CN102956234A - 用于实时地频域水印处理多声道音频信号的方法和装置 - Google Patents

用于实时地频域水印处理多声道音频信号的方法和装置 Download PDF

Info

Publication number
CN102956234A
CN102956234A CN2012103025162A CN201210302516A CN102956234A CN 102956234 A CN102956234 A CN 102956234A CN 2012103025162 A CN2012103025162 A CN 2012103025162A CN 201210302516 A CN201210302516 A CN 201210302516A CN 102956234 A CN102956234 A CN 102956234A
Authority
CN
China
Prior art keywords
watermark
processing
channel
sound channel
sound signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103025162A
Other languages
English (en)
Inventor
P.G.鲍姆
U.格里斯
M.阿诺德
陈晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Licensing SAS
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of CN102956234A publication Critical patent/CN102956234A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/018Audio watermarking, i.e. embedding inaudible data in the audio signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Reverberation, Karaoke And Other Acoustics (AREA)

Abstract

数字音频信号实时水印在具有有限处理能力的环境下是困难的。根据本发明,关于水印重要性将在基于数据块的音频多声道信号中的声道优先级化,从而声道优先级可以为不同的输入信号数据块而改变。对于当前输入信号块,水印最重要的声道并确定要求的处理时间。如果此要求的处理时间短于预定的取决于应用的阈值,则标记次重要的声道并且确定额外要求的处理时间等等。由于包括块重叠/相加的音频水印基于块的本质并且由于对抗块假象的产生的音频质量的敏感度,解决若干个问题以便于引向可接受的性能和质量。本发明最优化一方面的水印鲁棒性和安全性和另一方面的实时处理限制之间的折中。

Description

用于实时地频域水印处理多声道音频信号的方法和装置
技术领域
本发明涉及用于实时地频域水印处理多声道音频信号的方法和装置,其中对于水印处理音频信号的当前输入部分的全部声道,在任何情况下,都没有足够处理能力可用,并且其中,对于水印处理,以重叠/相加方式每个声道地处理音频信号。
背景技术
实时数字音频信号水印在处理能力有限的环境下是困难的。这是例如嵌入式平台的情况,其中,由于成本、热量和音量原因而通常使用低功率处理单元,或者是服务器的情况,在其中强力的处理器必须平行地实时水印多个数据流。通常,音频水印系统基于如下的基于块的方式操作,水印(WM)嵌入器取得N个输入信号样本的块,WM处理此块并返回N个改进输出信号样本的块。实时意味着用于信号数据块的WM处理的时间周期小于用来获得下一个信号数据块的时间周期。如果WM处理时间较长,则违背了实时的限制并且在嵌入器的输入将发生缓冲溢出,这导致样本的丢失和可听假象(audible artefact)以及音频质量的退化。此外,嵌入水印所要求的处理时间经常是取决于音频信号内容的。
发明内容
所以,确保音频数据流的水印处理而不违背实时限制是重要的。一方面,这意味着在绝大多数情况下不是全部多声道数据流的声道都可以被标记。另一方面,水印尽可能多的音频数据流的声道以便于增加水印的鲁棒性和安全性是有利的。在5.1声道音频中,例如,如果仅中央声道被水印而不是左、中央和右声道或全部6个声道,则WM的鲁棒性和安全性大幅降低。
为了在上述受限环境中保证实时处理,必须找到对于其水印嵌入器将需要最长的处理时间的最坏情况输入信号。基于这样的时间周期,可以计算可以实时标记的最大数量的声道。但是,这样的解决方案的缺点是,绝大多数输入信号可以比上述最坏情况输入信号更快地被处理,并且绝大多数时候,嵌入器水印比可以水印的声道更少的声道,而这降低鲁棒性和安全性。
本发明要解决的问题是,提供具有实时限制的水印处理,在其中可以水印尽可能多的音频输入信号声道。用权利要求1中公开的方法解决此问题。在权利要求4中公开利用此方法的装置。
根据本发明,关于水印重要性将在基于数据块的音频多声道信号中的声道优先级化,从而对于不同的输入信号数据块可以改变声道优先级。对于当前输入信号块,水印最重要的声道,例如5.1设置中的中央声道,并且确定所要求的处理时间。如果,此所要求的处理时间比预定的取决于应用的阈值小,则标记次重要的声道(例如,左声道),且确定额外要求的处理时间。以此方式,为当前输入信号块连续标记重要性降序的声道,直到总的所要求的处理时间大于预定处理时间阈值。此后,不水印剩余的声道,而仅进行必须的音频处理,从而不发生块假象(blocking artifact)。这样的“抗块处理”(参见下面的描述)通常远快于完全WM嵌入处理,并且因而此例程的方式将保证遵守实时限制。
由于音频编码和水印基于块的本质并由于与对抗块假象产生的音频质量的敏感度,所以必须解决若干问题以便于引向可接受的性能和质量。
本发明最优化一方面的WM鲁棒性和安全性与另一方面的实时处理限制之间的折中。
大体上,本发明方法适用于实时地频域水印处理多声道音频信号,其中对于水印处理所述音频信号的当前输入部分的全部声道,在任何情况下都没有足够的处理能力,并且其中,对于所述水印处理,对所述音频信号的当前输入部分和所述音频信号的随后的输入部分,以重叠/相加方式每个声道地处理所述音频信号,所述方法包括如下步骤:
a)对于所述音频信号的所述当前输入部分,确定或考虑声道优先级列表;
b)如果有足够的处理能力可用于水印处理所述声道优先级列表的第一声道,则水印所述第一声道的音频内容,其中该水印处理包括:
-级联所述音频信号的所述当前输入部分的此声道的输入数据块和所述音频信号的随后的数据块;
-幅度加权、频率变换、水印和逆频率变换所述级联的输入数据块;
-幅度加权并相加两个产生的数据块,其中对于所述音频信号的数据流的全部声道的第一部分,将对应的数据块幅度加权并且相加而没有先前水印处理;
否则,不水印此声道的音频内容,并略过对应的数据块;
c)对所述音频信号的所述当前输入部分的剩余声道重复步骤b),并对所述音频信号的随后的输入部分继续用步骤b)和第一声道。
大体上,发明性的装置适用于实时地频域水印处理多声道音频信号,其中,对于水印处理音频信号的当前输入部分的全部声道,在任何情况下都没有足够处理能力可用,并且其中对所述音频信号的当前输入部分和所述音频信号的随后输入部分以重叠方式/相加方式每个声道地处理所述水印处理所述音频信号,所述装置包括适配用于以下的部件:
a)对于所述音频信号的所述当前输入部分,确定或考虑声道优先级列表;
b)如果有足够的处理能力可用于水印处理所述声道优先级列表的第一声道,则水印所述第一声道的音频内容,其中该水印处理包括:
-级联所述音频信号的所述当前输入部分的此声道的输入数据块和所述音频信号的随后的数据块;
-幅度加权、频率变换、水印和逆频率变换所述级联的输入数据块;
-幅度加权并相加两个产生的数据块,其中对于所述音频信号的数据流的全部声道的第一部分,将对应的数据块幅度加权并且相加而而没有先前水印处理;
否则,不水印此声道的音频内容,并略过对应的数据块;
c)对所述音频信号的所述当前输入部分的剩余声道重复步骤b),并对所述音频信号的随后的输入部分继续用处理b)和第一声道。
本发明的有利的、额外的实施例在各自的独立权利要求中公开。
附图说明
参考所附附图描述本发明的示例性实施例,所附附图如下示出:
图1加权重叠-相加处理的示例;
图2随着时间推移,周期中每个音频信号数据块使用的平均、最大和当前处理器负载;
图3发明性处理的流程图;
图4标记声道(MarkChannel)步骤的更具体的流程图;
图5不标记声道(NotMarkChannel)步骤的更具体的流程图;
图6从状态“处理(PROCESS)”到状态“略过(PASSTHROUGH)”的转变
图7从状态“略过”到状态“处理”的逆转变
具体实施方式
绝大多数音频处理算法,无论是音频编码还是音频水印,都是基于块的,其中,在相同的时间处理N个输入信号样本的块并生成N个输出样本。这样的基于块的处理的原因是,在频域实现部分处理而输入样本在时域,其中典型地用快速傅里叶变换(FFT)或改进离散余弦变换(MDCT)变换N个时域样本的块并将其在频域处理并使用对应的逆变换将其变换回时域。因为这样的变换对于二的指数的长度是非常高效的,所以512或1024大小的样本最常使用。
基于块的音频处理的直接方式是从包含k*N到(k+1)*N-1的输入样本的大小N的第k个输入块Ik中直接生成包含k*N到(k+1)*N-1的输出样本的大小N的第k个输出块Ok。但是,输入音频信号在块边界是连续的,即,在输入块Ik和Ik+1之间的界线,并且如果独立地处理块Ik和Ik+1的内容,则将发生的是输出块Ok和Ok+1之间的转变不是连续的,引起可听的微响假象。此问题的熟知解决方案是使用加权重叠-相加(WOLA)变换,其中,加权和重叠、变换、逆变换原始音频信号输入块,并且当形成输出信号时加权并相加该原始音频信号输入块,参见J.B.Allen的“Short Term SpectralAnalysis,Synthesis,and Modification by Discrete Fourier Transform”,IEEETransactions on Acoustics,Speech,and Signal Processing,vol.ASSP-25,no.3,pp.235–238,1977年6月。
图1描绘了用于典型重叠N的发明性水印处理结构,其中Jk是大小N的原始音频信号输入块。在步骤或阶段CC中级联每两个连续的块Jk和Jk+1,引起长度2N和以N重叠的块Ik,从而在I个块中总计包含每个原始输入音频信号样本两次。
取代级联长度N的完整的块,长度N/2的一半块可以以连续方式级联(例如,块Jk的第二个半块和块Jk+1的第一个半块,块Jk+1的第一个半块和块Jk+1的第二个半块,块Jk+1的第二个半块和块Jk+2的第一个半块等等),并且对应的重叠是N/2。
图1不描绘相同的多声道音频信号部分的连续声道,而是用于多声道音频信号的连续部分的相同声道。
在步骤或阶段WTk,大体上块Ik幅度加权并变换,在频域内施加水印改进k,并且逆变换所产生的块,产生大小2N的输出块Ok
变换可以是FFT,其从每2N个输入值中生成2N个变换的输出值,并且对应的逆变换IFFT从每2N个输入值中生成2N个逆变换的输出值,或者该变换可以是MDCT,其从每2N个输入值中生成N个变换的输出值,并且对应的逆变换IMDCT从每N个输入值中生成2N个逆变换输出值。
在步骤或阶段WA中,当前输出块对Ok/Ok+1的第一块Ok与先前输出块对Ok-1/Ok的第二块Ok幅度加权并相加,以产生大小为N的最终输出块Pk。在WTk的输入并在WA中,进行两个块的两个幅度加权从而存在总体平坦的响应。例如,幅度加权使用正弦和余弦函数从而sin2+cos2=常数,例如1。
音频数据流的第一原始输出块J0不根据上述处理产生输出块。反而,第一最终输出块P0是第一输出块O0和原始输入块J0的组合。这意味着相对于对应的输入块Jk,以一个块延迟最终输出块Pk
  时间步骤   原始输入块   改进   原始输出块
  t0   J0   无   无
  t1   J1   WT0   P0
  t2   J2   WT1   P1
  ...   ...   ...   ...
  tk   Jk   WTk-1   Pk-1
如上所述,在一些应用中,没有足够的处理能力可以实时地水印多声道音频数据流的全部声道。这例如在类似用于TV信号接收的机顶盒的嵌入式平台上发生,但是也在同时处理很多数据流的大型服务器上发生。此外,负责进行水印的处理器可能也实现其他类似音频编码的任务,并从而该处理的当前负载可以随时间变化。
不标记全部声道可能使水印(WM)系统的安全性降级,因为这可能移除水印的声道而不使用户体验降级太多。如果例如在5.1音频数据流中,仅标记左声道,取决于内容,可能基于除左声道以外的全部声道生成新的2.1音频数据流。当然,在这样的流中,不能检测到水印。
不标记全部声道还将使鲁棒性降级,该鲁棒性对抗例如在电影院中WM系统音频输出的未授权话筒捕获,因为在话筒阶段,自动地将全部声道混合在一起。通常,以相同的方式标记全部声道,这意味着在此混音中添加水印。另一方面,如果一些声道未标记,则它们可以简单地作为对WM检测器的额外噪声,这可能引起水印的不可检测性。
嵌入水印所需的时间经常取决于内容的事实甚至使情况更复杂,如图2所示,其中,描绘了随着时间变化每个块使用的最大值、平均值和当前处理器周期。
本发明性动态声道标记提供了在实时要求、鲁棒性和安全性之间的最优的折中。如上所述,在一些应用中,不可能水印音频数据流的全部声道。所以,将声道优先级化。例如,在5.1设置上绝大多数音频信号内容或能量在左、右和/或中央声道。低频效果(LFE)声道和环绕声道通常不携带大量信息。所以,5.1音频数据流的优先级可以被设置为:
1.中央、2.左、3.右、4.左环绕、5.右环绕、6.LFE。
对于动态声道标记中的每个连续信号输入块,以优先级降序尽可能多地水印声道,而不违背实时处理能力限制并且不损害由于块假象的音频质量。
将音频声道的发明性水印处理的三个状态定义为:
INIT是音频数据流的第一块的处理的状态(图1中的块J0)。
“处理”是正常的处理操作状态(图1中的块J1、J2和J3)。
在状态“略过”中,不进行水印处理,而仅返回对应的输入块(图6中的块Jk和Jk+1以及图7中的块Jk-3和Jk-2)以便于维持数据连续性。
在示出通用发明性处理的流程图的图3中,在步骤31启动计时器,并且通过设置当前音频声道数m以标记为“0”(如果声道优先级列表从零开始,或者如果声道优先级列表从“1”开始,则m设为“1”)来在步骤32中选择当前音频信号块或部分的声道优先级列表的第一声道。在步骤33中读取当前计时器值,并在步骤34中以整体的实时处理要求的角度检查是否还存在足够的时间以水印处理音频声道优先级列表的下一个声道。
一旦在水印处理当前音频信号输入块或部分期间,由上述无水印处理任务导致的处理器负载下降或增加,则不仅在步骤/阶段33和34中评估允许时间周期,还评估剩余的当前音频信号输入块或部分的可用处理能力。
如果当前剩余的处理能力对水印处理是可用的,则在步骤35中水印优先级列表的当前音频声道m并且在步骤36中以“1”递增优先级列表声道数m,即,m←m+1。如果不可用,则在步骤39中不水印当前音频声道m并且在步骤36中以“1”递增声道优先级列表数m。
步骤37检查在声道优先级列表中是否存在更多剩余的声道。如果是存在,则在步骤38中选择声道优先级列表的下一个音频声道m,读取步骤33中的当前计时器值并且如上所述地继续处理。如果不存在,则当前音频信号块或部分的水印处理结束并且对随后的音频信号块或部分的第一优先级列表声道继续处理。
声道计数器m与当前声道是否被水印无关地增加。这确保了不论一些声道是否已经处于状态“略过”都独立地应用相同的修改(或类似的改进,因为该改进可以是取决于内容的)到一个音频信号块或部分的全部声道。
在图4和图5中描绘用于图3的步骤35的“标记声道”和步骤39的“不标记声道”的更详细的流程图。在图4中,在步骤41中检查当前状态是否为“处理”。如果是,则在步骤42中进行当前声道m的正常处理。如果不是,则在步骤43中进行向处理当前通道m的状态“处理”的转变,如同联系图1、6和7而描述的。在图5中,在步骤51中检查当前状态是否是“略过”。如果是,则在步骤52中进行当前声道m的正常“略过”处理。如果不是,则在步骤53中进行向处理当前通道m的状态“略过”的转变,如同联系图1、6和7所描述的。
在对于当前音频信号块或部分的其它声道没有剩余水印处理能力的情况下,则如图6所描绘的,对于剩余声道水印处理状态从状态“处理”变为状态“略过”。在该图中,输出块Pk和Pk+1的内容分别对应于输入块Jk和Jk+1的内容。
在在当前输入信号块或部分的处理期间对于当前音频信号块或部分的其它声道存在意料之外的水印处理能力(例如,由于不同的任务要求较少的处理能力)的情况下,则如图7所描绘的,对于当前音频信号块或部分的剩余声道水印处理状态可以从状态“处理”变为状态“略过”。在结束当前音频信号块或部分的处理或检查并且继续处理随后的音频信号块或部分的声道优先级列表的第一声道的水印处理的情况下,这也是正确的。在该图中,输出块Pk-3和Pk-2的内容分别对应于输入块Jk-3和Jk-2的内容。
有利地,随着时间推移声道的优先级化不需要是恒定的。例如,如果在5.1设置中仅水印两个声道,从而最重要的声道是中央声道,左声道和右声道可能是同等重要的。为了使攻击者的行为更加困难,有利的是,在这种情况下在第一时间周期标记中央和左声道并此后在第二时间周期标记中央和右声道,并重复此交替直到音频数据流的结束。

Claims (8)

1.一种用于实时地频域水印处理(CC、WT、WA、35)多声道音频信号的方法,其中对于水印处理所述音频信号的当前输入部分的全部声道,在任何情况下都没有足够的处理能力,并且其中,对于所述水印处理,对所述音频信号的当前输入部分和所述音频信号的随后的输入部分,以重叠/相加方式每个声道地处理所述音频信号,所述方法包括如下步骤:
a)对于所述音频信号的所述当前输入部分,确定或考虑声道优先级列表;
b)如果有足够的处理能力可用于水印处理所述声道优先级列表的第一声道(32),则水印(35)所述第一声道的音频内容,其中该水印处理包括:
-级联(CC)所述音频信号的所述当前输入部分的此声道的输入数据块(J0,J1)和所述音频信号的随后的数据块;
-幅度加权、频率变换、水印和逆频率变换(WT0)所述级联的输入数据块;
-幅度加权并相加(WA)两个产生的数据块,其中对于所述音频信号的数据流的全部声道的第一部分,将对应的数据块(J0)幅度加权并相加而没有先前水印处理;
否则,不水印(39)此声道的音频内容,并略过(PASSTHROUGH)对应的数据块;
c)对所述音频信号的所述当前输入部分的剩余声道重复步骤b),并对所述音频信号的随后的输入部分继续用步骤b)和第一声道。
2.根据权利要求1的方法,
其中,在存在从水印处理(“处理”)向无水印处理(“略过”)的切换的情况下,则在所述幅度加权和相加(WA)中,最后的数据块是对应的输入数据块,并且其中,一旦存在从无水印处理(“略过”)向水印处理(“处理”)的切换,则在所述幅度加权和相加(WA)中,第一数据块是对应的输入数据块。
3.根据权利要求1或2的方法,其中,对所述音频信号的每个输入部分确定所述声道优先级列表。
4.用于实时地频域水印处理(CC、WT、WA、35)多声道音频信号的装置,其中对于水印处理所述音频信号的当前输入部分的全部声道(m),在任何情况下都没有处理能力可用,并且其中,对于所述水印处理,对所述音频信号的当前输入部分和所述音频信号的随后的输入部分,以重叠/相加方式每个声道地处理所述音频信号,所述装置包括如下步骤:
a)对于所述音频信号的所述当前输入部分,确定或考虑声道优先级列表;
b)如果有足够的处理能力可用于水印处理所述声道优先级列表的第一声道(32),则水印(35)所述第一声道的音频内容,其中该水印处理包括:
-级联(CC)所述音频信号的所述当前输入部分的此声道的输入数据块(J0,J1)和所述音频信号的随后的数据块;
-幅度加权、频率变换、水印和逆频率变换(WT0)所述级联的输入数据块;
-幅度加权并相加(WA)两个产生的数据块,其中对于所述音频信号的数据流的全部声道的第一部分,将对应的数据块(J0)幅度加权并相加而没有先前水印处理;
否则,不水印(39)此声道的音频内容,并略过(“略过”)对应的数据块;
c)对所述音频信号的所述当前输入部分的剩余声道重复步骤b),并对所述音频信号的随后的输入部分继续用步骤b)和第一声道。
5.根据权利要求4的装置,
其中,在存在从水印处理()向无水印处理()的切换的情况下,则在所述幅度加权和相加(WA)中,最后的数据块是对应的输入数据块,并且其中,一旦存在从无水印处理(“略过”)向水印处理(“处理”)的切换,则在所述幅度加权和相加(WA)中,第一数据块是对应的输入数据块。
6.根据权利要求4或5的装置,其中,对所述音频信号的每个输入部分确定所述声道优先级列表。
7.根据权利要求1到3之一的方法处理的数字多声道音频信号。
8.一种其上包含或存储、或记录入权利要求7所述的多声道音频信号的存储介质。
CN2012103025162A 2011-08-23 2012-08-23 用于实时地频域水印处理多声道音频信号的方法和装置 Pending CN102956234A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11306062.8 2011-08-23
EP11306062A EP2562748A1 (en) 2011-08-23 2011-08-23 Method and apparatus for frequency domain watermark processing a multi-channel audio signal in real-time

Publications (1)

Publication Number Publication Date
CN102956234A true CN102956234A (zh) 2013-03-06

Family

ID=46601719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012103025162A Pending CN102956234A (zh) 2011-08-23 2012-08-23 用于实时地频域水印处理多声道音频信号的方法和装置

Country Status (5)

Country Link
US (1) US9165559B2 (zh)
EP (2) EP2562748A1 (zh)
JP (1) JP2013045112A (zh)
KR (1) KR20130023106A (zh)
CN (1) CN102956234A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104053017A (zh) * 2013-03-15 2014-09-17 国际商业机器公司 多通道媒体内容中的取证方法和系统
CN105556598A (zh) * 2013-09-12 2016-05-04 杜比实验室特许公司 多通道音频的通道的选择性加水印

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093064B2 (en) * 2013-03-11 2015-07-28 The Nielsen Company (Us), Llc Down-mixing compensation for audio watermarking
KR102137686B1 (ko) 2013-08-16 2020-07-24 삼성전자주식회사 컨텐츠 무결성 제어 방법 및 그 전자 장치
WO2015078502A1 (en) 2013-11-28 2015-06-04 Fundacio Per A La Universitat Oberta De Catalunya Method and apparatus for embedding and extracting watermark data in an audio signal
CN105632503B (zh) * 2014-10-28 2019-09-03 南宁富桂精密工业有限公司 信息隐藏方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9901146D0 (sv) * 1998-11-16 1999-03-29 Ericsson Telefon Ab L M A processing system and method
US8355525B2 (en) * 2000-02-14 2013-01-15 Digimarc Corporation Parallel processing of digital watermarking operations
JP2002182699A (ja) * 2000-12-15 2002-06-26 Matsushita Electric Ind Co Ltd 音声符号化装置
KR20020053980A (ko) 2000-12-26 2002-07-06 오길록 오디오 워터마크 삽입 장치 및 그 방법과 그의 검출 장치및 그방법
US7460684B2 (en) * 2003-06-13 2008-12-02 Nielsen Media Research, Inc. Method and apparatus for embedding watermarks
US8230226B2 (en) 2007-08-17 2012-07-24 Intel Corporation Advanced watermarking system and method
GB2455526A (en) * 2007-12-11 2009-06-17 Sony Corp Generating water marked copies of audio signals and detecting them using a shuffle data store
WO2009107054A1 (en) 2008-02-26 2009-09-03 Koninklijke Philips Electronics N.V. Method of embedding data in stereo image
CN102461208B (zh) * 2009-06-19 2015-09-23 杜比实验室特许公司 用于可升级介质内核和引擎的用户特定特征

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104053017A (zh) * 2013-03-15 2014-09-17 国际商业机器公司 多通道媒体内容中的取证方法和系统
CN104053017B (zh) * 2013-03-15 2017-07-11 国际商业机器公司 用于对内容帧进行编码的方法和系统
CN105556598A (zh) * 2013-09-12 2016-05-04 杜比实验室特许公司 多通道音频的通道的选择性加水印
CN105556598B (zh) * 2013-09-12 2019-05-17 Oppo广东移动通信有限公司 多通道音频的通道的选择性加水印

Also Published As

Publication number Publication date
EP2562748A1 (en) 2013-02-27
US9165559B2 (en) 2015-10-20
EP2562749B1 (en) 2014-10-01
EP2562749A1 (en) 2013-02-27
KR20130023106A (ko) 2013-03-07
JP2013045112A (ja) 2013-03-04
US20130051564A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
CN102956234A (zh) 用于实时地频域水印处理多声道音频信号的方法和装置
TWI463790B (zh) 用於信號分析與合成之適應性混成變換技術(一)
EP1403854B1 (en) Multi-channel audio encoding and decoding
US8744841B2 (en) Adaptive time and/or frequency-based encoding mode determination apparatus and method of determining encoding mode of the apparatus
US8838442B2 (en) Method and system for two-step spreading for tonal artifact avoidance in audio coding
CN110047500B (zh) 音频编码器、音频译码器及其方法
CA2792454C (en) Signal processor, window provider, encoded media signal, method for processing a signal and method for providing a window
US20080071541A1 (en) Audio signal interpolation method and device
Hu et al. Effective blind speech watermarking via adaptive mean modulation and package synchronization in DWT domain
US9015042B2 (en) Methods and systems for avoiding partial collapse in multi-block audio coding
WO2012001463A1 (en) A compressed sampling audio apparatus
JP6768141B2 (ja) スペクトル解析に続いて部分合成を用いる不均一フィルタバンクのための時間領域エイリアシング低減
RU2665281C2 (ru) Временное согласование данных обработки на основе квадратурного зеркального фильтра
US9508355B2 (en) Method and apparatus for improving encoding and decoding efficiency of an audio signal
Singh et al. Audio watermarking based on quantization index modulation using combined perceptual masking
Ma et al. A Huffman table index based approach to detect double MP3 compression
Yang et al. Lossless and secure watermarking scheme in MP3 audio by modifying redundant bit in the frames
Zhu et al. The filterbank in MP3 and AAC encoders: A comparative analysis
Tegendal Watermarking in audio using deep learning
Matsuoka et al. Data embedding in MPEG-1/Audio layer II compressed domain using side information
Koz et al. Adaptive selection of embedding locations for spread spectrum watermarking of compressed audio
Khan et al. The Effect of Data Hiding at Various Bit Positions on Audio Stegnography in DCT Domain
노진수 et al. High Quality Audio Watermarking using Spread Spectrum and Psychoacoustic Model
Brzuchalski et al. Hardware implementation of the transformation module of the MPEG-4 AAC standard

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20171117