CN102964478A - 负载型非茂金属催化剂、其制备方法及其应用 - Google Patents
负载型非茂金属催化剂、其制备方法及其应用 Download PDFInfo
- Publication number
- CN102964478A CN102964478A CN2011102592965A CN201110259296A CN102964478A CN 102964478 A CN102964478 A CN 102964478A CN 2011102592965 A CN2011102592965 A CN 2011102592965A CN 201110259296 A CN201110259296 A CN 201110259296A CN 102964478 A CN102964478 A CN 102964478A
- Authority
- CN
- China
- Prior art keywords
- group
- alkyl
- magnesium
- compound
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 **(C(*)(*)c1c(*)c(*)c(*)c(*)c1*)c1c(*)c(*)c(*)c(*)c1* Chemical compound **(C(*)(*)c1c(*)c(*)c(*)c(*)c1*)c1c(*)c(*)c(*)c(*)c1* 0.000 description 4
- MIJCFGVDXOVIHQ-UHFFFAOYSA-N CC(C)(C)c(cc1C(C)(C)C)cc(/C=[I]/c(cccc2)c2N(c2ccccc2)c2ccccc2)c1O Chemical compound CC(C)(C)c(cc1C(C)(C)C)cc(/C=[I]/c(cccc2)c2N(c2ccccc2)c2ccccc2)c1O MIJCFGVDXOVIHQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
本发明涉及一种负载型非茂金属催化剂及其制备方法。所述负载型非茂金属催化剂是采用化学处理剂溶液处理和沉淀镁化合物与醇及溶剂形成的镁化合物溶液后,原位负载非茂金属配体后直接干燥后得到的,其制备方法工艺简单可行,非茂金属配体的负载量可调等特点。本发明还涉及所述负载型非茂金属催化剂在烯烃均聚/共聚中的应用。所述应用具有与现有技术同比具有催化烯烃聚合助催化剂用量少、聚合活性高、共聚效应显著、聚合物堆密度高,由此所制备的超高分子量聚乙烯粘均分子量高且可调等特点。
Description
本申请基于《国家十一五支撑计划课题》在研项目。该项目得到了国家科技部的高度重视和大力支持,其目标是形成具有自主知识产权的新一代聚烯烃催化剂技术,并改善国内相关产品同质化现象,提高我国聚烯烃品种档次,促进其向多样化、系列化、专用化、高性能化的方向发展。
技术领域
本发明涉及一种非茂金属催化剂。具体而言,本发明涉及一种负载型非茂金属催化剂、其制备方法及其在烯烃均聚/共聚中的应用。
背景技术
二十世纪九十年代中后期出现的非茂金属催化剂,又称茂后催化剂,主催化剂的中心原子包括了几乎所有的过渡金属元素,在某些性能方面已经达到,甚至超过茂金属催化剂,成为继Ziegler、Ziegler-Natta和茂金属催化剂之后的第四代烯烃聚合催化剂。根据主催化剂的中心原子的不同,进一步又可区分为非茂前过渡金属(IIIB族、IVB族、VB族、VIB族、VIIB族)催化剂和非茂后过渡金属(VIII族)催化剂。由该类催化剂所制造的聚烯烃产品的性能优良,而且制造成本低。非茂金属催化剂配位原子为氧、氮、硫和磷,不含有环戊二烯基团或其衍生基团,如茚基和芴基等,其特征是中心离子具有较强的亲电性,且具有顺式烷基或卤素金属中心结构,容易进行烯烃插入和σ-键转移,中心金属容易烷基化,有利于阳离子活性中心的生成;形成的配合物具有限定的几何构型,立体选择性、电负性及手性可调节性,另外,所形成的金属-碳键容易极化,更有利于烯烃的聚合和共聚合。因此,即使在较高的聚合反应温度下也能获得较高分子量的烯烃聚合物。
但均相催化剂在烯烃聚合反应中已被证实其具有活性持续时间短、容易粘釜、高的甲基铝氧烷用量,以及得到聚合物分子量太低或太高等不足之处,仅能用于溶液聚合工艺或高压聚合工艺,严重限制了其工业应用范围。
专利ZL 01126323.7、ZL 02151294.9ZL 02110844.7和WO 03/010207公开了一种烯烃均聚/共聚催化剂或催化体系,具有广泛的烯烃均聚/共聚性能,但在该专利所公开的催化剂或催化体系在烯烃聚合时需要较高的助催化剂用量,才能获得合适的烯烃聚合活性,而且聚合过程中存在着活性持续时间短,聚合物粘釜等现象。
通常的做法是将非茂金属催化剂通过一定的负载化技术,制成负载型催化剂,从而改善烯烃的聚合性能和所得聚合物的颗粒形态。其表现为在一定程度上适当降低了催化剂的初始活性,延长催化剂的聚合活性寿命,减少甚至避免了聚合过程中的结块或暴聚现象,改善聚合物的形态,提高聚合物的表观密度,可以使其满足更多的聚合工艺过程,如气相聚合或淤浆聚合等。
已有的烯烃聚合催化剂专利大多基于茂金属催化剂,如US 4808561、US 5240894、CN 1344749A、CN 1126480A、ZL94101358.8、CN 1307594A、CN 1103069A、CN1363537A、US6444604、EP0685494、US4871705和EP0206794等,但是这些专利也都涉及将含有过渡金属的茂金属催化剂负载于处理后的载体之上。
针对专利ZL 01126323.7、ZL02151294.9ZL 02110844.7和WO 03/010207所公开的非茂金属催化剂,专利CN 1539855A、CN 1539856A、CN 1789291A、CN 1789292A、CN 1789290A、WO/2006/063501、专利ZL200510119401.x等提供了多种方式进行负载以得到负载型非茂金属催化剂,但这些专利均涉及将含有过渡金属的非茂金属有机化合物负载于处理后的载体之上。
中国专利CN200910180602.9公开了一种负载型非茂金属催化剂的制备方法,其是使镁化合物和非茂金属配合物溶解于溶剂中,干燥后得到负载型非茂金属催化剂。专利200910180605.2公开了一种负载型非茂金属催化剂的制备方法,其是使镁化合物和非茂金属配合物溶解于溶剂中,加入沉淀剂沉淀,过滤洗涤干燥后得到负载型非茂金属催化剂。这两种方法采用的是镁化合物载体,催化剂的颗粒形态难以控制,限制了由此聚合得到的聚合物颗粒形态。
中国专利CN200910180603.3、CN200910180604.8、CN200910210989.8、CN200910210986.4、CN200910210985.X、CN200910210990.0公开的负载型非茂金属催化剂制备方法与上述专利类似,均使用的是镁化合物作为载体,依然存在催化剂的颗粒形态难以控制,限制了由此聚合得到的聚合物颗粒形态。
以无水氯化镁为载体的催化剂在烯烃聚合过程中显示出较高的催化活性,但此类催化剂非常脆,在聚合反应器中容易破碎,从而导致聚合物形态不好。二氧化硅负载的催化剂具有很好的流动性,可用于气相流化床聚合,但二氧化硅负载茂金属和非茂金属催化剂则表现出较低的催化活性。因此如果将氯化镁和二氧化硅进行很好的有机结合,就可能制备出具有高催化活性,粒度大小可控及良好耐磨损强度的催化剂。
比如CN1539856A公开了一种复合载体负载的非茂金属催化剂的负载化方法,其是按照如下步骤:(1)将作为载体的多孔载体在100-1000℃、惰性气氛或减压条件下,干燥或焙烧1~24h进行热活化;(2)将镁化合物溶解于四氢呋喃-醇混合体系中形成溶液,再将热活化过的多孔固体加入到此溶液中,在0~60℃搅拌条件下充分反应形成透明体系;经过过滤洗涤、干燥和抽干后制得复合载体;或者将此透明溶液加入非极性有机溶液使之沉淀充分析出,然后过滤洗涤、干燥抽干制得复合载体;(3)将非茂金属烯烃聚合催化剂溶解于溶剂中,然后与复合载体或修饰复合载体接触12~72小时后过滤洗涤、干燥抽干成负载型非茂金属催化剂。这种方法需要先制备复合载体,再与催化剂溶液接触。
CN1789290A公开了一种负载型非茂金属催化剂的高活性负载方法,其包括如下步骤:将载体与化学活化剂作用,得到修饰载体;将镁化合物溶解于四氢呋喃-醇混合体系中形成溶液,再将修饰载体加入到此溶液中进行反应,经过滤洗涤、干燥和抽干制得复合载体;将非茂金属烯烃聚合催化剂溶解于溶剂中,然后与复合载体反应后洗涤过滤、干燥抽干,制得负载型非茂金属催化剂。这种方法是先制备出修饰载体,再与镁化合物反应得到混合载体,再与催化剂溶液接触。
专利CN101423574A公开了一种负载化非茂单中心催化剂组分及其制备方法,该方法包括:(1)氯化镁/硅胶载体的制备;(2)烷基铝氧烷/氯化镁/硅胶载体的制备和(3)负载化非茂单活性中心催化剂组分的制备。这种方法也是先制备出复合载体,再与烷基铝氧烷反应,最后与催化剂溶液接触。
EP260130提出将负载型茂金属或非茂过渡金属化合物负载于甲基铝氧烷处理的二氧化硅载体之上,这里的非茂过渡金属仅仅是指ZrCl4、TiCl4或者VOCl3,该专利认为最优的是载体表面经有机镁或镁化合物与烷基铝的混合物,但是这个过程比较复杂,需要经过许多制备步骤。
专利CN200610026765.8公开了一类单活性中心齐格勒-纳塔烯烃聚合催化剂。该催化剂以含有配位基团的水杨醛亚胺或取代的水杨醛亚胺衍生物作为给电子体,是通过向镁化合物(如氯化镁)/四氢呋喃溶液中加入经过预处理的载体(如硅胶)、金属化合物(如四氯化钛)及该给电子体进行处理后而得到的。
专利CN200610026766.2与之相类似,公开了一类含杂原子的有机化合物及其在齐格勒-纳塔催化剂中的应用。
中国专利200910180100.6、200910180607.1、200910210988.3、200910210984.5、200910210987.9、200910210991.5公开的负载型非茂金属催化剂制备方法使用的是热活化处理过的多孔载体与含有非茂金属配体、或非茂金属配合物的镁化合物溶液反应,最后再与含IVB族金属化合物的化学处理剂反应,得到负载型非茂金属催化剂。由于IVB族金属化合物是分布于催化剂表面上,聚合初期活性较高,聚合温度控制困难,也不利于聚合生产的稳定运行。
专利CN200710162667.1、CN200710162676.0和PCT/CN2008/001739公开了一种镁化合物负载型非茂金属催化剂及其制备方法,其采用镁化合物(如卤化镁、烷基镁、烷氧基镁、烷基烷氧基镁),或镁化合物经过化学处理(处理剂为烷基铝、烷氧基铝)而得到的改性镁化合物,或采用镁化合物-四氢呋喃-醇经沉淀后而得到的修饰镁化合物为载体,与非茂金属配体和活性金属化合物按不同组合先后接触,而完成的原位负载。由于镁化合物作为单一载体,导致催化剂机械强度低,在聚合过程中容易形成聚合物细粉,影响了聚合生产装置的稳定运行。
专利CN200710162666.7公开了负载型催化剂、负载型非茂金属催化剂及其制备方法,其是在有醇存在下,将镁化合物溶解于四氢呋喃溶剂中,加入多孔载体,直接干燥后与四氯化钛反应,最后再负载非茂金属配合物,催化剂活性较高,并且由此聚合得到的聚合物具有高的堆密度,但制备过程较为复杂,与以上三个专利类似的是,化学处理剂与载体反应会破坏已成型的载体结构,继而在聚合过程中产生聚合物细粉。
虽然如此,现有技术中存在的负载型非茂金属催化剂普遍存在的问题是,负载化过程复杂,一般需要进行载体的多步处理之后再负载非茂金属配合物,烯烃聚合活性低且难以调节,并且为了提高其聚合活性,在进行烯烃聚合时必须辅助较高的助催化剂用量。
因此,仍旧需要一种负载型非茂金属催化剂,其制备方法简单,适合工业化生产,并且可以克服以制备现有技术负载型非茂金属催化剂过程中存在的那些问题。
发明内容
本发明人在现有技术的基础上经过刻苦的研究发现,通过使用一种特定的制备方法来制造所述负载型非茂金属催化剂,就可以解决前述问题,并由此完成了本发明。
在本发明的负载型非茂金属催化剂的制备方法中,不添加质子授体(比如本领域常规使用的那些)。另外,在本发明的负载型非茂金属催化剂的制备方法中,不添加给电子体(比如本领域中为此而常规使用的单酯类、双酯类、二醚类、二酮类和二醇酯类等化合物)。再者,在本发明的负载型非茂金属催化剂的制备方法中,也无须苛刻的反应要求和反应条件。因此,该负载型催化剂的制备方法简单,并且非常适合于工业化生产。
具体而言,本发明涉及以下方面的内容:
1.一种负载型非茂金属催化剂的制备方法,包括以下步骤:
使镁化合物在醇的存在下溶解于第一溶剂中,获得镁化合物溶液的步骤;
使选自IVB族金属化合物的化学处理剂溶解于沉淀剂中,获得化学处理剂溶液的步骤;
向所述镁化合物溶液中加入所述化学处理剂溶液,获得修饰载体的步骤;
使非茂金属配体与所述修饰载体在第二溶剂的存在下接触,获得混合浆液的步骤;和
直接干燥所述混合浆液,获得所述负载型非茂金属催化剂的步骤。
2.按照前述任一方面所述的制备方法,其特征在于,所述镁化合物选自卤化镁、烷氧基卤化镁、烷氧基镁、烷基镁、烷基卤化镁和烷基烷氧基镁中的一种或多种,优选选自卤化镁中的一种或多种,更优选氯化镁。
3.按照前述任一方面所述的制备方法,其特征在于,所述第一溶剂选自C5-12烷烃、C5-12环烷烃、卤代C1-10烷烃、卤代C5-12环烷烃、C6-12芳香烃、卤代C6-12芳香烃、酯和醚中的一种或多种,优选选自C5-12烷烃、C5-12环烷烃、C6-12芳香烃和四氢呋喃中的一种或多种,最优选选自四氢呋喃和己烷中的一种或多种,所述醇选自C1-30脂肪醇、C6-30芳香醇和C4-30脂环醇中的一种或多种,其中所述醇任选被选自卤原子或C1-6烷氧基的取代基取代,所述醇优选选自C1-30脂肪族一元醇中的一种或多种,更优选选自乙醇、丁醇和2-乙基己醇中的一种或多种,所述第二溶剂选自C6-12芳香烃、卤代C6-12芳香烃、卤代C1-10烷烃、酯和醚中的一种或多种,优选选自甲苯、二甲苯、三甲苯、乙苯、二乙苯、氯代甲苯、氯代乙苯、溴代甲苯、溴代乙苯、二氯甲烷、二氯乙烷、乙酸乙酯和四氢呋喃中的一种或多种,更优选C6-12芳香烃、二氯甲烷和四氢呋喃中的一种或多种。
4.按照前述任一方面所述的制备方法,其特征在于,所述非茂金属配体选自具有如下化学结构式的化合物中的一种或多种:
优选选自具有如下化学结构式的化合物(A)和化合物(B)中的一种或多种:
更优选选自具有如下化学结构式的化合物(A-1)至化合物(A-4)和化合物(B-1)至化合物(B-4)中的一种或多种:
在以上所有的化学结构式中,
q为0或1;
d为0或1;
B选自氮原子、含氮基团、含磷基团或C1-C30烃基;
E选自含氮基团、含氧基团、含硫基团、含硒基团、含磷基团或氰基,其中N、O、S、Se和P各自为配位用原子;
F选自氮原子、含氮基团、含氧基团、含硫基团、含硒基团或含磷基团,其中N、O、S、Se和P各自为配位用原子;
G选自C1-C30烃基、取代的C1-C30烃基或惰性功能性基团;
Y选自含氮基团、含氧基团、含硫基团、含硒基团或含磷基团,其中N、O、S、Se和P各自为配位用原子;
Z选自含氮基团、含氧基团、含硫基团、含硒基团、含磷基团或氰基,其中N、O、S、Se和P各自为配位用原子;
→代表单键或双键;
-代表共价键或离子键;
R1至R4、R6至R36、R38和R39各自独立地选自氢、C1-C30烃基、取代的C1-C30烃基或惰性功能性基团,上述基团彼此间可以相同也可以不同,其中相邻基团可以彼此结合在一起成键或成环,优选形成芳香族环;并且
R5选自氮上孤对电子、氢、C1-C30烃基、取代的C1-C30烃基、含氧基团、含硫基团、含氮基团、含硒基团或含磷基团;当R5为含氧基团、含硫基团、含氮基团、含硒基团或含磷基团时,R5中的N、O、S、P和Se可以作为配位用原子与所述中心IVB族金属原子进行配位,
所述惰性功能性基团选自卤素、含氧基团、含氮基团、含硅基团、含锗基团、含硫基团、含锡基团、C1-C10酯基和硝基,
所述非茂金属配体进一步优选选自具有如下化学结构式的化合物中的一种或多种:
所述非茂金属配体最优选选自具有如下化学结构式的化合物中的一种或多种:
5.按照前述任一方面所述的制备方法,其特征在于,
所述卤素选自F、Cl、Br或I;
所述含氧基团选自羟基、-OR34和-T-OR34;
所述含硫基团选自-SR35、-T-SR35、-S(O)R36或-T-SO2R37;
所述含硒基团选自-SeR38、-T-SeR38、-Se(O)R39或-T-Se(O)R39;
所述基团T选自C1-C30烃基、取代的C1-C30烃基或所述惰性功能性基团;
所述R37选自氢、C1-C30烃基、取代的C1-C30烃基或所述惰性功能性基团;
所述C1-C30烃基选自C1-C30烷基、C7-C50烷芳基、C7-C50芳烷基、C3-C30环状烷基、C2-C30烯基、C2-C30炔基、C6-C30芳基、C8-C30稠环基或C4-C30杂环基,其中所述杂环基含有1-3个选自氮原子、氧原子或硫原子的杂原子;
所述取代的C1-C30烃基选自带有一个或多个所述卤素和/或所述C1-C30烷基作为取代基的所述C1-C30烃基;
所述含硅基团选自-SiR42R43R44或-T-SiR45;
所述含锗基团选自-GeR46R47R48或-T-GeR49;
所述含锡基团选自-SnR50R51R52、-T-SnR53或-T-Sn(O)R54;
所述R42至R54各自独立地选自氢、所述C1-C30烃基、所述取代的C1-C30烃基或所述惰性功能性基团,上述基团彼此间可以相同也可以不同,其中相邻基团可以彼此结合在一起成键或成环,并且
所述基团T同前述任一方面定义。
6.按照前述任一方面所述的制备方法,其特征在于,以Mg元素计的所述镁化合物与所述非茂金属配体的摩尔比为1∶0.0001-1,优选1∶0.0002-0.4,更优选1∶0.0008-0.2,进一步优选1∶0.001-0.1,所述镁化合物与所述第一溶剂的比例为1mol∶75~400ml,优选1mol∶150~300ml,更优选1mol∶200~250ml,所述沉淀剂与所述第一溶剂的体积比为1∶0.2~5,优选1∶0.5~2,更优选1∶0.8~1.5,以Mg元素计的所述镁化合物与以IVB族金属元素计的所述化学处理剂的摩尔比为1∶0.01-1,优选1∶0.01-0.50,更优选1∶0.10-0.30,并且以Mg元素计的所述镁化合物与所述醇的摩尔比为1∶0.02~4.00,优选1∶0.05~3.00,更优选1∶0.10~2.50。
7.按照前述任一方面所述的制备方法,其特征在于,所述沉淀剂选自C5-12烷烃、C5-12环烷烃、卤代C5-12烷烃和卤代C5-12环烷烃中的一种或多种,优选选自戊烷、己烷、庚烷、辛烷、壬烷、癸烷、环己烷、环戊烷、环庚烷、环癸烷、环壬烷、二氯己烷、二氯庚烷、二溴庚烷、氯代环戊烷、氯代环己烷、氯代环庚烷、氯代环辛烷、氯代环壬烷、氯代环癸烷、溴代环戊烷、溴代环己烷、溴代环庚烷、溴代环辛烷、溴代环壬烷和溴代环癸烷中的一种或多种,进一步优选选自戊烷、己烷、庚烷、癸烷和环己烷中的一种或多种,最优选己烷。
8.按照前述任一方面所述的制备方法,其特征在于,所述IVB族金属化合物选自IVB族金属卤化物、IVB族金属烷基化合物、IVB族金属烷氧基化合物、IVB族金属烷基卤化物和IVB族金属烷氧基卤化物中的一种或多种,优选选自IVB族金属卤化物中的一种或多种,更优选选自TiCl4、TiBr4、ZrCl4、ZrBr4、HfCl4和HfBr4中的一种或多种,最优选选自TiCl4和ZrCl4中的一种或多种。
9.一种负载型非茂金属催化剂,它是由按照前述任一方面所述的制备方法制造的。
10.一种烯烃均聚/共聚方法,其特征在于,以按照方面9所述的负载型非茂金属催化剂为主催化剂,以选自铝氧烷、烷基铝、卤代烷基铝、硼氟烷、烷基硼和烷基硼铵盐中的一种或多种为助催化剂,使烯烃均聚或共聚。
11.一种烯烃均聚/共聚方法,其特征在于,包括以下步骤:
按照前述任一方面所述的制备方法制造负载型非茂金属催化剂,和
以所述负载型非茂金属催化剂为主催化剂,以选自铝氧烷、烷基铝、卤代烷基铝、硼氟烷、烷基硼和烷基硼铵盐中的一种或多种为助催化剂,使烯烃均聚或共聚。
技术效果
本发明的负载型非茂金属催化剂的制备方法工艺简单可行,而且非茂金属配体及与化学处理剂原位生成的非茂金属配合物的负载量可调,可充分发挥其在催化烯烃聚合得到聚烯烃产物的性能,并且可以通过调节非茂金属配体的加入量不同从而对聚合物性能和超高分子量聚乙烯粘均分子量进行调节。
另外,通过采用不同的化学处理剂用量,可以原位获得聚合活性从低到高而可调的负载型非茂金属催化剂,由此适应不同的烯烃聚合要求,并且可以配合非茂金属配体的加入量的制备步骤从而对催化剂和聚合物性能进行调节。
同时也发现,采用本发明所获得的负载型非茂金属催化剂与助催化剂构成催化体系时,仅需要比较少的助催化剂(比如甲基铝氧烷或三乙基铝)用量,就可以获得高的烯烃聚合活性,共聚时表现出显著的共聚单体效应,即在相对同等的条件下,共聚活性高于均聚活性,而且通过催化烯烃均聚或共聚所得到的聚乙烯等聚合物具有优良的聚合物形态和高的聚合物堆积密度。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
在本发明的上下文中,除非另有明确定义,或者该含义超出了本领域技术人员的理解范围,3个碳原子以上的烃或烃衍生物基团(比如丙基、丙氧基、丁基、丁烷、丁烯、丁烯基、己烷等)在未冠以词头“正”时均具有与冠以词头“正”时相同的含义。比如,丙基一般理解为正丙基,而丁基一般理解为正丁基。
本发明涉及一种负载型非茂金属催化剂的制备方法,包括以下步骤:使镁化合物在醇的存在下溶解于第一溶剂中,获得镁化合物溶液的步骤;使选自IVB族金属化合物的化学处理剂溶解于沉淀剂中,获得化学处理剂溶液的步骤;向所述镁化合物溶液中加入所述化学处理剂溶液,获得修饰载体的步骤;使非茂金属配体与所述修饰载体在第二溶剂的存在下接触,获得混合浆液的步骤;和直接干燥所述混合浆液,获得所述负载型非茂金属催化剂的步骤。
以下对所述镁化合物进行具体的说明。
根据本发明,术语“镁化合物”使用本领域通常的概念,指的是作为负载型烯烃聚合催化剂的载体常规使用的有机或无机固体无水含镁化合物。
根据本发明,作为所述镁化合物,比如可以举出卤化镁、烷氧基卤化镁、烷氧基镁、烷基镁、烷基卤化镁和烷基烷氧基镁。
具体而言,作为所述卤化镁,比如可以举出氯化镁(MgCl2)、溴化镁(MgBr2)、碘化镁(MgI2)和氟化镁(MgF2)等,其中优选氯化镁。
作为所述烷氧基卤化镁,比如可以举出甲氧基氯化镁(Mg(OCH3)Cl)、乙氧基氯化镁(Mg(OC2H5)Cl)、丙氧基氯化镁(Mg(OC3H7)Cl)、正丁氧基氯化镁(Mg(OC4H9)Cl)、异丁氧基氯化镁(Mg(i-OC4H9)Cl)、甲氧基溴化镁(Mg(OCH3)Br)、乙氧基溴化镁(Mg(OC2H5)Br)、丙氧基溴化镁(Mg(OC3H7)Br)、正丁氧基溴化镁(Mg(OC4H9)Br)、异丁氧基溴化镁(Mg(i-OC4H9)Br)、甲氧基碘化镁(Mg(OCH3)I)、乙氧基碘化镁(Mg(OC2H5)I)、丙氧基碘化镁(Mg(OC3H7)I)、正丁氧基碘化镁(Mg(OC4H9)I)和异丁氧基碘化镁(Mg(i-OC4H9)I)等,其中优选甲氧基氯化镁、乙氧基氯化镁和异丁氧基氯化镁。
作为所述烷氧基镁,比如可以举出甲氧基镁(Mg(OCH3)2)、乙氧基镁(Mg(OC2H5)2)、丙氧基镁(Mg(OC3H7)2)、丁氧基镁(Mg(OC4H9)2)、异丁氧基镁(Mg(i-OC4H9)2)和2-乙基己氧基镁(Mg(OCH2CH(C2H5)C4H)2)等,其中优选乙氧基镁和异丁氧基镁。
作为所述烷基镁,比如可以举出甲基镁(Mg(CH3)2)、乙基镁(Mg(C2H5)2)、丙基镁(Mg(C3H7)2)、正丁基镁(Mg(C4H9)2)和异丁基镁(Mg(i-C4H9)2)等,其中优选乙基镁和正丁基镁。
作为所述烷基卤化镁,比如可以举出甲基氯化镁(Mg(CH3)Cl)、乙基氯化镁(Mg(C2H5)Cl)、丙基氯化镁(Mg(C3H7)Cl)、正丁基氯化镁(Mg(C4H9)Cl)、异丁基氯化镁(Mg(i-C4H9)Cl)、甲基溴化镁(Mg(CH3)Br)、乙基溴化镁(Mg(C2H5)Br)、丙基溴化镁(Mg(C3H7)Br)、正丁基溴化镁(Mg(C4H9)Br)、异丁基溴化镁(Mg(i-C4H9)Br)、甲基碘化镁(Mg(CH3)I)、乙基碘化镁(Mg(C2H5)I)、丙基碘化镁(Mg(C3H7)I)、正丁基碘化镁(Mg(C4H9)I)和异丁基碘化镁(Mg(i-C4H9)I)等,其中优选甲基氯化镁、乙基氯化镁和异丁基氯化镁。
作为所述烷基烷氧基镁,比如可以举出甲基甲氧基镁(Mg(OCH3)(CH3))、甲基乙氧基镁(Mg(OC2H5)(CH3))、甲基丙氧基镁(Mg(OC3H7)(CH3))、甲基正丁氧基镁(Mg(OC4H9)(CH3))、甲基异丁氧基镁(Mg(i-OC4H9)(CH3))、乙基甲氧基镁(Mg(OCH3)(C2H5))、乙基乙氧基镁(Mg(OC2H5)(C2H5))、乙基丙氧基镁(Mg(OC3H7)(C2H5))、乙基正丁氧基镁(Mg(OC4H9)(C2H5))、乙基异丁氧基镁(Mg(i-OC4H9)(C2H5))、丙基甲氧基镁(Mg(OCH3)(C3H7))、丙基乙氧基镁(Mg(OC2H5)(C3H7))、丙基丙氧基镁(Mg(OC3H7)(C3H7))、丙基正丁氧基镁(Mg(OC4H9)(C3H7))、丙基异丁氧基镁(Mg(i-OC4H9)(C3H7))、正丁基甲氧基镁(Mg(OCH3)(C4H9))、正丁基乙氧基镁(Mg(OC2H5)(C4H9))、正丁基丙氧基镁(Mg(OC3H7)(C4H9))、正丁基正丁氧基镁(Mg(OC4H9)(C4H9))、正丁基异丁氧基镁(Mg(i-OC4H9)(C4H9))、异丁基甲氧基镁(Mg(OCH3)(i-C4H9))、异丁基乙氧基镁(Mg(OC2H5)(i-C4H9))、异丁基丙氧基镁(Mg(OC3H7)(i-C4H9))、异丁基正丁氧基镁(Mg(OC4H9)(i-C4H9))和异丁基异丁氧基镁(Mg(i-OC4H9)(i-C4H9))等,其中优选丁基乙氧基镁。
这些镁化合物可以单独使用一种,也可以多种混合使用,并没有特别的限制。
在以多种混合的形式使用时,所述镁化合物混合物中的两种镁化合物之间的摩尔比比如为0.25~4∶1,优选0.5~3∶1,更优选1~2∶1。
以下对获得所述镁化合物溶液的步骤进行具体的说明。
根据该步骤,使镁化合物在醇的存在下溶解于适当的溶剂(以下称为用于溶解所述镁化合物的溶剂或第一溶剂)中,从而获得所述镁化合物溶液。
作为所述第一溶剂,比如可以举出C5-12烷烃、C5-12环烷烃、卤代C1-10烷烃、卤代C5-12环烷烃、C6-12芳香烃、卤代C6-12芳香烃、酯和醚等溶剂。
作为所述C5-12烷烃,比如可以举出戊烷、己烷、庚烷、辛烷、壬烷和癸烷等,其中优选己烷、庚烷和癸烷,最优选己烷。
作为所述C5-12环烷烃,比如可以举出环己烷、环戊烷、环庚烷、环癸烷和环壬烷等,最优选环己烷。
作为所述卤代C1-10烷烃,比如可以举出二氯甲烷、二氯己烷、二氯庚烷、三氯甲烷、三氯乙烷、三氯丁烷、二溴甲烷、二溴乙烷、二溴庚烷、三溴甲烷、三溴乙烷和三溴丁烷等。
作为所述卤代C5-12环烷烃,比如可以举出氯代环戊烷、氯代环己烷、氯代环庚烷、氯代环辛烷、氯代环壬烷、氯代环癸烷、溴代环戊烷、溴代环己烷、溴代环庚烷、溴代环辛烷、溴代环壬烷和溴代环癸烷等。
作为所述C6-12芳香烃,比如可以举出甲苯、二甲苯、三甲苯、乙苯、二乙苯。
作为所述卤代C6-12芳香烃,比如可以举出氯代甲苯、氯代乙苯、溴代甲苯、溴代乙苯等。
作为所述酯,比如可以举出甲酸甲酯、甲酸乙酯、甲酸丙酯、甲酸丁酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸甲酯、丙酸乙酯、丙酸丁酯、丁酸丁酯等。
作为所述醚,比如可以举出乙醚、甲乙醚、四氢呋喃等。
其中,优选C5-12烷烃、C5-12环烷烃、C6-12芳香烃和四氢呋喃,最优选四氢呋喃和己烷。
这些溶剂可以单独使用一种,也可以以任意的比例多种混合使用。
根据本发明,术语“醇”指的是烃链(比如C1-30烃)上的至少一个氢原子被羟基取代而获得的化合物。
作为所述醇,比如可以举出C1-30脂肪醇(优选C1-30脂肪族一元醇)、C6-30芳香醇(优选C6-30芳香族一元醇)和C4-30脂环醇(优选C4-30脂环族一元醇),其中优选C1-30脂肪族一元醇或C2-8脂肪族一元醇,更优选乙醇和丁醇。另外,所述醇可以任选被选自卤原子或C1-6烷氧基的取代基取代。
作为所述C1-30脂肪醇,比如可以举出甲醇、乙醇、丙醇、2-丙醇、丁醇、戊醇、2-甲基戊醇、2-乙基戊醇、2-己基丁醇、己醇和2-乙基己醇等,其中优选乙醇、丁醇和2-乙基己醇。
作为所述C6-30芳香醇,比如可以举出苯甲醇、苯乙醇和甲基苯甲醇等,其中优选苯乙醇。
作为所述C4-30脂环醇,比如可以举出环己醇、环戊醇、环辛醇、甲基环戊醇、乙基环戊醇、丙基环戊醇、甲基环己醇、乙基环己醇、丙基环己醇、甲基环辛醇、乙基环辛醇和丙基环辛醇等,其中优选环己醇和甲基环己醇。
作为被卤原子取代的所述醇,比如可以举出三氯甲醇、三氯乙醇和三氯己醇等,其中优选三氯甲醇。
作为被烷氧基取代的所述醇,比如可以举出乙二醇-乙醚、乙二醇-正丁醚和1-丁氧基-2-丙醇等,其中优选乙二醇-乙醚。
这些醇可以单独使用一种,也可以多种混合使用。在以多种混合的形式使用时,所述醇混合物中的任意两种醇之间的比例可以是任意确定的,并没有特别的限定。
为了制备所述镁化合物溶液,可以将所述镁化合物添加到由所述第一溶剂和所述醇形成的混合溶剂中进行溶解,或者将所述镁化合物添加到所述第一溶剂中,并同时或随后添加醇进行溶解,但并不限于此。
对所述镁化合物溶液的制备时间(即所述镁化合物的溶解时间)没有特别的限定,但一般为0.5~24h,优选4~24h。在该制备过程中,可以利用搅拌来促进所述镁化合物的溶解。该搅拌可采用任何的形式,比如搅拌桨(转速一般为10~1000转/分钟)等。根据需要,有时可以通过适当的加热(但最高温度必须低于所述第一溶剂和所述醇的沸点)来促进溶解。
以下对所述化学处理剂进行具体的说明。
根据本发明,以IVB族金属化合物作为所述化学处理剂。
作为所述IVB族金属化合物,比如可以举出选自IVB族金属卤化物、IVB族金属烷基化合物、IVB族金属烷氧基化合物、IVB族金属烷基卤化物和IVB族金属烷氧基卤化物的至少一种。
作为所述IVB族金属卤化物、所述IVB族金属烷基化合物、所述IVB族金属烷氧基化合物、所述IVB族金属烷基卤化物和所述IVB族金属烷氧基卤化物,比如可以举出如下通式(IV)结构的化合物:
M(OR1)mXnR2 4-m-n (IV)
其中:
m为0、1、2、3或4;
n为0、1、2、3或4;
M为元素周期表中IVB族金属,比如钛、锆和铪等;
X为卤素,比如F、Cl、Br和I等;并且
R1和R2各自独立地选自C1-10烷基,比如甲基、乙基、丙基、正丁基、异丁基等,R1和R2可以相同,也可以不同。
具体而言,作为所述IVB族金属卤化物,比如可以举出四氟化钛(TiF4)、四氯化钛(TiCl4)、四溴化钛(TiBr4)、四碘化钛(TiI4);
四氟化锆(ZrF4)、四氯化锆(ZrCl4)、四溴化锆(ZrBr4)、四碘化锆(ZrI4);
四氟化铪(HfF4)、四氯化铪(HfC14)、四溴化铪(HfBr4)、四碘化铪(HfI4)。
作为所述IVB族金属烷基化合物,比如可以举出四甲基钛(Ti(CH3)4)、四乙基钛(Ti(CH3CH2)4)、四异丁基钛(Ti(i-C4H9)4)、四正丁基钛(Ti(C4H9)4)、三乙基甲基钛(Ti(CH3)(CH3CH2)3)、二乙基二甲基钛(Ti(CH3)2(CH3CH2)2)、三甲基乙基钛(Ti(CH3)3(CH3CH2))、三异丁基甲基钛(Ti(CH3)(i-C4H9)3)、二异丁基二甲基钛(Ti(CH3)2(i-C4H9)2)、三甲基异丁基钛(Ti(CH3)3(i-C4H9))、三异丁基乙基钛(Ti(CH3CH2)(i-C4H9)3)、二异丁基二乙基钛(Ti(CH3CH2)2(i-C4H9)2)、三乙基异丁基钛(Ti(CH3CH2)3(i-C4H9))、三正丁基甲基钛(Ti(CH3)(C4H9)3)、二正丁基二甲基钛(Ti(CH3)2(C4H9)2)、三甲基正丁基钛(Ti(CH3)3(C4H9))、三正丁基甲基钛(Ti(CH3CH2)(C4H9)3)、二正丁基二乙基钛(Ti(CH3CH2)2(C4H9)2)、三乙基正丁基钛(Ti(CH3CH2)3(C4H9))等;
四甲基锆(Zr(CH3)4)、四乙基锆(Zr(CH3CH2)4)、四异丁基锆(Zr(i-C4H9)4)、四正丁基锆(Zr(C4H9)4)、三乙基甲基锆(Zr(CH3)(CH3CH2)3)、二乙基二甲基锆(Zr(CH3)2(CH3CH2)2)、三甲基乙基锆(Zr(CH3)3(CH3CH2))、三异丁基甲基锆(Zr(CH3)(i-C4H9)3)、二异丁基二甲基锆(Zr(CH3)2(i-C4H9)2)、三甲基异丁基锆(Zr(CH3)3(i-C4H9))、三异丁基乙基锆(Zr(CH3CH2)(i-C4H9)3)、二异丁基二乙基锆(Zr(CH3CH2)2(i-C4H9)2)、三乙基异丁基锆(Zr(CH3CH2)3(i-C4H9))、三正丁基甲基锆(Zr(CH3)(C4H9)3)、二正丁基二甲基锆(Zr(CH3)2(C4H9)2)、三甲基正丁基锆(Zr(CH3)3(C4H9))、三正丁基甲基锆(Zr(CH3CH2)(C4H9)3)、二正丁基二乙基锆(Zr(CH3CH2)2(C4H9)2)、三乙基正丁基锆(Zr(CH3CH2)3(C4H9))等;
四甲基铪(Hf(CH3)4)、四乙基铪(Hf(CH3CH2)4)、四异丁基铪(Hf(i-C4H9)4)、四正丁基铪(Hf(C4H9)4)、三乙基甲基铪(Hf(CH3)(CH3CH2)3)、二乙基二甲基铪(Hf(CH3)2(CH3CH2)2)、三甲基乙基铪(Hf(CH3)3(CH3CH2))、三异丁基甲基铪(Hf(CH3)(i-C4H9)3)、二异丁基二甲基铪(Hf(CH3)2(i-C4H9)2)、三甲基异丁基铪(Hf(CH3)3(i-C4H9))、三异丁基乙基铪(Hf(CH3CH2)(i-C4H9)3)、二异丁基二乙基铪(Hf(CH3CH2)2(i-C4H9)2)、三乙基异丁基铪(Hf(CH3CH2)3(i-C4H9))、三正丁基甲基铪(Hf(CH3)(C4H9)3)、二正丁基二甲基铪(Hf(CH3)2(C4H9)2)、三甲基正丁基铪(Hf(CH3)3(C4H9))、三正丁基甲基铪(Hf(CH3CH2)(C4H9)3)、二正丁基二乙基铪(Hf(CH3CH2)2(C4H9)2)、三乙基正丁基铪(Hf(CH3CH2)3(C4H9))等。
作为所述IVB族金属烷氧基化合物,比如可以举出四甲氧基钛(Ti(OCH3)4)、四乙氧基钛(Ti(OCH3CH2)4)、四异丁氧基钛(Ti(i-OC4H9)4)、四正丁氧基钛(Ti(OC4H9)4)、三乙氧基甲氧基钛(Ti(OCH3)(OCH3CH2)3)、二乙氧基二甲氧基钛(Ti(OCH3)2(OCH3CH2)2)、三甲氧基乙氧基钛(Ti(OCH3)3(OCH3CH2))、三异丁氧基甲氧基钛(Ti(OCH3)(i-OC4H9)3)、二异丁氧基二甲氧基钛(Ti(OCH3)2(i-OC4H9)2)、三甲氧基异丁氧基钛(Ti(OCH3)3(i-OC4H9))、三异丁氧基乙氧基钛(Ti(OCH3CH2)(i-OC4H9)3)、二异丁氧基二乙氧基钛(Ti(OCH3CH2)2(i-OC4H9)2)、三乙氧基异丁氧基钛(Ti(OCH3CH2)3(i-OC4H9))、三正丁氧基甲氧基钛(Ti(OCH3)(OC4H9)3)、二正丁氧基二甲氧基钛(Ti(OCH3)2(OC4H9)2)、三甲氧基正丁氧基钛(Ti(OCH3)3(OC4H9))、三正丁氧基甲氧基钛(Ti(OCH3CH2)(OC4H9)3)、二正丁氧基二乙氧基钛(Ti(OCH3CH2)2(OC4H9)2)、三乙氧基正丁氧基钛(Ti(OCH3CH2)3(OC4H9))等;
四甲氧基锆(Zr(OCH3)4)、四乙氧基锆(Zr(OCH3CH2)4)、四异丁氧基锆(Zr(i-OC4H9)4)、四正丁氧基锆(Zr(OC4H9)4)、三乙氧基甲氧基锆(Zr(OCH3)(OCH3CH2)3)、二乙氧基二甲氧基锆(Zr(OCH3)2(OCH3CH2)2)、三甲氧基乙氧基锆(Zr(OCH3)3(OCH3CH2))、三异丁氧基甲氧基锆(Zr(OCH3)(i-OC4H9)3)、二异丁氧基二甲氧基锆(Zr(OCH3)2(i-OC4H9)2)、三甲氧基异丁氧基锆(Zr(OCH3)3(i-C4H9))、三异丁氧基乙氧基锆(Zr(OCH3CH2)(i-OC4H9)3)、二异丁氧基二乙氧基锆(Zr(OCH3CH2)2(i-OC4H9)2)、三乙氧基异丁氧基锆(Zr(OCH3CH2)3(i-OC4H9))、三正丁氧基甲氧基锆(Zr(OCH3)(OC4H9)3)、二正丁氧基二甲氧基锆(Zr(OCH3)2(OC4H9)2)、三甲氧基正丁氧基锆(Zr(OCH3)3(OC4H9))、三正丁氧基甲氧基锆(Zr(OCH3CH2)(OC4H9)3)、二正丁氧基二乙氧基锆(Zr(OCH3CH2)2(OC4H9)2)、三乙氧基正丁氧基锆(Zr(OCH3CH2)3(OC4H9))等;
四甲氧基铪(Hf(OCH3)4)、四乙氧基铪(Hf(OCH3CH2)4)、四异丁氧基铪(Hf(i-OC4H9)4)、四正丁氧基铪(Hf(OC4H9)4)、三乙氧基甲氧基铪(Hf(OCH3)(OCH3CH2)3)、二乙氧基二甲氧基铪(Hf(OCH3)2(OCH3CH2)2)、三甲氧基乙氧基铪(Hf(OCH3)3(OCH3CH2))、三异丁氧基甲氧基铪(Hf(OCH3)(i-OC4H9)3)、二异丁氧基二甲氧基铪(Hf(OCH3)2(i-OC4H9)2)、三甲氧基异丁氧基铪(Hf(OCH3)3(i-OC4H9))、三异丁氧基乙氧基铪(Hf(OCH3CH2)(i-OC4H9)3)、二异丁氧基二乙氧基铪(Hf(OCH3CH2)2(i-OC4H9)2)、三乙氧基异丁氧基铪(Hf(OCH3CH2)3(i-C4H9))、三正丁氧基甲氧基铪(Hf(OCH3)(OC4H9)3)、二正丁氧基二甲氧基铪(Hf(OCH3)2(OC4H9)2)、三甲氧基正丁氧基铪(Hf(OCH3)3(OC4H9))、三正丁氧基甲氧基铪(Hf(OCH3CH2)(OC4H9)3)、二正丁氧基二乙氧基铪(Hf(OCH3CH2)2(OC4H9)2)、三乙氧基正丁氧基铪(Hf(OCH3CH2)3(OC4H9))等。
作为所述IVB族金属烷基卤化物,比如可以举出三甲基氯化钛(TiCl(CH3)3)、三乙基氯化钛(TiCl(CH3CH2)3)、三异丁基氯化钛(TiCl(i-C4H9)3)、三正丁基氯化钛(TiCl(C4H9)3)、二甲基二氯化钛(TiCl2(CH3)2)、二乙基二氯化钛(TiCl2(CH3CH2)2)、二异丁基二氯化钛(TiCl2(i-C4H9)2)、三正丁基氯化钛(TiCl(C4H9)3)、甲基三氯化钛(Ti(CH3)Cl3)、乙基三氯化钛(Ti(CH3CH2)Cl3)、异丁基三氯化钛(Ti(i-C4H9)Cl3)、正丁基三氯化钛(Ti(C4H9)Cl3);
三甲基溴化钛(TiBr(CH3)3)、三乙基溴化钛(TiBr(CH3CH2)3)、三异丁基溴化钛(TiBr(i-C4H9)3)、三正丁基溴化钛(TiBr(C4H9)3)、二甲基二溴化钛(TiBr2(CH3)2)、二乙基二溴化钛(TiBr2(CH3CH2)2)、二异丁基二溴化钛(TiBr2(i-C4H9)2)、三正丁基溴化钛(TiBr(C4H9)3)、甲基三溴化钛(Ti(CH3)Br3)、乙基三溴化钛(Ti(CH3CH2)Br3)、异丁基三溴化钛(Ti(i-C4H9)Br3)、正丁基三溴化钛(Ti(C4H9)Br3);
三甲基氯化锆(ZrCl(CH3)3)、三乙基氯化锆(ZrCl(CH3CH2)3)、三异丁基氯化锆(ZrCl(i-C4H9)3)、三正丁基氯化锆(ZrCl(C4H9)3)、二甲基二氯化锆(ZrCl2(CH3)2)、二乙基二氯化锆(ZrCl2(CH3CH2)2)、二异丁基二氯化锆(ZrCl2(i-C4H9)2)、三正丁基氯化锆(ZrCl(C4H9)3)、甲基三氯化锆(Zr(CH3)Cl3)、乙基三氯化锆(Zr(CH3CH2)Cl3)、异丁基三氯化锆(Zr(i-C4H9)Cl3)、正丁基三氯化锆(Zr(C4H9)Cl3);
三甲基溴化锆(ZrBr(CH3)3)、三乙基溴化锆(ZrBr(CH3CH2)3)、三异丁基溴化锆(ZrBr(i-C4H9)3)、三正丁基溴化锆(ZrBr(C4H9)3)、二甲基二溴化锆(ZrBr2(CH3)2)、二乙基二溴化锆(ZrBr2(CH3CH2)2)、二异丁基二溴化锆(ZrBr2(i-C4H9)2)、三正丁基溴化锆(ZrBr(C4H9)3)、甲基三溴化锆(Zr(CH3)Br3)、乙基三溴化锆(Zr(CH3CH2)Br3)、异丁基三溴化锆(Zr(i-C4H9)Br3)、正丁基三溴化锆(Zr(C4H9)Br3);
三甲基氯化铪(HfCl(CH3)3)、三乙基氯化铪(HfCl(CH3CH2)3)、三异丁基氯化铪(HfCl(i-C4H9)3)、三正丁基氯化铪(HfCl(C4H9)3)、二甲基二氯化铪(HfCl2(CH3)2)、二乙基二氯化铪(HfCl2(CH3CH2)2)、二异丁基二氯化铪(HfCl2(i-C4H9)2)、三正丁基氯化铪(HfCl(C4H9)3)、甲基三氯化铪(Hf(CH3)Cl3)、乙基三氯化铪(Hf(CH3CH2)Cl3)、异丁基三氯化铪(Hf(i-C4H9)Cl3)、正丁基三氯化铪(Hf(C4H9)Cl3);
三甲基溴化铪(HfBr(CH3)3)、三乙基溴化铪(HfBr(CH3CH2)3)、三异丁基溴化铪(HfBr(i-C4H9)3)、三正丁基溴化铪(HfBr(C4H9)3)、二甲基二溴化铪(HfBr2(CH3)2)、二乙基二溴化铪(HfBr2(CH3CH2)2)、二异丁基二溴化铪(HfBr2(i-C4H9)2)、三正丁基溴化铪(HfBr(C4H9)3)、甲基三溴化铪(Hf(CH3)Br3)、乙基三溴化铪(Hf(CH3CH2)Br3)、异丁基三溴化铪(Hf(i-C4H9)Br3)、正丁基三溴化铪(Hf(C4H9)Br3)。
作为所述IVB族金属烷氧基卤化物,比如可以举出三甲氧基氯化钛(TiCl(OCH3)3)、三乙氧基氯化钛(TiCl(OCH3CH2)3)、三异丁氧基氯化钛(TiCl(i-OC4H9)3)、三正丁氧基氯化钛(TiCl(OC4H9)3)、二甲氧基二氯化钛(TiCl2(OCH3)2)、二乙氧基二氯化钛(TiCl2(OCH3CH2)2)、二异丁氧基二氯化钛(TiCl2(i-OC4H9)2)、三正丁氧基氯化钛(TiCl(OC4H9)3)、甲氧基三氯化钛(Ti(OCH3)Cl3)、乙氧基三氯化钛(Ti(OCH3CH2)Cl3)、异丁氧基三氯化钛(Ti(i-C4H9)Cl3)、正丁氧基三氯化钛(Ti(OC4H9)Cl3);
三甲氧基溴化钛(TiBr(OCH3)3)、三乙氧基溴化钛(TiBr(OCH3CH2)3)、三异丁氧基溴化钛(TiBr(i-OC4H9)3)、三正丁氧基溴化钛(TiBr(OC4H9)3)、二甲氧基二溴化钛(TiBr2(OCH3)2)、二乙氧基二溴化钛(TiBr2(OCH3CH2)2)、二异丁氧基二溴化钛(TiBr2(i-OC4H9)2)、三正丁氧基溴化钛(TiBr(OC4H9)3)、甲氧基三溴化钛(Ti(OCH3)Br3)、乙氧基三溴化钛(Ti(OCH3CH2)Br3)、异丁氧基三溴化钛(Ti(i-C4H9)Br3)、正丁氧基三溴化钛(Ti(OC4H9)Br3);
三甲氧基氯化锆(ZrCl(OCH3)3)、三乙氧基氯化锆(ZrCl(OCH3CH2)3)、三异丁氧基氯化锆(ZrCl(i-OC4H9)3)、三正丁氧基氯化锆(ZrCl(OC4H9)3)、二甲氧基二氯化锆(ZrCl2(OCH3)2)、二乙氧基二氯化锆(ZrCl2(OCH3CH2)2)、二异丁氧基二氯化锆(ZrCl2(i-OC4H9)2)、三正丁氧基氯化锆(ZrCl(OC4H9)3)、甲氧基三氯化锆(Zr(OCH3)Cl3)、乙氧基三氯化锆(Zr(OCH3CH2)Cl3)、异丁氧基三氯化锆(Zr(i-C4H9)Cl3)、正丁氧基三氯化锆(Zr(OC4H9)Cl3);
三甲氧基溴化锆(ZrBr(OCH3)3)、三乙氧基溴化锆(ZrBr(OCH3CH2)3)、三异丁氧基溴化锆(ZrBr(i-OC4H9)3)、三正丁氧基溴化锆(ZrBr(OC4H9)3)、二甲氧基二溴化锆(ZrBr2(OCH3)2)、二乙氧基二溴化锆(ZrBr2(OCH3CH2)2)、二异丁氧基二溴化锆(ZrBr2(i-OC4H9)2)、三正丁氧基溴化锆(ZrBr(OC4H9)3)、甲氧基三溴化锆(Zr(OCH3)Br3)、乙氧基三溴化锆(Zr(OCH3CH2)Br3)、异丁氧基三溴化锆(Zr(i-C4H9)Br3)、正丁氧基三溴化锆(Zr(OC4H9)Br3);
三甲氧基氯化铪(HfCl(OCH3)3)、三乙氧基氯化铪(HfCl(OCH3CH2)3)、三异丁氧基氯化铪(HfCl(i-OC4H9)3)、三正丁氧基氯化铪(HfCl(OC4H9)3)、二甲氧基二氯化铪(HfCl2(OCH3)2)、二乙氧基二氯化铪(HfCl2(OCH3CH2)2)、二异丁氧基二氯化铪(HfCl2(i-OC4H9)2)、三正丁氧基氯化铪(HfCl(OC4H9)3)、甲氧基三氯化铪(Hf(OCH3)Cl3)、乙氧基三氯化铪(Hf(OCH3CH2)Cl3)、异丁氧基三氯化铪(Hf(i-C4H9)Cl3)、正丁氧基三氯化铪(Hf(OC4H9)Cl3);
三甲氧基溴化铪(HfBr(OCH3)3)、三乙氧基溴化铪(HfBr(OCH3CH2)3)、三异丁氧基溴化铪(HfBr(i-OC4H9)3)、三正丁氧基溴化铪(HfBr(OC4H9)3)、二甲氧基二溴化铪(HfBr2(OCH3)2)、二乙氧基二溴化铪(HfBr2(OCH3CH2)2)、二异丁氧基二溴化铪(HfBr2(i-OC4H9)2)、三正丁氧基溴化铪(HfBr(OC4H9)3)、甲氧基三溴化铪(Hf(OCH3)Br3)、乙氧基三溴化铪(Hf(OCH3CH2)Br3)、异丁氧基三溴化铪(Hf(i-C4H9)Br3)、正丁氧基三溴化铪(Hf(OC4H9)Br3)。
作为所述IVB族金属化合物,优选所述IVB族金属卤化物,更优选TiCl4、TiBr4、ZrCl4、ZrBr4、HfCl4和HfBr4,最优选TiCl4和ZrCl4。
这些IVB族金属化合物可以单独使用一种,或者以任意的比例组合使用多种。
为了制备所述化学处理剂溶液,使所述化学处理剂溶解于沉淀剂中。根据本发明,术语“沉淀剂”使用本领域通常的概念,指的是能够降低固形物溶质(比如所述镁化合物等)在其溶液中的溶解度并进而使其从所述溶液中以固体形式析出的化学惰性液体。
根据本发明,作为所述沉淀剂,比如可以举出对于待沉淀的固形物溶质(比如镁化合物)而言为不良溶剂,而对于用于溶解所述固形物溶质(比如镁化合物)的所述溶剂而言为良溶剂的溶剂。另外,该沉淀剂对所述IVB族金属化合物具有溶解能力。
具体而言,所述沉淀剂选自C5-12烷烃、C5-12环烷烃、卤代C5-12烷烃和卤代C5-12环烷烃中的一种或多种,优选选自戊烷、己烷、庚烷、辛烷、壬烷、癸烷、环己烷、环戊烷、环庚烷、环癸烷、环壬烷、二氯己烷、二氯庚烷、二溴庚烷、氯代环戊烷、氯代环己烷、氯代环庚烷、氯代环辛烷、氯代环壬烷、氯代环癸烷、溴代环戊烷、溴代环己烷、溴代环庚烷、溴代环辛烷、溴代环壬烷和溴代环癸烷中的一种或多种,进一步优选选自戊烷、己烷、庚烷、癸烷和环己烷中的一种或多种,最优选己烷。
这些沉淀剂可以单独使用一种,或者以任意的比例组合使用多种。
通过使所述IVB族金属化合物溶解于所述沉淀剂中,即可获得化学处理剂溶液。
接着,向所述镁化合物溶液中计量加入所述化学处理剂溶液,使固形物从该镁化合物溶液中沉淀出来,同时实现化学处理剂对该镁化合物溶液(实际上是该镁化合物溶液中的固形物)的化学处理(沉淀/化学处理)。
化学处理剂溶液的加入方式可以为一次性加入或者滴加,优选滴加。在该沉淀/化学处理过程中,可以利用搅拌来促进化学处理剂溶液的分散,从而有利于固体产物的最终沉淀和化学处理剂的充分化学处理。该搅拌可采用任何形式(比如搅拌桨),而转速一般为10~1000转/分钟等。
该沉淀/化学处理过程一般在-30~60℃(优选-20~30℃)的温度下进行0.5~24小时,优选1~8小时,更优选2~6小时。
完全沉淀后,对所获得的固体产物进行过滤、洗涤和干燥,由此获得修饰载体。对于所述过滤、洗涤和干燥的方法并没有特别的限定,可以根据需要使用本领域常规使用的那些。
根据需要,所述洗涤一般进行1~6次,优选3~4次。其中,洗涤用溶剂优选使用与所使用的沉淀剂相同的,但也可以不同。
所述干燥可以采用常规方法进行,比如惰性气体干燥法、真空干燥法或者真空下加热干燥法,优选惰性气体干燥法或真空下加热干燥法,最优选真空下加热干燥法。
所述干燥的温度范围一般为常温至140℃。干燥时间一般为2-20小时,但是也可以根据具体使用的用于溶解所述镁化合物的溶剂情况有所不同。比如,在采用四氢呋喃作为用于溶解所述镁化合物的溶剂时,干燥温度一般为80℃左右,在真空下干燥2~12小时即可,而在采用甲苯作为用于溶解所述镁化合物的溶剂时,干燥温度一般为100℃左右,在真空下干燥4~24小时即可。
根据本发明,术语“非茂金属配合物”是一种相对于茂金属催化剂而言的单中心烯烃聚合催化剂,结构中不含有茂环、芴环或茚环等环戊二烯基或其衍生物,并且在与助催化剂(比如下文所述的那些)组合时能够显示出烯烃聚合催化活性的金属有机化合物(因此所述非茂金属配合物有时也被称为非茂金属烯烃聚合性配合物)。该化合物包含中心金属原子和至少一个与所述中心金属原子以配位键结合的多齿配体(优选三齿配体或更多齿配体),而术语“非茂金属配体”即为前述的多齿配体。
根据本发明,所述非茂金属配体选自具有如下化学结构式的化合物:
根据本发明,该化合物中的基团A、D和E(配位用基团)通过其所含的配位用原子(比如N、O、S、Se和P等杂原子)与本发明中作为化学处理剂使用的IVB族金属化合物所含的IVB族金属原子发生配位反应而形成配位键,由此形成以该IVB族金属原子为中心金属原子的配合物(即本发明所述的非茂金属配合物)。
在一个更为具体的实施方案中,所述非茂金属配体选自具有如下化学结构式的化合物(A)和化合物(B):
在一个更为具体的实施方案中,所述非茂金属配体选自具有如下化学结构式的化合物(A-1)至化合物(A-4)和化合物(B-1)至化合物(B-4):
在以上所有化学结构式中,
q为0或1;
d为0或1;
B选自氮原子、含氮基团、含磷基团或C1-C30烃基;
E选自含氮基团、含氧基团、含硫基团、含硒基团、含磷基团或氰基(-CN),其中N、O、S、Se和P各自为配位用原子;
F选自氮原子、含氮基团、含氧基团、含硫基团、含硒基团或含磷基团,其中N、O、S、Se和P各自为配位用原子;
G选自C1-C30烃基、取代的C1-C30烃基或惰性功能性基团;
Y选自含氮基团、含氧基团、含硫基团、含硒基团或含磷基团,其中N、O、S、Se和P各自为配位用原子;
Z选自含氮基团、含氧基团、含硫基团、含硒基团、含磷基团或氰基(-CN),比如可以举出-NR23R24、-N(O)R25R26、-PR28R29、-P(O)R30R31、-OR34、-SR35、-S(O)R36、-SeR38或-Se(O)R39,其中N、O、S、Se和P各自为配位用原子;
→代表单键或双键;
-代表共价键或离子键。
R1至R4、R6至R36、R38和R39各自独立地选自氢、C1-C30烃基、取代的C1-C30烃基(其中优选卤代烃基,比如-CH2Cl和-CH2CH2Cl)或惰性功能性基团。上述基团彼此间可以相同也可以不同,其中相邻基团比如R1与R2,R6与R7,R7与R8,R8与R9,R13与R14,R14与R15,R15与R16,R18与R19,R19与R20,R20与R21,R23与R24,或者R25与R26等可以彼此结合在一起成键或成环,优选形成芳香族环,比如未取代的苯环或被1-4个C1-C30烃基、取代的C1-C30烃基(其中优选卤代烃基,比如-CH2Cl和-CH2CH2Cl)或惰性功能性基团取代的苯环。
R5选自氮上孤对电子、氢、C1-C30烃基、取代的C1-C30烃基、含氧基团、含硫基团、含氮基团、含硒基团或含磷基团。当R5为含氧基团、含硫基团、含氮基团、含硒基团或含磷基团时,R5中的N、O、S、P和Se可以作为配位用原子与所述中心IVB族金属原子进行配位。
根据本发明,在前述所有的化学结构式中,根据具体情况,任何相邻的两个或多个基团,比如R21与基团Z,或者R13与基团Y,可以彼此结合在一起成环,优选形成包含来自于所述基团Z或Y的杂原子的C6-C30芳香族杂环,比如吡啶环等,其中所述芳香族杂环任选被1个或多个选自C1-C30烃基、取代的C1-C30烃基和惰性功能性基团的取代基取代。
在本发明的上下文中,
所述卤素选自F、Cl、Br或I。所述含氮基团选自-NR23R24、-T-NR23R24或-N(O)R25R26。所述含磷基团选自-PR28R29、-P(O)R30R31或-P(O)R32(OR33)。所述含氧基团选自羟基、-OR34和-T-OR34。所述含硫基团选自-SR35、-T-SR35、-S(O)R36或-T-SO2R37。所述含硒基团选自-SeR38、-T-SeR38、-Se(O)R39或-T-Se(O)R39。所述基团T选自C1-C30烃基、取代的C1-C30烃基或惰性功能性基团。所述R37选自氢、C1-C30烃基、取代的C1-C30烃基或惰性功能性基团。
在本发明的上下文中,所述C1-C30烃基选自C1-C30烷基(优选C1-C6烷基,比如异丁基)、C7-C50烷芳基(比如甲苯基、二甲苯基、二异丁基苯基等)、C7-C50芳烷基(比如苄基)、C3-C30环状烷基、C2-C30烯基、C2-C30炔基、C6-C30芳基(比如苯基、萘基、蒽基等)、C8-C30稠环基或C4-C30杂环基,其中所述杂环基含有1-3个选自氮原子、氧原子或硫原子的杂原子,比如吡啶基、吡咯基、呋喃基或噻吩基等。
根据本发明,在本发明的上下文中,根据与其所结合的相关基团的具体情况,所述C1-C30烃基有时指的是C1-C30烃二基(二价基团,或者称为C1-C30亚烃基)或C1-C30烃三基(三价基团),这对于本领域技术人员而言是显然的。
在本发明的上下文中,所述取代的C1-C30烃基指的是带有一个或多个惰性取代基的前述C1-C30烃基。所谓惰性取代基,指的是这些取代基对前述配位用基团(指的是前述基团A、D、E、F、Y和Z,或者还任选包括R5)与中心金属原子(前述IVB族金属原子)的配位过程没有实质性的干扰;换句话说,受本发明配体的化学结构所限,这些取代基没有能力或没有机会(比如受到位阻等的影响)与所述IVB族金属原子发生配位反应而形成配位键。一般而言,所述惰性取代基选自前述的卤素或C1-C30烷基(优选C1-C6烷基,比如异丁基)。
在本发明的上下文中,所述惰性功能性基团不包括前述的C1-C30烃基和前述的取代的C1-C30烃基。作为所述惰性功能性基团,比如可以举出选自前述卤素、前述含氧基团、前述含氮基团、含硅基团、含锗基团、前述含硫基团、含锡基团、C1-C10酯基和硝基(-NO2)的至少一种等。
在本发明的上下文中,受本发明配体的化学结构所限,所述惰性功能性基团具有以下特点:
(1)不干扰所述基团A、D、E、F、Y或Z与所述ⅣB族金属原子的配位过程,和
(2)与所述IVB族金属原子的配位能力低于所述A、D、E、F、Y和Z基团,并且不置换这些基团与所述ⅣB族金属原子的已有配位。
在本发明的上下文中,所述含硅基团选自-SiR42R43R44或-T-SiR45;所述含锗基团选自-GeR46R47R48或-T-GeR49;所述含锡基团选自-SnR50R51R52、-T-SnR53或-T-Sn(O)R54;并且所述R42至R54各自独立地选自氢、前述的C1-C30烃基、前述的取代的C1-C30烃基或前述的惰性功能性基团,上述基团彼此间可以相同也可以不同,其中相邻基团可以彼此结合在一起成键或成环。其中基团T的定义同前。
作为所述非茂金属配体,比如可以举出如下化合物:
所述非茂金属配体优选选自如下化合物:
所述非茂金属配体进一步优选选自如下化合物:
所述非茂金属配体更优选选自如下化合物:
这些非茂金属配体可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,所述非茂金属配体并不是本领域中作为电子给体化合物通常使用的二醚化合物。
所述非茂金属配体可以按照本领域技术人员已知的任何方法进行制造。关于其制造方法的具体内容,比如可参见WO03/010207以及中国专利ZL01126323.7和ZL02110844.7等,本说明书就此引入这些文献的全文作为参考。
接着,使所述修饰载体与所述非茂金属配体在第二溶剂的存在下接触(接触反应),即可获得所述混合浆液。
在制造所述混合浆液时,对所述修饰载体与所述非茂金属配体(以及所述第二溶剂)的接触方式和接触顺序等没有特别的限定,比如可以举出使所述修饰载体与所述非茂金属配体先混合,然后再向其中加入所述第二溶剂的方案;或者使所述非茂金属配体溶解在所述第二溶剂中,由此制造非茂金属配体溶液,然后再使所述修饰载体与所述非茂金属配体溶液混合的方案等等,其中优选后者。
根据本发明,使所述修饰载体与所述非茂金属配体进行所述接触反应,导致所述非茂金属配体与该修饰载体上所含的前述化学处理剂发生配位反应,从而在该修饰载体上原位生成以该IVB族金属原子为中心金属原子的非茂金属配合物(原位负载化反应),这是本发明的一大特征。
另外,为了制造所述混合浆液,比如可以在常温至低于所使用的任何溶剂的沸点的温度下,使所述修饰载体与所述非茂金属配体在所述第二溶剂存在下的接触反应(必要时借助搅拌)进行0.5~24小时,优选1~8小时,更优选2~6小时即可。
此时,所获得的混合浆液是一种浆状的体系。虽然并不必需,但为了确保体系的均匀性,该混合浆液在制备后优选进行一定时间(2~48h,优选4~24h,最优选6~18h)的密闭静置。
根据本发明,在制造所述混合浆液时,对所述第二溶剂(以下有时称为溶解非茂金属配体用溶剂)没有特别的限定,只要其可以溶解所述非茂金属配体即可。作为所述第二溶剂,比如可以举出C6-12芳香烃、卤代C6-12芳香烃、卤代C1-10烷烃,酯和醚中的一种或多种。具体比如可以举出甲苯、二甲苯、三甲苯、乙苯、二乙苯、氯代甲苯、氯代乙苯、溴代甲苯、溴代乙苯、二氯甲烷、二氯乙烷、乙酸乙酯和四氢呋喃等。其中,优选C6-12芳香烃、四氢呋喃和二氯甲烷。
这些溶剂可以单独使用一种,或者以任意的比例组合使用多种。
在制造所述混合浆液或所述非茂金属配体溶液时,可以根据需要使用搅拌(该搅拌的转速一般为10~500转/分钟)。
根据本发明,对所述第二溶剂的用量没有任何的限定,只要是足以实现所述修饰载体与所述非茂金属配体充分接触的量即可。比如,方便的是,所述非茂金属配体相对于所述第二溶剂的比例一般为0.02~0.30克/毫升,优选0.05~0.15克/毫升,但有时并不限于此。
接着,通过对所述混合浆液直接干燥,可以获得一种流动性良好的固体产物,即本发明的负载型非茂金属催化剂。
此时,所述直接干燥可以采用常规方法进行,比如惰性气体气氛下干燥、真空气氛下干燥或者真空气氛下加热干燥等,其中优选真空气氛下加热干燥。所述干燥一般在比所述混合浆液中含有的任何溶剂的沸点低5~15℃的温度(一般为30~160℃,优选60~130℃)下进行,而干燥时间一般为2~24h,但有时并不限于此。
根据本发明,作为所述非茂金属配体的用量,使得以Mg元素计的所述镁化合物(固体)与所述非茂金属配体的摩尔比达到1∶0.0001-1,优选1∶0.0002-0.4,更优选1∶0.0008-0.2,进一步优选1∶0.001-0.1。
根据本发明,作为所述用于溶解所述镁化合物的溶剂(第一溶剂)的用量,使得所述镁化合物(固体)与所述第一溶剂的比例达到1mol∶75~400ml,优选1mol∶150~300ml,更优选1mol∶200~250ml。
根据本发明,作为所述化学处理剂的用量,使得以Mg元素计的所述镁化合物(固体)与以IVB族金属(比如Ti)元素计的所述化学处理剂的摩尔比达到1∶0.01-1,优选1∶0.01-0.50,更优选1∶0.10-0.30。
根据本发明,作为与所述用于溶解所述镁化合物的溶剂(第一溶剂)配合使用的所述醇的用量,使得以Mg元素计的所述镁化合物(固体)与所述醇的摩尔比达到1∶0.02~4.00,优选1∶0.05~3.00,更优选1∶0.10~2.50。
根据本发明,作为所述沉淀剂的用量,使得所述沉淀剂与所述用于溶解所述镁化合物的溶剂(第一溶剂)的体积比为1∶0.2~5,优选1∶0.5~2,更优选1∶0.8~1.5。
根据本发明提供的非茂金属配体与化学处理剂的原位反应生成具有烯烃聚合活性的非茂金属配合物,其非茂金属配体摩尔加入量应不高于化学处理剂摩尔加入量。
本领域的技术人员已知的是,前述所有的方法步骤均优选在基本上无水无氧的条件下进行。这里所说的基本上无水无氧指的是体系中水和氧的含量持续小于100ppm。而且,本发明的负载型非茂金属催化剂在制备后通常需要在密闭条件下微正压惰性气体(比如氮气、氩气、氦气等)存在下保存备用。
在一个实施方案中,本发明还涉及由前述的负载型非茂金属催化剂的制备方法制造的负载型非茂金属催化剂(有时也称为负载型非茂金属烯烃聚合催化剂)。
在一个进一步的实施方案中,本发明涉及一种烯烃均聚/共聚方法,其中以本发明的负载型非茂金属催化剂作为烯烃聚合用催化剂,使烯烃均聚或共聚。
就本发明所涉及的该烯烃均聚/共聚方法而言,除了以下特别指出的内容以外,其他未言明的内容(比如聚合用反应器、烯烃用量、催化剂和烯烃的添加方式等),可以直接适用本领域常规已知的那些,并没有特别的限制,在此省略其说明。
根据本发明的均聚/共聚方法,以本发明的负载型非茂金属催化剂为主催化剂,以选自铝氧烷、烷基铝、卤代烷基铝、硼氟烷、烷基硼和烷基硼铵盐中的一种或多种为助催化剂,使烯烃均聚或共聚。
主催化剂和助催化剂向聚合反应体系中的加入方式可以是先加主催化剂,然后再加入助催化剂,或者先加入助催化剂,然后再加入主催化剂,或者是两者先接触混合后一起加入,或者分别同时加入。将主催化剂和助催化剂分别加入时既可以在同一加料管路中依次加入,也可以在多路加料管路中依次加入,而两者分别同时加入时应选择多路加料管路。对于连续式聚合反应来说,优选多路加料管路同时连续加入,而对于间歇式聚合反应来说,优选两者先混合后在同一加料管路中一起加入,或者在同一加料管路中先加入助催化剂,然后再加入主催化剂。
根据本发明,对所述烯烃均聚/共聚方法的反应方式没有特别的限定,可以采用本领域公知的那些,比如可以举出淤浆法、本体法和气相法等,其中优选淤浆法和气相法。
根据本发明,作为所述烯烃,比如可以举出C2~C10单烯烃、双烯烃、环状烯烃和其他烯键式不饱和化合物。
具体而言,作为所述C2~C12单烯烃,比如可以举出乙烯、丙烯、1-丁烯、1-己烯、1-庚烯、4-甲基-1-戊烯、1-辛烯、1-癸烯、1-十一烯、1-十二烯和苯乙烯等;作为所述环状烯烃,比如可以举出1-环戊烯和降冰片烯等;作为所述双烯烃,比如可以举出1,4-丁二烯、2,5-戊二烯、1,6-己二烯、降冰片二烯和1,7-辛二烯等;并且作为所述其他烯键式不饱和化合物,比如可以举出醋酸乙烯酯和(甲基)丙烯酸酯等。其中,优选乙烯的均聚,或者乙烯与丙烯、1-丁烯或1-己烯的共聚。
根据本发明,均聚指的是仅一种所述烯烃的聚合,而共聚指的是两种以上所述烯烃之间的聚合。
根据本发明,所述助催化剂选自铝氧烷、烷基铝、卤代烷基铝、硼氟烷、烷基硼和烷基硼铵盐,其中优选铝氧烷和烷基铝。
作为所述铝氧烷,比如可以举出下述通式(I-1)所示的线型铝氧烷:(R)(R)Al-(Al(R)-O)n-O-Al(R)(R),以及下述通式(II-1)所示的环状铝氧烷:-(Al(R)-O-)n+2-。
在前述通式中,基团R彼此相同或不同(优选相同),各自独立地选自C1-C8烷基,优选甲基、乙基和异丁基,最优选甲基。n为1-50范围内的任意整数,优选10~30范围内的任意整数。
作为所述铝氧烷,优选甲基铝氧烷、乙基铝氧烷、异丁基铝氧烷和正丁基铝氧烷,进一步优选甲基铝氧烷和异丁基铝氧烷,并且最优选甲基铝氧烷。
这些铝氧烷可以单独使用一种,或者以任意的比例组合使用多种。
作为所述烷基铝,比如可以举出如下通式(III)所示的化合物:
Al(R)3 (III)
其中,基团R彼此相同或不同(优选相同),并且各自独立地选自C1-C8烷基,优选甲基、乙基和异丁基,最优选甲基。
具体而言,作为所述烷基铝,比如可以举出三甲基铝(Al(CH3)3)、三乙基铝(Al(CH3CH2)3)、三正丙基铝(Al(C3H7)3)、三异丁基铝(Al(i-C4H9)3)、三正丁基铝(Al(C4H9)3)、三异戊基铝(Al(i-C5H11)3)、三正戊基铝(Al(C5H11)3)、三正己基铝(Al(C6H13)3)、三异己基铝(Al(i-C6H13)3)、二乙基甲基铝(Al(CH3)(CH3CH2)2)和二甲基乙基铝(Al(CH3CH2)(CH3)2)等,其中优选三甲基铝、三乙基铝、三正丙基铝和三异丁基铝,进一步优选三乙基铝和三异丁基铝,并且最优选三乙基铝。
这些烷基铝可以单独使用一种,或者以任意的比例组合使用多种。
作为所述卤代烷基铝,比如可以举出如下通式(IV)所示的化合物:
Al(R)nX3-n (IV)
其中,基团R彼此相同或不同(优选相同),并且各自独立地选自C1-C8烷基,优选甲基、乙基和异丁基,最优选甲基。基团X为卤素,优选氯。n为1或2。
具体而言,作为所述卤代烷基铝,比如可以举出一氯二甲基铝(Al(CH3)2Cl)、二氯甲基铝(Al(CH3)Cl2))、一氯二乙基铝(Al(CH3CH2)2Cl)、二氯乙基铝(Al(CH3CH2)Cl2)、一氯二丙基铝(Al(C3H7)2Cl)、二氯丙基铝(Al(C3H7)Cl2))、一氯二正丁基铝(Al(C4H9)2Cl)、二氯正丁基铝(Al(C4H9)Cl2)、一氯二异丁基铝(Al(i-C4H9)2Cl)、二氯异丁基铝(Al(i-C4H9)Cl2)、一氯二正戊基铝(Al(C5H11)2Cl)、二氯正戊基铝(Al(C5H11)Cl2)、一氯二异戊基铝(Al(i-C5H11)2Cl)、二氯异戊基铝(Al(i-C5H11)Cl2)、一氯二正己基铝(Al(C6H13)2Cl)、二氯正己基铝(Al(C6H13)Cl2)、一氯二异己基铝(Al(i-C6H13)2Cl)、二氯异己基铝(Al(i-C6H13)Cl2)、
一氯甲基乙基铝(Al(CH3)(CH3CH2)Cl)、一氯甲基丙基铝(Al(CH3)(C3H7)Cl)、一氯甲基正丁基铝(Al(CH3)(C4H9)Cl)、一氯甲基异丁基铝(Al(CH3)(i-C4H9)Cl)、一氯乙基丙基铝(Al(CH2CH3)(C3H7)Cl)、一氯乙基正丁基铝(AlCH2CH3)(C4H9)Cl)、一氯甲基异丁基铝(AlCH2CH3)(i-C4H9)Cl)等,其中优选一氯二乙基铝、二氯乙基铝、一氯二正丁基铝、二氯正丁基铝、一氯二异丁基铝、二氯异丁基铝、一氯二正己基铝、二氯正己基铝,进一步优选氯二乙基铝、二氯乙基铝和一氯二正己基铝,并且最优选一氯二乙基铝。
这些卤代烷基铝可以单独使用一种,或者以任意的比例组合使用多种。
作为所述硼氟烷、所述烷基硼和所述烷基硼铵盐,可以直接使用本领域常规使用的那些,并没有特别的限制。
另外,根据本发明,所述助催化剂可以单独使用一种,也可以根据需要以任意的比例组合使用多种前述的助催化剂,并没有特别的限制。
根据本发明,根据所述烯烃均聚/共聚方法的反应方式的不同(比如淤浆聚合),有时需要使用聚合用溶剂。
作为所述聚合用溶剂,可以使用本领域在进行烯烃均聚/共聚时常规使用的那些,并没有特别的限制。
作为所述聚合用溶剂,比如可以举出C4-10烷烃(比如丁烷、戊烷、己烷、庚烷、辛烷、壬烷或癸烷等)、卤代C1-10烷烃(比如二氯甲烷)、C6-12环烷烃(环己烷、环庚烷、环辛烷、环壬烷或环癸烷)、C6-20芳香烃(比如甲苯和二甲苯)等。其中,优选使用戊烷、己烷、庚烷和环己烷作为所述聚合用溶剂,最优选己烷。
这些聚合用溶剂可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,所述烯烃均聚/共聚方法的聚合反应压力一般为0.1~10MPa,优选0.1~4MPa,更优选0.4~3MPa,但有时并不限于此。根据本发明,聚合反应温度一般为-40℃~200℃,优选10℃~100℃,更优选40℃~95℃,但有时并不限于此。
另外,根据本发明,所述烯烃均聚/共聚方法可以在有氢气存在的条件下进行,也可以在没有氢气存在的条件下进行。在存在的情况下,氢气的分压可以是所述聚合反应压力的0.01%~99%,优选0.01%~50%,但有时并不限于此。
根据本发明,在进行所述烯烃均聚/共聚方法时,以铝或硼计的所述助催化剂与以所述中心金属原子计的所述负载型非茂金属催化剂的摩尔比一般为1~1000∶1,优选10~500∶1,更优选15~300∶1,但有时并不限于此。
实施例
以下采用实施例进一步详细地说明本发明,但本发明并不限于这些实施例。
聚合物堆密度(单位是g/cm3)的测定参照中国国家标准GB 1636-79进行。
负载型非茂金属催化剂中IVB族金属(比如Ti)和Mg元素的含量采用ICP-AES法测定,非茂金属配体或配合物的含量采用元素分析法测定。
催化剂的聚合活性按照以下方法计算:在聚合反应结束之后,将反应釜内的聚合产物过滤并干燥,然后称量该聚合产物的质量,以该聚合产物质量除以所用的负载型非茂金属催化剂的质量的比值来表示该催化剂的聚合活性(单位是kg聚合物/g催化剂或kg聚合物/gCat)。
聚合物的分子量Mw、Mn和分子量分布(Mw/Mn)采用美国WATERS公司的GPC V2000型凝胶色谱分析仪进行测定,以1,2,4-三氯苯为溶剂,测定时的温度为150℃。
聚合物的粘均分子量按照以下方法计算:按照标准ASTM D4020-00,采用高温稀释型乌氏粘度计法(毛细管内径为0.44mm,恒温浴介质为300号硅油,稀释用溶剂为十氢萘,测定温度为135℃)测定所述聚合物的特性粘度,然后按照如下公式计算所述聚合物的粘均分子量Mv。
Mv=5.37×104×[η]1.37
其中,η为特性粘度。
实施例1
镁化合物采用无水氯化镁,第一溶剂采用四氢呋喃,醇采用丁醇,IVB族金属化合物的化学处理剂采用四氯化钛,沉淀剂采用己烷,非茂金属配体采用结构为的化合物,第二溶剂采用二氯甲烷。
称取5g无水氯化镁,加入第一溶剂和醇后常温下完全溶解,得到镁化合物溶液,将化学处理剂溶解于沉淀剂中,得到化学处理剂溶液,将该化学处理剂溶液用30分钟滴加到镁化合物溶液中,在60℃下搅拌反应4小时使之完全沉淀,过滤,沉淀剂洗涤2遍,每次沉淀剂用量为60ml,均匀加热到60℃下抽真空干燥,得到修饰载体。
接着将修饰载体加入非茂金属配体与第二溶剂形成的溶液中,在常温下搅拌反应6小时得到混合浆液,最后常温下真空干燥得到负载型非茂金属催化剂。
其中配比为,镁化合物与第一溶剂配比为1mol∶210ml;镁化合物与醇摩尔比为1∶0.5;镁化合物与非茂金属配体摩尔比为1∶0.08;沉淀剂与第一溶剂体积配比为1∶1;镁化合物与以IVB族金属元素计的化学处理剂摩尔比为1∶0.15。
负载型非茂金属催化剂记为CAT-1。
实施例2
与实施例1基本相同,但有如下改变:
其中配比为,镁化合物与第一溶剂配比为1mol∶150ml;镁化合物与醇摩尔比为1∶.64;镁化合物与非茂金属配体摩尔比为1∶0.15;沉淀剂与第一溶剂体积配比为1∶2;镁化合物与以IVB族金属元素计的化学处理剂摩尔比为1∶0.20。
负载型非茂金属催化剂记为CAT-2。
实施例3
与实施例1基本相同,但有如下改变:
其中配比为,镁化合物与第一溶剂配比为1mol∶250ml;镁化合物与醇摩尔比为1∶1;镁化合物与非茂金属配体摩尔比为1∶0.20;沉淀剂与第一溶剂体积配比为1∶0.7;镁化合物与以IVB族金属元素计的化学处理剂摩尔比为1∶0.30。
负载型非茂金属催化剂记为CAT-3。
实施例4
与实施例1基本相同,但有如下改变:
镁化合物改变为乙氧基氯化镁(MgCl(OC2H5)),醇改变为2-乙基己醇,第一溶剂改变为二甲苯,非茂金属配体采用IVB族金属化合物的化学处理剂改变为四乙基钛(Ti(CH3CH2)4),沉淀剂改变为癸烷。
其中配比为,镁化合物与第一溶剂配比为1mol∶300ml;镁化合物与醇摩尔比为1∶0.25;镁化合物与非茂金属配体摩尔比为1∶0.04;沉淀剂与第一溶剂体积配比为1∶1.5;镁化合物与以IVB族金属元素计的化学处理剂摩尔比为1∶0.05。
负载型非茂金属催化剂记为CAT-4。
实施例5
与实施例1基本相同,但有如下改变:
其中配比为,镁化合物与第一溶剂配比为1mol∶400ml;镁化合物与醇摩尔比为1∶2.5;镁化合物与非茂金属配体摩尔比为1∶0.30;沉淀剂与第一溶剂体积配比为1∶0.5;镁化合物与以IVB族金属元素计的化学处理剂摩尔比为1∶0.50。
负载型非茂金属催化剂记为CAT-5。
实施例6
与实施例1基本相同,但有如下改变:
其中配比为,镁化合物与醇摩尔比为1∶3.0;镁化合物与非茂金属配体摩尔比为1∶0.10;镁化合物与以IVB族金属元素计的化学处理剂摩尔比为1∶0.10。
负载型非茂金属催化剂记为CAT-6。
实施例7
与实施例1基本相同,但有如下改变:
镁化合物改变为乙基氯化镁(Mg(C2H5)Cl),醇改为甲基环己醇,第一溶剂改变为溴代乙苯,非茂金属配体采用IVB族金属化合物的化学处理剂改变为四乙氧基钛(Ti(OCH3CH2)4),沉淀剂改变为环庚烷。
其中配比为,镁化合物与以IVB族金属元素计的化学处理剂摩尔比为1∶1。
负载型非茂金属催化剂记为CAT-7。
实施例8
与实施例1基本相同,但有如下改变:
负载型非茂金属催化剂记为CAT-8。
实施例9
与实施例1基本相同,但有如下改变:
镁化合物改变为甲基乙氧基镁(Mg(OC2H5)(CH3)),IVB族金属化合物的化学处理剂改变为三异丁氧基氯化钛(TiCl(i-OC4H9)3),沉淀剂改变为氯代环己烷。
负载型非茂金属催化剂记为CAT-9。
实施例10
与实施例1基本相同,但有如下改变:
镁化合物改变为丁基乙氧基镁(Mg(OC2H5)(C4H9)),IVB族金属化合物的化学处理剂改变为二甲氧基二氯化锆(ZrCl2(OCH3)2),沉淀剂改变为溴代环庚烷。
负载型非茂金属催化剂记为CAT-10。
对比例A
与实施例1基本相同,但有如下改变:
镁化合物与非茂金属配体摩尔比改变为1∶0.16;
催化剂记为CAT-A。
对比例B
与实施例1基本相同,但有如下改变:
镁化合物与非茂金属配体摩尔比改变为1∶0.04;
催化剂记为CAT-B。
实施例3(应用实施例)
将本发明实施例中制得的催化剂CAT-1~10、CAT-A~B、分别在以下条件下按照以下方法进行乙烯的均聚、共聚和制备超高分子量聚乙烯。
均聚为:5升聚合高压釜,淤浆聚合工艺,2.5升己烷溶剂,聚合总压0.8MPa,聚合温度85℃,氢气分压0.2MPa,反应时间2小时。首先将2.5升己烷加入到聚合高压釜中,开启搅拌,然后加入50mg负载型非茂金属催化剂和助催化剂混合物,再加入氢气到0.2MPa,最后持续通入乙烯使聚合总压恒定在0.8MPa。反应结束后,将釜内气体放空,放出釜内聚合物,干燥后称量质量。该聚合反应的具体情况以及聚合评价结果如表1所示。
共聚为:5升聚合高压釜,淤浆聚合工艺,2.5升己烷溶剂,聚合总压0.8MPa,聚合温度85℃,氢气分压0.2MPa,反应时间2小时。首先将2.5升己烷加入到聚合高压釜中,开启搅拌,然后加入50mg负载型非茂金属催化剂和助催化剂混合物,一次性加入己烯-1共聚单体50g,再加入氢气到0.2MPa,最后持续通入乙烯使聚合总压恒定在0.8MPa。反应结束后,将釜内气体放空,放出釜内聚合物,干燥后称量质量。该聚合反应的具体情况以及聚合评价结果如表1所示。
制备超高分子量聚乙烯聚合为:5升聚合高压釜,淤浆聚合工艺,2.5升己烷溶剂,聚合总压0.5MPa,聚合温度70℃,反应时间2小时。首先将2.5升己烷加入到聚合高压釜中,开启搅拌,然后加入50mg负载型非茂金属催化剂和助催化剂混合物,助催化剂与催化剂活性金属摩尔比为100,最后持续通入乙烯使聚合总压恒定在0.5MPa。反应结束后,将釜内气体放空,放出釜内聚合物,干燥后称量质量。该聚合反应的具体情况以及聚合评价结果如表2所示。
通过表1中序号3与4的试验结果数据可知,增加助催化剂的用量,即提高助催化剂与催化剂活性金属摩尔比时,对催化剂聚合活性和聚合物堆密度的影响不显著。由此可以说明,采用本发明提供的方法制备的负载型非茂金属催化剂仅需要比较少的助催化剂用量就可以获得高的烯烃聚合活性;而且由此所得到的聚乙烯等聚合物具有优良的聚合物形态和高的聚合物堆积密度。
对比表1中序号1与3的试验结果数据可知,共聚后,催化剂活性有较大幅度地增加,从而说明采用本发明提供的方法制备的负载型非茂金属催化剂具有较为显著的共聚单体效应。
通过对比表1中序号1和对比例序号14~15的试验结果数据可知,催化剂中增加或减少非茂金属配体的加入量,其活性随之增加或降低。从而说明非茂金属配体具有具有影响催化剂活性的作用,并且化学处理剂对催化剂活性起着重要影响。因此本领域的研究人员都知道,通过改变两者的配比可以得到不同活性和聚合物性能的催化剂。
由表2可见,采用本发明所提供的催化剂,可以制备超高分子量聚乙烯,其堆密度均有所增加,而且对比序号1与2可见,采用甲基铝氧烷作为助催化剂能够增加聚合物的粘均分子量。对比表2中序号1和对比例3-4的试验结果数据可知,催化剂中增加或减少非茂金属配体,聚合物粘均分子量随之增加或减少。从而说明非茂金属配体还具有增加聚合物粘均分子量的作用。
以上虽然已结合实施例对本发明的具体实施方式进行了详细的说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。本领域技术人员可在不脱离本发明的技术思想和主旨的范围内对这些实施方式进行适当的变更,而这些变更后的实施方式显然也包括在本发明的保护范围之内。
Claims (10)
1.一种负载型非茂金属催化剂的制备方法,包括以下步骤:
使镁化合物在醇的存在下溶解于第一溶剂中,获得镁化合物溶液的步骤;
使选自IVB族金属化合物的化学处理剂溶解于沉淀剂中,获得化学处理剂溶液的步骤;
向所述镁化合物溶液中加入所述化学处理剂溶液,获得修饰载体的步骤;
使非茂金属配体与所述修饰载体在第二溶剂的存在下接触,获得混合浆液的步骤;和
直接干燥所述混合浆液,获得所述负载型非茂金属催化剂的步骤。
2.按照权利要求1所述的制备方法,其特征在于,所述镁化合物选自卤化镁、烷氧基卤化镁、烷氧基镁、烷基镁、烷基卤化镁和烷基烷氧基镁中的一种或多种,优选选自卤化镁中的一种或多种,更优选氯化镁。
3.按照权利要求1所述的制备方法,其特征在于,所述第一溶剂选自C5-12烷烃、C5-12环烷烃、卤代C1-10烷烃、卤代C5-12环烷烃、C6-12芳香烃、卤代C6-12芳香烃、酯和醚中的一种或多种,优选选自C5-12烷烃、C5-12环烷烃、C6-12芳香烃和四氢呋喃中的一种或多种,最优选选自四氢呋喃和己烷中的一种或多种,所述醇选自C1-30脂肪醇、C6-30芳香醇和C4-30脂环醇中的一种或多种,其中所述醇任选被选自卤原子或C1-6烷氧基的取代基取代,所述醇优选选自C1-30脂肪族一元醇中的一种或多种,更优选选自乙醇、丁醇和2-乙基己醇中的一种或多种,所述第二溶剂选自C6-12芳香烃、卤代C6-12芳香烃、卤代C1-10烷烃、酯和醚中的一种或多种,优选选自甲苯、二甲苯、三甲苯、乙苯、二乙苯、氯代甲苯、氯代乙苯、溴代甲苯、溴代乙苯、二氯甲烷、二氯乙烷、乙酸乙酯和四氢呋喃中的一种或多种,更优选C6-12芳香烃、二氯甲烷和四氢呋喃中的一种或多种。
4.按照权利要求1所述的制备方法,其特征在于,所述非茂金属配体选自具有如下化学结构式的化合物中的一种或多种:
优选选自具有如下化学结构式的化合物(A)和化合物(B)中的一种或多种:
更优选选自具有如下化学结构式的化合物(A-1)至化合物(A-4)和化合物(B-1)至化合物(B-4)中的一种或多种:
在以上所有的化学结构式中,
q为0或1;
d为0或1;
B选自氮原子、含氮基团、含磷基团或C1-C30烃基;
E选自含氮基团、含氧基团、含硫基团、含硒基团、含磷基团或氰基,其中N、O、S、Se和P各自为配位用原子;
F选自氮原子、含氮基团、含氧基团、含硫基团、含硒基团或含磷基团,其中N、O、S、Se和P各自为配位用原子;
G选自C1-C30烃基、取代的C1-C30烃基或惰性功能性基团;
Y选自含氮基团、含氧基团、含硫基团、含硒基团或含磷基团,其中N、O、S、Se和P各自为配位用原子;
Z选自含氮基团、含氧基团、含硫基团、含硒基团、含磷基团或氰基,其中N、O、S、Se和P各自为配位用原子;
→代表单键或双键;
-代表共价键或离子键;
R1至R4、R6至R36、R38和R39各自独立地选自氢、C1-C30烃基、取代的C1-C30烃基或惰性功能性基团,上述基团彼此间可以相同也可以不同,其中相邻基团可以彼此结合在一起成键或成环,优选形成芳香族环;并且
R5选自氮上孤对电子、氢、C1-C30烃基、取代的C1-C30烃基、含氧基团、含硫基团、含氮基团、含硒基团或含磷基团;当R5为含氧基团、含硫基团、含氮基团、含硒基团或含磷基团时,R5中的N、O、S、P和Se可以作为配位用原子与所述中心IVB族金属原子进行配位,
所述惰性功能性基团选自卤素、含氧基团、含氮基团、含硅基团、含锗基团、含硫基团、含锡基团、C1-C10酯基和硝基,
所述非茂金属配体进一步优选选自具有如下化学结构式的化合物中的一种或多种:
所述非茂金属配体最优选选自具有如下化学结构式的化合物中的一种或多种:
5.按照权利要求4所述的制备方法,其特征在于,
所述卤素选自F、Cl、Br或I;
所述含氧基团选自羟基、-OR34和-T-OR34;
所述含硫基团选自-SR35、-T-SR35、-S(O)R36或-T-SO2R37;
所述含硒基团选自-SeR38、-T-SeR38、-Se(O)R39或-T-Se(O)R39;
所述基团T选自C1-C30烃基、取代的C1-C30烃基或所述惰性功能性基团;
所述R37选自氢、C1-C30烃基、取代的C1-C30烃基或所述惰性功能性基团;
所述C1-C30烃基选自C1-C30烷基、C7-C50烷芳基、C7-C50芳烷基、C3-C30环状烷基、C2-C30烯基、C2-C30炔基、C6-C30芳基、C8-C30稠环基或C4-C30杂环基,其中所述杂环基含有1-3个选自氮原子、氧原子或硫原子的杂原子;
所述取代的C1-C30烃基选自带有一个或多个所述卤素和/或所述C1-C30烷基作为取代基的所述C1-C30烃基;
所述含硅基团选自-SiR42R43R44或-T-SiR45;
所述含锗基团选自-GeR46R47R48或-T-GeR49;
所述含锡基团选自-SnR50R51R52、-T-SnR53或-T-Sn(O)R54;
所述R42至R54各自独立地选自氢、所述C1-C30烃基、所述取代的C1-C30烃基或所述惰性功能性基团,上述基团彼此间可以相同也可以不同,其中相邻基团可以彼此结合在一起成键或成环,并且
所述基团T同权利要求4定义。
6.按照权利要求1所述的制备方法,其特征在于,以Mg元素计的所述镁化合物与所述非茂金属配体的摩尔比为1∶0.0001-1,优选1∶0.0002-0.4,更优选1∶0.0008-0.2,进一步优选1∶0.001-0.1,所述镁化合物与所述第一溶剂的比例为1mol∶75~400ml,优选1mol∶150~300ml,更优选1mol∶200~250ml,所述沉淀剂与所述第一溶剂的体积比为1∶0.2~5,优选1∶0.5~2,更优选1∶0.8~1.5,以Mg元素计的所述镁化合物与以IVB族金属元素计的所述化学处理剂的摩尔比为1∶0.01-1,优选1∶0.01-0.50,更优选1∶0.10-0.30,并且以Mg元素计的所述镁化合物与所述醇的摩尔比为1∶0.02~4.00,优选1∶0.05~3.00,更优选1∶0.10~2.50。
7.按照权利要求1所述的制备方法,其特征在于,所述沉淀剂选自C5-12烷烃、C5-12环烷烃、卤代C5-12烷烃和卤代C5-12环烷烃中的一种或多种,优选选自戊烷、己烷、庚烷、辛烷、壬烷、癸烷、环己烷、环戊烷、环庚烷、环癸烷、环壬烷、二氯己烷、二氯庚烷、二溴庚烷、氯代环戊烷、氯代环己烷、氯代环庚烷、氯代环辛烷、氯代环壬烷、氯代环癸烷、溴代环戊烷、溴代环己烷、溴代环庚烷、溴代环辛烷、溴代环壬烷和溴代环癸烷中的一种或多种,进一步优选选自戊烷、己烷、庚烷、癸烷和环己烷中的一种或多种,最优选己烷。
8.按照权利要求1所述的制备方法,其特征在于,所述IVB族金属化合物选自IVB族金属卤化物、IVB族金属烷基化合物、IVB族金属烷氧基化合物、IVB族金属烷基卤化物和IVB族金属烷氧基卤化物中的一种或多种,优选选自IVB族金属卤化物中的一种或多种,更优选选自TiCl4、TiBr4、ZrCl4、ZrBr4、HfCl4和HfBr4中的一种或多种,最优选选自TiCl4和ZrCl4中的一种或多种。
9.一种负载型非茂金属催化剂,它是由按照权利要求1-8任一项所述的制备方法制造的。
10.一种烯烃均聚/共聚方法,其特征在于,以按照权利要求9所述的负载型非茂金属催化剂为主催化剂,以选自铝氧烷、烷基铝、卤代烷基铝、硼氟烷、烷基硼和烷基硼铵盐中的一种或多种为助催化剂,使烯烃均聚或共聚。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110259296.5A CN102964478B (zh) | 2011-08-31 | 2011-08-31 | 负载型非茂金属催化剂、其制备方法及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110259296.5A CN102964478B (zh) | 2011-08-31 | 2011-08-31 | 负载型非茂金属催化剂、其制备方法及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102964478A true CN102964478A (zh) | 2013-03-13 |
CN102964478B CN102964478B (zh) | 2014-12-17 |
Family
ID=47794934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110259296.5A Active CN102964478B (zh) | 2011-08-31 | 2011-08-31 | 负载型非茂金属催化剂、其制备方法及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102964478B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107936161A (zh) * | 2016-10-13 | 2018-04-20 | 中国石化扬子石油化工有限公司 | 超高分子量聚乙烯、其制造方法及其应用 |
CN109485760A (zh) * | 2017-09-11 | 2019-03-19 | 中国石油化工股份有限公司 | 负载型非茂金属催化剂、其制备方法及其应用 |
CN109485761A (zh) * | 2017-09-11 | 2019-03-19 | 中国石油化工股份有限公司 | 负载型非茂金属催化剂、其制备方法及其应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101412767A (zh) * | 2007-10-16 | 2009-04-22 | 中国石化扬子石油化工有限公司 | 一种负载型非茂金属催化剂及其制备方法 |
CN101654494A (zh) * | 2008-08-21 | 2010-02-24 | 中国石化扬子石油化工有限公司 | 乙烯共聚物、其制造方法及其应用 |
-
2011
- 2011-08-31 CN CN201110259296.5A patent/CN102964478B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101412767A (zh) * | 2007-10-16 | 2009-04-22 | 中国石化扬子石油化工有限公司 | 一种负载型非茂金属催化剂及其制备方法 |
CN101654494A (zh) * | 2008-08-21 | 2010-02-24 | 中国石化扬子石油化工有限公司 | 乙烯共聚物、其制造方法及其应用 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107936161A (zh) * | 2016-10-13 | 2018-04-20 | 中国石化扬子石油化工有限公司 | 超高分子量聚乙烯、其制造方法及其应用 |
CN107936161B (zh) * | 2016-10-13 | 2021-04-20 | 中国石化扬子石油化工有限公司 | 超高分子量聚乙烯、其制造方法及其应用 |
CN109485760A (zh) * | 2017-09-11 | 2019-03-19 | 中国石油化工股份有限公司 | 负载型非茂金属催化剂、其制备方法及其应用 |
CN109485761A (zh) * | 2017-09-11 | 2019-03-19 | 中国石油化工股份有限公司 | 负载型非茂金属催化剂、其制备方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN102964478B (zh) | 2014-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102964476B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102039191B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964479B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102059153B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964478B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964471A (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964489B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964484B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102059148B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964485B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN104231124B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964490B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964472B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102059151B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102059150B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964477B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964483A (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964486B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964475B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964473A (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964487B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964474B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964481B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964482A (zh) | 负载型非茂金属催化剂、其制备方法及其应用 | |
CN102964488B (zh) | 负载型非茂金属催化剂、其制备方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |