CN102957451B - Frequency-phase combined jumping communication method - Google Patents
Frequency-phase combined jumping communication method Download PDFInfo
- Publication number
- CN102957451B CN102957451B CN201210456966.7A CN201210456966A CN102957451B CN 102957451 B CN102957451 B CN 102957451B CN 201210456966 A CN201210456966 A CN 201210456966A CN 102957451 B CN102957451 B CN 102957451B
- Authority
- CN
- China
- Prior art keywords
- frequency
- phase
- hopping
- sequence
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000004891 communication Methods 0.000 title claims abstract description 18
- 230000009191 jumping Effects 0.000 title 1
- 238000012546 transfer Methods 0.000 claims abstract description 39
- 238000001514 detection method Methods 0.000 claims abstract description 22
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 238000005516 engineering process Methods 0.000 claims abstract description 8
- 238000007476 Maximum Likelihood Methods 0.000 claims description 10
- 238000010276 construction Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims description 2
- 230000001427 coherent effect Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 13
- 230000010363 phase shift Effects 0.000 abstract description 5
- 235000008694 Humulus lupulus Nutrition 0.000 description 7
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Landscapes
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
本发明公开了一种频率-相位联合跳变的通信方法,包括:串并转换模块、频率转移函数Gf(Fn-1,Xnk)模块、相位转移函数GP(Fn-1,Xnm)模块、DDS直接合成器、放大器、接收机、ADC模块、FFT模块、序列检测模块、频率转移逆函数模块、相位转移逆函数模块、并串转换模块。此外,本发明相应公开了一种频率-相位联合跳变通信方法,它区别于常规的差分跳频通信技术,它不仅利用频率信息承载数据,还利用相位信息承载数据,从而提高了数据传输率。当相位转移函数GP(Fn-1,Xnm)模块传输已知的相位跳变序列,在接收端可利用这个已知序列提高检测和抗干扰性能。
The invention discloses a frequency-phase joint hopping communication method, comprising: a serial-to-parallel conversion module, a frequency transfer function G f (F n-1 , X nk ) module, and a phase transfer function G P (F n-1 , X nm ) module, DDS direct synthesizer, amplifier, receiver, ADC module, FFT module, sequence detection module, frequency transfer inverse function Module, phase shift inverse function module, parallel-to-serial conversion module. In addition, the present invention correspondingly discloses a frequency-phase joint hopping communication method, which is different from the conventional differential frequency hopping communication technology, it not only uses frequency information to carry data, but also uses phase information to carry data, thereby improving the data transmission rate . When the phase transfer function G P (F n-1 , X nm ) module transmits a known phase hopping sequence, the known sequence can be used at the receiving end to improve detection and anti-jamming performance.
Description
技术领域 technical field
本发明涉及短波跳频电台,属于无线通信的技术领域。 The invention relates to a shortwave frequency hopping radio station, which belongs to the technical field of wireless communication.
背景技术 Background technique
在复杂电磁干扰环境中,特别是存在有源干扰的战场环境,快速跳频已经成为抗干扰、保畅通的主要技术措施。而差分跳频技术集跳频图案、信息调制与解调于一体,具有无干扰扩频、频分复用、减少多径衰落影响和抗干扰等优越性能。目前报道的短波差分跳频电台只利用频率承载信息,数据传输速率偏低。以典型的CHESS系统为例,其跳频速度高达5000 跳/秒,其中200 跳用于同步与信道探测,4800 跳用于数据传输。数据传输速率最低为2.4kbps。当不使用纠错编码时,扇出系数为4时,数据率可达19.2kbps。 In a complex electromagnetic interference environment, especially a battlefield environment with active interference, fast frequency hopping has become the main technical measure for anti-interference and smooth communication. The differential frequency hopping technology integrates frequency hopping patterns, information modulation and demodulation, and has superior performances such as interference-free spread spectrum, frequency division multiplexing, reduction of multipath fading effects, and anti-interference. The currently reported shortwave differential frequency hopping stations only use frequency to carry information, and the data transmission rate is low. Taking a typical CHESS system as an example, its frequency hopping speed is as high as 5000 hops per second, of which 200 hops are used for synchronization and channel detection, and 4800 hops are used for data transmission. The data transfer rate is a minimum of 2.4kbps. When no error correction code is used, the data rate can reach 19.2kbps when the fan-out factor is 4.
本发明给出了一种频率-相位联合跳变通信方法,同时利用频率、相位承载信息,可以大大提高跳频电台的数据传输速率。 The present invention provides a frequency-phase joint hopping communication method, and uses the frequency and phase to carry information at the same time, which can greatly improve the data transmission rate of the frequency hopping radio station.
发明内容 Contents of the invention
技术问题:本发明目的在于提供一种频率-相位联合跳变的通信方法,满足提高跳频电台的数据传输速率的需要。 Technical problem: The purpose of the present invention is to provide a communication method of frequency-phase joint hopping, which meets the need of increasing the data transmission rate of frequency hopping radio stations.
技术方案:为实现上述目标,本发明采用如下技术方案: Technical solution: In order to achieve the above goals, the present invention adopts the following technical solutions:
利用差分频率跳变和差分相位跳变联合承载数据,所选择的跳频频率集子载波是正交的,选择频率和相位的算法采用常规的G函数(姚富强,《短波高速跳频CHESS 电台G 函数算法研究》,电子学报,Vol.29,No.5,2001年5月);在发射端,利用数字合成器产生频率-相位联合跳变信号,经功率放大后输出;在接收端,将射频信号变换到基带以后,经A/D采样、FFT(快速傅立叶变换)后估计跳频集中各子载波的参数,使用非相干检测、最大似然序列检测方法得到跳频前后的频率、相位差,利用逆G函数恢复出传输的数据。 Using differential frequency hopping and differential phase hopping to jointly carry data, the subcarriers of the selected frequency hopping frequency set are orthogonal, and the algorithm for selecting frequency and phase adopts the conventional G function (Yao Fuqiang, "Shortwave High-speed Frequency Hopping CHESS Radio Station G Function Algorithm Research", Acta Electronics, Vol.29, No.5, May 2001); at the transmitting end, use a digital synthesizer to generate a frequency-phase joint hopping signal, and output it after power amplification; at the receiving end, After converting the radio frequency signal to baseband, estimate the parameters of each subcarrier in the frequency hopping set after A/D sampling and FFT (fast Fourier transform), and use non-coherent detection and maximum likelihood sequence detection methods to obtain the frequency and phase before and after frequency hopping Poor, use the inverse G function to restore the transmitted data.
所述的通信方法具体为: The communication method described is specifically:
a. 将可用的跳频带宽W划分为N个正交子载波F = {F1,F2,…,FN},每个子载波持续时间为T = N/W,从中选出L=2k个子载波用于频率-相位联合跳变; a. Divide the available frequency hopping bandwidth W into N orthogonal subcarriers F = {F 1 ,F 2 ,…,F N }, each subcarrier lasts for T = N/W, and select L=2 k subcarriers are used for frequency-phase joint hopping;
b. 在发射端,将串行数据比特流D = {b1,b2,……},每(k + m)个比特分为一组, b. At the transmitter, the serial data bit stream D = {b1,b2,...}, each (k + m) bits are divided into groups,
c. k为每次频率跳变携带的比特数,Ck = 2k为频率扇出系数,k比特数据构成频率跳变控制字Xnk; c. k is the number of bits carried by each frequency hopping, C k = 2 k is the frequency fan-out coefficient, and k-bit data constitutes the frequency hopping control word X nk ;
d. m为每次相位跳变携带的比特数,Cm = 2m为相位扇出系数,m比特数据构成相位跳变控制字Xnm; d. m is the number of bits carried by each phase jump, C m = 2 m is the phase fan-out coefficient, and m-bit data constitutes the phase jump control word X nm ;
e. 发射输出信号的当前频率Fn、相位Pn分别由频率转移函数Gf(Fn-1,Xnk)和相位转移函数GP(Pn-1,Xnm)决定;Fn = Gf(Fn-1,Xnk),Pn = GP(Pn-1,Xnm); e. The current frequency Fn and phase Pn of the transmitted output signal are respectively determined by the frequency transfer function G f (F n-1 , X nk ) and the phase transfer function G P (P n-1 , X nm ); Fn = G f ( F n-1 ,X nk ), Pn = G P (P n-1 ,X nm );
f. 频率转移函数Gf(Fn-1, Xnk)按照常规的差分跳频系统G函数设计; f. The frequency transfer function G f (F n-1 , X nk ) is designed according to the G function of the conventional differential frequency hopping system;
g. 相位转移函数GP(Pn-1, Xnm)的构造:首先确定可跳变的相位数Np,然后按照类似频率转移函数的构造方法,根据Np和相位扇出系数Cm,设计相位转移函数; g. The construction of the phase transfer function G P (P n-1 , X nm ): first determine the number of phases Np that can be jumped, and then follow the construction method similar to the frequency transfer function, according to Np and the phase fan-out coefficient C m , design Phase transfer function;
h. 发射端输出数据基本单位为帧,它由帧头跳频序列和数据跳频序列构成,帧头跳频序列由伪随机序列组成,用于接收机的帧同步,数据跳频序列用于数据传输; h. The basic unit of data output by the transmitter is a frame, which consists of a frame header frequency hopping sequence and a data frequency hopping sequence. The frame header frequency hopping sequence is composed of a pseudo-random sequence, which is used for frame synchronization of the receiver, and the data frequency hopping sequence is used for data transmission;
i. 发射输出信号为:S(t) = E * COS[2*π*(Fn + Fo)*t + Pn],Fo为射频载波,E、t 分别为幅度、时间; i. The transmit output signal is: S(t) = E * COS[2*π*(Fn + Fo)*t + Pn], Fo is the RF carrier, E, t are the amplitude and time respectively;
j. 在接收端,接收机频率-相位联合跳变信号,输出的基带信号经过A/D采样后,以时间窗T做滑动FFT,第n个时间窗T输出的L个子载波上的频域值为Ri,n,包含了第i个子载波上的幅度和相位信息;i = 1,2,…,L; j. At the receiving end, the frequency-phase joint hopping signal of the receiver, the output baseband signal is A/D sampled, and the sliding FFT is performed with the time window T, and the frequency domain of the L subcarriers output by the nth time window T is The value is R i,n, which contains the amplitude and phase information on the i-th subcarrier; i = 1,2,...,L;
k. 对得到的序列{Ri,n},应用最大似然序列检测技术,检测出帧头跳频序列,从而完成帧的同步和跟踪; k. For the obtained sequence {R i,n }, apply the maximum likelihood sequence detection technology to detect the frame header frequency hopping sequence, so as to complete the frame synchronization and tracking;
l. 在同步完成以后,对接收的跳频数据序列Ri,n应用最大似然序列检测技术,可检测出频率跳变序列{Fi}和相位跳变序列{Pi},通过频率转移逆函数Xnk = G-1 f(Fn, Fn-1)和相位逆转移函数Xnm = G-1 P(Pn, Pn-1)解调输出比特数据(Xnk + Xnm),从而在接收端恢复出串行数据流D。 l. After the synchronization is completed, the maximum likelihood sequence detection technology is applied to the received frequency hopping data sequence R i,n, and the frequency hopping sequence {F i } and phase hopping sequence {P i } can be detected. The inverse function X nk = G -1 f (F n , F n-1 ) and the phase inverse transfer function X nm = G -1 P (P n , P n-1 ) demodulate the output bit data (X nk + X nm ), thus recovering the serial data stream D at the receiving end.
有益效果:本发明提供的频率-相位联合跳变的通信方法,相对通常仅利用频率承载信息的差分跳频方法,还利用相位承载信息,为此可以多传输数据,达到提高跳频电台数据传输速率的目的。 Beneficial effects: the frequency-phase joint hopping communication method provided by the present invention, compared with the differential frequency hopping method that usually only uses frequency to carry information, also uses phase to carry information, so that more data can be transmitted to improve the data transmission of frequency hopping stations speed purpose.
附图说明 Description of drawings
图1为本发明一种频率-相位联合跳变的通信方法的组成框图。 Fig. 1 is a composition block diagram of a frequency-phase joint hopping communication method according to the present invention.
其中有:串并转换模块10、频率转移函数Gf(Fn-1,Xnk)模块11、相位转移函数GP(Fn-1,Xnm)模块12、DDS数字直接合成器13、发射机14;无线传输信道20;并串转换模块30、频率转移逆函数 模块31、相位转移逆函数模块32、序列检测模块33、FFT模块34、ADC模块35、接收机36。 Among them are: serial-to-parallel conversion module 10, frequency transfer function G f (F n-1 , X nk ) module 11, phase transfer function G P (F n-1 , X nm ) module 12, DDS digital direct synthesizer 13, Transmitter 14; wireless transmission channel 20; parallel-to-serial conversion module 30, frequency transfer inverse function Module 31. Phase shift inverse function Module 32 , sequence detection module 33 , FFT module 34 , ADC module 35 , receiver 36 .
具体实施方式 Detailed ways
本发明一种频率-相位联合跳变的通信方法基于以下模块: A communication method of frequency-phase joint hopping in the present invention is based on the following modules:
串并转换模块、频率转移函数Gf(Fn-1,Xnk)模块、相位转移函数GP(Fn-1,Xnm)模块、DDS直接合成器、射频放大器、接收机、ADC模块、FFT模块、序列检测模块、频率转移逆函数模块、相位转移逆函数模块、并串转换模块,其中, Serial-parallel conversion module, frequency transfer function G f (F n-1 ,X nk ) module, phase transfer function G P (F n-1 ,X nm ) module, DDS direct synthesizer, RF amplifier, receiver, ADC module , FFT module, sequence detection module, frequency transfer inverse function Module, phase shift inverse function module, parallel-to-serial conversion module, wherein,
所述的串并转换模块,用于将串行数据流转换为k比特和m比特的两路并行数据; The serial-to-parallel conversion module is used to convert the serial data stream into two parallel data of k bits and m bits;
所述的频率转移函数Gf(Fn-1,Xnk)模块,用于产生频率跳变控制字; The frequency transfer function G f (F n-1 , X nk ) module is used to generate a frequency hopping control word;
所述的相位转移函数GP(Fn-1,Xnm)模块,用于产生相位跳变控制字; The phase transfer function G P (F n-1 , X nm ) module is used to generate a phase jump control word;
所述的DDS直接合成器,用于产生频率-相位联合跳变信号; The DDS direct synthesizer is used to generate a frequency-phase joint hopping signal;
所述的放大器,用于放大频率-相位联合跳变信号到适当功率; The amplifier is used to amplify the frequency-phase joint hopping signal to an appropriate power;
所述的接收机,用于接收频率-相位联合跳变信号,输出适合ADC模块的模拟信号; The receiver is used to receive the frequency-phase joint hopping signal, and output an analog signal suitable for the ADC module;
所述的ADC模块,用于将接收的模拟信号,经适当变换后输出数字复基带信号; The ADC module is used to convert the received analog signal to output a digital complex baseband signal after appropriate conversion;
所述的FFT模块,用于计算频率-相位联合跳变信号在各子载波上的信息; The FFT module is used to calculate the information of the frequency-phase joint hopping signal on each subcarrier;
所述的序列检测模块,用于检测频率跳变序列和相位跳变序列; The sequence detection module is used to detect frequency hopping sequences and phase hopping sequences;
所述的频率转移逆函数模块,用于恢复频率跳变控制字; The frequency shift inverse function of the module, used to restore the frequency hopping control word;
所述的相位转移逆函数模块,用于恢复相位跳变控制字; The phase shift inverse function of the A module for recovering the phase jump control word;
所述的并串转换模块,用于将两路并行数据转换为串行输出比特流; The parallel-to-serial conversion module is used to convert the two-way parallel data into a serial output bit stream;
所述的通信方法不仅利用频率信息承载数据,还利用相位信息承载数据,从而提高数据传输速率。 The communication method not only uses frequency information to carry data, but also uses phase information to carry data, thereby increasing the data transmission rate.
所述的相位转移函数GP(Fn-1,Xnm)模块传输已知的相位跳变序列,在接收端序列检测模块中,利用这个已知序列提高检测和抗干扰性能。 The phase transfer function G P (F n-1 , X nm ) module transmits a known phase jump sequence, and the sequence detection module at the receiving end uses this known sequence to improve detection and anti-interference performance.
本发明的频率-相位联合跳变的通信方法具体为: The frequency-phase joint hopping communication method of the present invention is specifically:
a. 将可用的跳频带宽W划分为N个正交子载波F = {F1,F2,…,FN},每个子载波持续时间为T = N/W,从中选出L=2k个子载波用于频率-相位联合跳变; a. Divide the available frequency hopping bandwidth W into N orthogonal subcarriers F = {F 1 ,F 2 ,…,F N }, each subcarrier lasts for T = N/W, and select L=2 k subcarriers are used for frequency-phase joint hopping;
b. 在发射端,将串行数据比特流D = {b1,b2,……},每(k + m)个比特分为一组, b. At the transmitter, the serial data bit stream D = {b1,b2,...}, each (k + m) bits are divided into groups,
c. k为每次频率跳变携带的比特数,Ck = 2k为频率扇出系数,k比特数据构成频率跳变控制字Xnk; c. k is the number of bits carried by each frequency hopping, C k = 2 k is the frequency fan-out coefficient, and k-bit data constitutes the frequency hopping control word X nk ;
d. m为每次相位跳变携带的比特数,Cm = 2m为相位扇出系数,m比特数据构成相位跳变控制字Xnm; d. m is the number of bits carried by each phase jump, C m = 2 m is the phase fan-out coefficient, and m-bit data constitutes the phase jump control word X nm ;
e. 发射输出信号的当前频率Fn、相位Pn分别由频率转移函数Gf(Fn-1,Xnk)和相位转移函数GP(Pn-1,Xnm)决定;Fn = Gf(Fn-1,Xnk),Pn = GP(Pn-1,Xnm); e. The current frequency Fn and phase Pn of the transmitted output signal are respectively determined by the frequency transfer function G f (F n-1 , X nk ) and the phase transfer function G P (P n-1 , X nm ); Fn = G f ( F n-1 ,X nk ), Pn = G P (P n-1 ,X nm );
f. 频率转移函数Gf(Fn-1, Xnk)按照常规的差分跳频系统G函数设计; f. The frequency transfer function G f (F n-1 , X nk ) is designed according to the G function of the conventional differential frequency hopping system;
g. 相位转移函数GP(Pn-1, Xnm)的构造:首先确定可跳变的相位数Np,然后按照类似频率转移函数的构造方法,根据Np和相位扇出系数Cm,设计相位转移函数; g. The construction of the phase transfer function G P (P n-1 , X nm ): first determine the number of phases Np that can be jumped, and then follow the construction method similar to the frequency transfer function, according to Np and the phase fan-out coefficient C m , design Phase transfer function;
h. 发射端输出数据基本单位为帧,它由帧头跳频序列和数据跳频序列构成,帧头跳频序列由伪随机序列组成,用于接收机的帧同步,数据跳频序列用于数据传输; h. The basic unit of data output by the transmitter is a frame, which consists of a frame header frequency hopping sequence and a data frequency hopping sequence. The frame header frequency hopping sequence is composed of a pseudo-random sequence, which is used for frame synchronization of the receiver, and the data frequency hopping sequence is used for data transmission;
i. 发射输出信号为:S(t) = E * COS[2*π*(Fn + Fo)*t + Pn],Fo为射频载波,E、t 分别为幅度、时间; i. The transmit output signal is: S(t) = E * COS[2*π*(Fn + Fo)*t + Pn], Fo is the RF carrier, E, t are the amplitude and time respectively;
j. 在接收端,接收机频率-相位联合跳变信号,输出的基带信号经过A/D采样后,以时间窗T做滑动FFT,第n个时间窗T输出的L个子载波上的频域值为Ri,n,,包含了第i个子载波上的幅度和相位信息;i = 1,2,…,L; j. At the receiving end, the frequency-phase joint hopping signal of the receiver, the output baseband signal is A/D sampled, and the sliding FFT is performed with the time window T, and the frequency domain of the L subcarriers output by the nth time window T is The value is R i,n, which contains the amplitude and phase information on the i-th subcarrier; i = 1,2,...,L;
k. 对得到的序列{Ri,n},应用最大似然序列检测技术,检测出帧头跳频序列,从而完成帧的同步和跟踪; k. For the obtained sequence {R i,n }, apply the maximum likelihood sequence detection technology to detect the frame header frequency hopping sequence, so as to complete the frame synchronization and tracking;
l. 在同步完成以后,对接收的跳频数据序列Ri,n应用最大似然序列检测技术,可检测出频率跳变序列{Fi}和相位跳变序列{Pi},通过频率转移逆函数Xnk = G-1 f(Fn, Fn-1)和相位逆转移函数Xnm = G-1 P(Pn, Pn-1)解调输出比特数据(Xnk + Xnm),从而在接收端恢复出串行数据流D。 l. After the synchronization is completed, the maximum likelihood sequence detection technology is applied to the received frequency hopping data sequence R i,n, and the frequency hopping sequence {F i } and phase hopping sequence {P i } can be detected. The inverse function X nk = G -1 f (F n , F n-1 ) and the phase inverse transfer function X nm = G -1 P (P n , P n-1 ) demodulate the output bit data (X nk + X nm ), thus recovering the serial data stream D at the receiving end.
图1为实现本发明可采用的组成框图,其信号流程为:串行数据D经串并转换模块10后变为k比特和m比特的两路并行数据Xnk、Xnm。并行数据Xnk进入频率转移函数Gf(Fn-1,Xnk)模块11,输出频率跳变控制字Fn。并行数据Xnm进入相位转移函数GP(Fn-1,Xnm)模块12,输出相位跳变控制字Pn。Fn和Pn控制DDS数字直接合成器13产生频率-相位联合跳变信号,该信号经放大器11输出发射信号S(t)。 Fig. 1 is a composition block diagram that can be used to realize the present invention, and its signal flow is as follows: the serial data D is transformed into two parallel data X nk and X nm of k bits and m bits after passing through a serial-to-parallel conversion module 10 . The parallel data X nk enters the frequency transfer function G f (F n-1 , X nk ) module 11, and outputs the frequency hopping control word F n . The parallel data X nm enters the phase transfer function G P (F n-1 , X nm ) module 12, and outputs the phase jump control word P n . F n and P n control the DDS digital direct synthesizer 13 to generate a combined frequency-phase hopping signal, and the signal is output through the amplifier 11 to transmit the signal S(t).
发射信号S(t)经过无线传输信道20后输出为R(t)。接收机36和ADC模块35完成将信号R(t)适当变换后输出数字复基带信号。该信号经FFT模块34在L个子载波上输出值,i = 1,2,…,L。序列检测模块33缓存每次跳频输出的,并对多次跳频输出的构成的序列进行最大似然序列检测,输出频率跳变控制字估计值,和相位跳变控制字估计值。经频率转移逆函数模块31解调输出k比特数据。经相位转移逆函数模块32解调输出m比特数据。(k+m)比特并行数据经并串转换模块30输出串行数据流。 The transmitted signal S(t) is output as R(t) after passing through the wireless transmission channel 20 . After the receiver 36 and the ADC module 35 transform the signal R(t) properly, they output a digital complex baseband signal. This signal outputs values on L subcarriers through FFT module 34 , i = 1,2,...,L. Sequence detection module 33 buffers each frequency hopping output , and output for multiple frequency hopping The formed sequence performs maximum likelihood sequence detection, and outputs the estimated value of the frequency hopping control word , and the estimated value of the phase jump control word . frequency shifted inverse function Module 31 demodulates and outputs k-bit data. phase shifted inverse function Module 32 demodulates and outputs m-bit data. (k+m) bit parallel data output serial data stream through parallel-to-serial conversion module 30 .
依据本发明的一个实施例如图1所示,设计每次频率-相位联合跳变传输4比特数据。串并转换模块10将串行比特流变为2个2比特的并行数据。频率转移函数Gf(Fn-1,Xnk)模块11采用具有系统卷积码结构的G函数(《差分跳频的等效卷积码分析》,杨保峰,吉林大学学报(信息科学版),2006年10月)。相位转移函数GP(Fn-1,Xnm)模块12采用类似结构的G函数。DDS数字直接合成器模块13采用ADI公司的芯片AD9957产生频率-相位联合跳变信号,放大器模块11采用普通射频功率放大器。 According to an embodiment of the present invention, as shown in FIG. 1 , it is designed to transmit 4 bits of data each frequency-phase joint hopping. The serial-to-parallel conversion module 10 converts the serial bit stream into two 2-bit parallel data. The frequency transfer function G f (F n-1 , X nk ) module 11 adopts the G function with a systematic convolutional code structure ("Analysis of Equivalent Convolutional Codes for Differential Frequency Hopping", Yang Baofeng, Journal of Jilin University (Information Science Edition) , October 2006). The phase transfer function G P (F n-1 , X nm ) module 12 adopts a G function with a similar structure. The DDS digital direct synthesizer module 13 adopts the chip AD9957 of ADI Company to generate frequency-phase joint jump signal, and the amplifier module 11 adopts a common radio frequency power amplifier.
无线传输信道20为短波信道,接收机36采用常规的超外差接收机。ADC模块35采用ADI公司的芯片AD6655,完成将信号中频/基带信号变换为数字复基带信号功能。FFT模块34由(FPGA + DSP)构成,实现512点FFT。选择FFT输出中属于跳频子集的L个子载波上的值输出(i = 1,2,…,L)。序列检测模块33缓存每跳输出的,并对多跳输出的{}进行最大似然序列检测,输出频率跳变控制字估计值和相位跳变控制字估计值。频率转移逆函数模块31根据{}解调输出2比特数据。相位转移逆函数模块32根据{}解调输出2比特数据。并串转换模块30将4比特并行数据转换为串行数据流。 The wireless transmission channel 20 is a short wave channel, and the receiver 36 adopts a conventional superheterodyne receiver. The ADC module 35 adopts the chip AD6655 of ADI Company, and completes the function of converting the signal intermediate frequency/baseband signal into a digital complex baseband signal. The FFT module 34 is composed of (FPGA+DSP), and realizes 512-point FFT. Select the values on the L subcarriers in the FFT output that belong to the hopping subset output(i = 1,2,...,L). The sequence detection module 33 caches the output of each hop , and for multi-hop output { } Carry out maximum likelihood sequence detection, and output frequency hopping control word estimated value and phase jump control word estimates . frequency shift inverse function module 31 according to { } Demodulate and output 2-bit data. phase shift inverse function module 32 according to { } Demodulate and output 2-bit data. The parallel-to-serial conversion module 30 converts 4-bit parallel data into a serial data stream .
在所述实施例中,采用本发明的频率-相位联合跳变通信方法,可以实现跳频带宽:2.56MHz;频点数:64 个;跳速:5000 跳/秒;每跳持续时间:200μs;每跳比特数:4bit(其中:频率每跳承载2比特,相位每跳承载2比特);帧结构:1000 跳/帧,其中31 跳为帧头,969 跳为数据信息;理论最大串行数据传输率:19.38kbps。相比普通仅利用频率信息的跳频通信方法,在同等条件下采用本发明所述的方法,每跳可以多传输2bit,数据传输速率是原来的两倍。 In the described embodiment, using the frequency-phase joint hopping communication method of the present invention, the frequency hopping bandwidth can be realized: 2.56 MHz; the number of frequency points: 64; the hopping speed: 5000 hops/second; the duration of each hop: 200 μs; Bits per hop: 4bit (of which: frequency carries 2 bits per hop, phase carries 2 bits per hop); frame structure: 1000 hops/frame, of which 31 hops are frame headers, 969 hops are data information; theoretical maximum serial data Transmission rate: 19.38kbps. Compared with the common frequency hopping communication method that only uses frequency information, the method of the present invention can transmit 2 bits more per hop under the same conditions, and the data transmission rate is twice the original one.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的保护范围并不局限与这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其他各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。本发明的保护范围仅由所附权利要求为准。 Those of ordinary skill in the art will appreciate that the embodiments described herein are intended to assist the reader in understanding that the scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention. The protection scope of the present invention is determined only by the appended claims.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210456966.7A CN102957451B (en) | 2012-11-14 | 2012-11-14 | Frequency-phase combined jumping communication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210456966.7A CN102957451B (en) | 2012-11-14 | 2012-11-14 | Frequency-phase combined jumping communication method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102957451A CN102957451A (en) | 2013-03-06 |
CN102957451B true CN102957451B (en) | 2014-08-13 |
Family
ID=47765765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210456966.7A Expired - Fee Related CN102957451B (en) | 2012-11-14 | 2012-11-14 | Frequency-phase combined jumping communication method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102957451B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3316508A1 (en) * | 2016-10-27 | 2018-05-02 | Fraunhofer Gesellschaft zur Förderung der Angewand | Receiver and method for providing a phase coherency for frequency hopping multitone signals |
CN106877903B (en) * | 2017-01-19 | 2020-10-23 | 沈阳理工大学 | Two-dimensional information hiding anti-interference communication method based on hybrid frequency hopping |
CN109194365B (en) * | 2018-09-25 | 2019-12-17 | 中国人民解放军陆军工程大学 | A two-dimensional pattern modulation frequency hopping communication method |
CN114337731B (en) * | 2021-11-30 | 2023-03-21 | 中国科学院半导体研究所 | An optical frequency hopping communication system and method |
CN114598383B (en) * | 2022-03-14 | 2023-05-30 | 中国电子科技集团公司第十研究所 | Combined frequency hopping transmission system and method of non-ground network |
CN115118304B (en) * | 2022-06-28 | 2024-03-22 | 西安电子科技大学 | Frequency hopping signal parameter measurement method for vector signal analyzer |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006081131A (en) * | 2004-09-06 | 2006-03-23 | Tokyo Institute Of Technology | MIMO-OFDM transceiver using phase hopping transmit diversity |
CN1889550A (en) * | 2006-06-01 | 2007-01-03 | 东南大学 | Unified binary phase modulating and demodulating method |
US8451094B2 (en) * | 2008-02-06 | 2013-05-28 | Intermec Ip Corp. | Phase hopping to reduce interference and improve radio frequency identification (RFID) tag throughput |
CN201286091Y (en) * | 2008-11-25 | 2009-08-05 | 中国电子科技集团公司第五十四研究所 | Frequency hopping small step frequency synthesizer |
US7928780B1 (en) * | 2009-09-29 | 2011-04-19 | General Electric Company | Phase-locked-loop circuit |
US8319563B2 (en) * | 2010-03-12 | 2012-11-27 | Fmax Technologies, Inc. | Digitally controlled oscillator |
CN102468868B (en) * | 2010-11-03 | 2016-03-30 | 苏州普源精电科技有限公司 | DDS signal generator and frequency-hopping method |
CN102355281B (en) * | 2011-06-30 | 2013-11-13 | 桂林电子科技大学 | Combinable frequency hopping wireless transmitting-receiving system and operation method thereof |
CN102611655B (en) * | 2012-03-14 | 2014-10-29 | 东南大学 | Extraction method for baseband code of hydroacoustic two-phase modulated direct spread signal |
-
2012
- 2012-11-14 CN CN201210456966.7A patent/CN102957451B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102957451A (en) | 2013-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102957451B (en) | Frequency-phase combined jumping communication method | |
CN102624419B (en) | Carrier synchronization method of burst direct sequence spread spectrum system | |
KR101957655B1 (en) | Method and apparatus for transferring data in a digital chaotic cooperative network | |
CN102025669B (en) | Short-wave data transmission method based on dual multisystem quasi-orthogonal spread-spectrum composite phase modulation | |
CN104393891B (en) | Communication method for driving frequency spreading/frequency hopping of direct sequence by adopting information | |
CN101022280A (en) | Orthogonal lower mixing frequency digital template matching pulse ultra wide band radio signal receiving method | |
CN109818648B (en) | A multi-sequence frequency hopping anti-jamming communication method based on pseudo-random chirp | |
CN110601717B (en) | Communication and ranging integrated system and method based on code division multiplexing | |
US12119967B2 (en) | Method and transmitter for constant envelope phase modulation and demodulation | |
CN102215047B (en) | Soft spread spectrum multiplexing method for high-speed data transmission | |
CN107769816A (en) | A kind of Chirp spread spectrum communication system receivers clock synchronization system and method | |
CN103414491B (en) | The degree of depth spread spectrum merged based on DAGC diversity realizes method with relevant fast frequency hopping | |
US7864880B2 (en) | Blind synchronization and demodulation | |
EP4136799A1 (en) | All digital non-conventional chaotic communication systems for resilient communications and signaling | |
CN103580723B (en) | A kind of UWB Wireless Sensor device communication means based on time-frequency combination modulation | |
An et al. | A turbo coded LoRa-index modulation scheme for IoT communication | |
KR20070024617A (en) | Transmitters and Receivers for Ultra-Wideband FM Signals with Low Complexity CDMA Layers for Extended Bandwidth | |
CN111868545B (en) | A satellite communication navigation signal generating method and device, and receiving method and device | |
US20090092058A1 (en) | Non-Data-Aided Channel Estimators for Multipath and Multiple Antenna Wireless Systems | |
CN103179057A (en) | A Channel Estimation Method Applicable to Direct Sequence Spread Spectrum UWB System | |
CN102487313A (en) | Communication method based on combination of space-time block code (STBC) and fast frequency-hop code | |
CN101969422B (en) | Precise synchronization method for orthogonal frequency division multiplexing (OFDM)-ultra-wide bandwidth(UWB) system | |
CN101425818B (en) | Method and system for ultra-wideband communication frequency domain equalization | |
Chougrani et al. | UWB-IR digital baseband architecture for IEEE 802.15. 6 wireless BAN | |
KR100669904B1 (en) | Rake receiver for ultra-wideband system and receiving device having same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140813 |
|
CF01 | Termination of patent right due to non-payment of annual fee |