%, antimonous oxide 4%, through the alkali free glass fibre 30% of silane coupling agent process, oxidation inhibitor 1,330 0.4%, ferric oxide 0.5%; The raw material taken is put into high-speed mixer and mixing 5 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 35HZ, and concrete processing situation is as shown in the table.
comparative example 5
Take raw material by weight percentage: PP 25%, PA1010(limiting viscosity is 2.8dl/g) 23%, compound flame redundant 12%, antimonous oxide 4%, through the alkali free glass fibre 30% of silane coupling agent process, maleic anhydride graft PP 5%, oxidation inhibitor 1,330 1%; The raw material taken is put into high-speed mixer and mixing 2 minutes, discharging; Use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 35HZ, and concrete processing situation is as shown in the table.
embodiment 10 performance test
The sample obtained to embodiment 1-9 and comparative example 1-5 adopts ASTM standard to carry out performance test, and test performance contrast is as shown in the table:
The PP/PA1010 alloy material that as can be seen from the above table prepared by the present invention has that GWIT value is higher, CTI value is higher, environmental protection, over-all properties equilibrium advantage, therefore can be widely used in the fields such as Low-voltage Electronic capacitor case, load break switch, carbon brush supports, breaker of plastic casing.
PP/PA1010 alloy material prepared by above embodiment 3-9 through performance test, experimental result shows that it has that GWIT value is higher, CTI value is higher equally, environmental protection, over-all properties equilibrium advantage.
The above is only the preferred embodiment of the present invention; it should be pointed out that for those skilled in the art, under the prerequisite not departing from the inventive method; can also make some improvement and supplement, these improve and supplement and also should be considered as protection scope of the present invention.
Claims (4)
1. high CTI value, high GWIT value environment-protection flame-proof fiberglass strengthen a PP/PA1010 alloy material, and it is characterized in that, described material is made up of the raw material of following weight percent:
PP 23-41%,
PA1010 22-41%,
Compound flame redundant 6-20%,
Antimonous oxide 3-15%,
Glass fibre 20-30%,
Compatilizer 2-10%,
Oxidation inhibitor 0.1-1%,
Oxide compound 0.1-1%,
Described compound flame redundant is made up of the material of following weight percent: BPS 50%, magnesium hypophosphite 25%, talcum powder 25%;
The limiting viscosity of described PA1010 is 2.8dl/g;
Described glass fibre is the alkali free glass fibre of surface through silane coupling agent process;
Described compatilizer is maleic anhydride graft PP;
Described oxidation inhibitor is oxidation inhibitor 1330;
Described oxide compound is ferric oxide.
2. high CTI value according to claim 1, high GWIT value environment-protection flame-proof fiberglass strengthen PP/PA1010 alloy material, and it is characterized in that, described material is made up of the raw material of following weight percent:
PP 25%,
PA1010 25.1%,
Compound flame redundant 12%,
Antimonous oxide 4%,
Glass fibre 30%,
Compatilizer 3%,
Oxidation inhibitor 0.4%,
Oxide compound 0.5%.
3. high CTI value according to claim 1, high GWIT value environment-protection flame-proof fiberglass strengthen PP/PA1010 alloy material, and it is characterized in that, described material is made up of the raw material of following weight percent:
PP 25%,
PA1010 23%,
Compound flame redundant 12%,
Antimonous oxide 4%,
Glass fibre 30%,
Compatilizer 5%,
Oxidation inhibitor 0.4%,
Oxide compound 0.6%.
4. the preparation method of high CTI value according to claim 1, high GWIT value environment-protection flame-proof fiberglass enhancing PP/PA1010 alloy material, is characterized in that, comprise the following steps:
1) raw material is taken by weight percentage: PP 23-41%, PA1010 22-41%, compound flame redundant 6-20%, antimonous oxide 3-15%, glass fibre 20-30%, compatilizer 2-10%, oxidation inhibitor 0.1-1%, oxide compound 0.1-1%;
2) raw material that step 1) takes is put into high-speed mixer and mixing 2-5 minute, discharging;
3) use twin screw extruder extruding pelletization, wherein processing temperature is 220-240 DEG C, and screw rod revolution is 30-40Hz.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210509599.2A CN102993565B (en) | 2012-12-04 | 2012-12-04 | Environment-friendly and flame-retardant glass fibre reinforced PP/PA1010 alloy material with high CTI (comparative tracking index) valve and high GWIT (glow wire ignition temperature) value and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210509599.2A CN102993565B (en) | 2012-12-04 | 2012-12-04 | Environment-friendly and flame-retardant glass fibre reinforced PP/PA1010 alloy material with high CTI (comparative tracking index) valve and high GWIT (glow wire ignition temperature) value and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102993565A CN102993565A (en) | 2013-03-27 |
CN102993565B true CN102993565B (en) | 2015-04-08 |
Family
ID=47922711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210509599.2A Expired - Fee Related CN102993565B (en) | 2012-12-04 | 2012-12-04 | Environment-friendly and flame-retardant glass fibre reinforced PP/PA1010 alloy material with high CTI (comparative tracking index) valve and high GWIT (glow wire ignition temperature) value and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102993565B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103214828A (en) * | 2013-04-17 | 2013-07-24 | 常熟市康宝医疗器械厂 | Polypropylene-modified environment-friendly polyamide alloy material |
CN107312247A (en) * | 2017-08-08 | 2017-11-03 | 佛山市合宏泰业科技有限公司 | A kind of uvioresistant high strength composite |
GB201807302D0 (en) | 2018-05-03 | 2018-06-20 | Addivant Switzerland Gmbh | Antidegradant blend |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102108187A (en) * | 2009-12-28 | 2011-06-29 | 上海日之升新技术发展有限公司 | High glowing filament environmental-friendly inflaming retarding reinforced polybutylece terephthalate (PBT)/acrylonitrile butadiene styrene (ABS) alloy material and preparation method thereof |
CN102241859A (en) * | 2010-09-30 | 2011-11-16 | 深圳市科聚新材料有限公司 | Flame-retardant reinforced PP (polypropylene)/PA (polyamide) composite material and preparation method thereof |
CN102604377A (en) * | 2012-02-17 | 2012-07-25 | 金发科技股份有限公司 | Polyamide composition with flame retardance and thermoplasticity |
CN102775771A (en) * | 2012-07-17 | 2012-11-14 | 上海日之升新技术发展有限公司 | Flame-retardant glass fiber reinforced polyamide 6/polypropylene (PA6/PP) alloy composite and preparation method thereof |
-
2012
- 2012-12-04 CN CN201210509599.2A patent/CN102993565B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102108187A (en) * | 2009-12-28 | 2011-06-29 | 上海日之升新技术发展有限公司 | High glowing filament environmental-friendly inflaming retarding reinforced polybutylece terephthalate (PBT)/acrylonitrile butadiene styrene (ABS) alloy material and preparation method thereof |
CN102241859A (en) * | 2010-09-30 | 2011-11-16 | 深圳市科聚新材料有限公司 | Flame-retardant reinforced PP (polypropylene)/PA (polyamide) composite material and preparation method thereof |
CN102604377A (en) * | 2012-02-17 | 2012-07-25 | 金发科技股份有限公司 | Polyamide composition with flame retardance and thermoplasticity |
CN102775771A (en) * | 2012-07-17 | 2012-11-14 | 上海日之升新技术发展有限公司 | Flame-retardant glass fiber reinforced polyamide 6/polypropylene (PA6/PP) alloy composite and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102993565A (en) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103013030B (en) | Flame-retardant glass fiber-reinforced ABS/PA6/PA66 alloy material with high CTI value and high GWIT value | |
CN102952399B (en) | Environment-friendly flame retardant glass fiber reinforced polyamide 66 (PA66) material with high comparative tracking index (CTI) value and high glow wire ignition temperature (GWIT) value and preparation method thereof | |
CN102964829B (en) | Environment-friendly and flame-retardant glass fiber reinforced PA (polyamide) 66/PPO (polyphenylene oxide) alloy material with high CTI (comparative tracking index) value and high GWIT (glow-wire ignition temperature) value and preparation method thereof | |
CN102942738B (en) | A kind of high CTI value, high GWIT value environment-protection flame-proof fiberglass strengthen PP/PPO alloy material and preparation method thereof | |
CN103013101B (en) | Flame-retardant glass fiber-reinforced PA6/PA66 alloy material with high CTI value and high GWIT value | |
CN102993565B (en) | Environment-friendly and flame-retardant glass fibre reinforced PP/PA1010 alloy material with high CTI (comparative tracking index) valve and high GWIT (glow wire ignition temperature) value and preparation method thereof | |
CN102964688B (en) | A kind of high CTI value, high GWIT value environment-protection flame-proof fiberglass strengthen PP/PA11 alloy material and preparation method thereof | |
CN103012921B (en) | Flame-retardant glass fiber-reinforced HDPE/PA66 alloy material with high CTI value and high GWIT value | |
CN102964687B (en) | A kind of high CTI value, high GWIT value environment-protection flame-proof fiberglass strengthen PP/PA6 alloy material and preparation method thereof | |
CN103013027B (en) | Flame-retardant glass fiber-reinforced ABS/PA66 alloy material with high CTI value and high GWIT value | |
CN102952338B (en) | Environment-friendly flame retardant glass fiber reinforced polypropylene/ polyamide66 (PP/ PA66) alloy material with high comparative tracking index (CTI) value and high glow wire ignition temperature (GWIT) value and preparation method thereof | |
CN102952339B (en) | A kind of high CTI value, high GWIT value environment-protection flame-proof fiberglass strengthen PP/PA12 alloy material and preparation method thereof | |
CN102936376B (en) | Environment-friendly flame-retardant glass fiber reinforced PP/PA610 (polypropylene/polyamide 610) alloy material with high CTI (comparative tracking index) value and high GWIT (glow-wire ignition temperature) value and preparation method thereof | |
CN103012927B (en) | Flame-retardant glass fiber-reinforced HDPE/PA6 alloy material with high CTI value and high GWIT value | |
CN102942740B (en) | A kind of high CTI value, high GWIT value environment-protection flame-proof fiberglass strengthen PP/PA612 alloy material and preparation method thereof | |
CN102964821B (en) | Flame-retardant glass fiber reinforced PA6 (polyamide 6)/PPO (P-Polyphenylene Oxide) alloy material and preparation method thereof | |
CN103012926B (en) | Flame-retardant glass fiber-reinforced HDPE/PA12 alloy material with high CTI value and high GWIT value | |
CN103013029B (en) | Flame-retardant glass fiber-reinforced ABS/PA6 alloy material with high CTI value and high GWIT value | |
CN102952397B (en) | Environment-friendly flame-retardant glass fiber reinforced PA6 (Polyamide 6) material and preparation method thereof | |
CN102964685B (en) | A kind of high CTI value, high GWIT value environment-protection flame-proof fiberglass strengthen PP/PA46 alloy material and preparation method thereof | |
CN102942739B (en) | A kind of high CTI value, high GWIT value environment-protection flame-proof fiberglass strengthen PP material and preparation method thereof | |
CN103012919B (en) | Flame-retardant glass fiber-reinforced HDPE/PA1010 alloy material with high CTI value and high GWIT value | |
CN103012925B (en) | Flame-retardant glass fiber-reinforced HDPE/PA11 alloy material with high CTI value and high GWIT value | |
CN103012922B (en) | Flame-retardant glass fiber-reinforced HDPE/PA46 alloy material with high CTI value and high GWIT value | |
CN103012920B (en) | Flame-retardant glass fiber-reinforced HDPE/PA612 alloy material with high CTI value and high GWIT value |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150408 Termination date: 20151204 |
|
EXPY | Termination of patent right or utility model |