CN102954977A - Nuclear magnetic resonance instrument probe auxiliary device for carrying out steam saturation on porous media - Google Patents
Nuclear magnetic resonance instrument probe auxiliary device for carrying out steam saturation on porous media Download PDFInfo
- Publication number
- CN102954977A CN102954977A CN2012104522961A CN201210452296A CN102954977A CN 102954977 A CN102954977 A CN 102954977A CN 2012104522961 A CN2012104522961 A CN 2012104522961A CN 201210452296 A CN201210452296 A CN 201210452296A CN 102954977 A CN102954977 A CN 102954977A
- Authority
- CN
- China
- Prior art keywords
- probe tube
- saturation
- probe
- magnetic resonance
- nuclear magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 title claims abstract description 99
- 238000005481 NMR spectroscopy Methods 0.000 title claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 238000010438 heat treatment Methods 0.000 claims abstract description 28
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 8
- 229920006395 saturated elastomer Polymers 0.000 claims description 8
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 5
- 229920005372 Plexiglas® Polymers 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 5
- 239000002937 thermal insulation foam Substances 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 4
- 239000011148 porous material Substances 0.000 abstract description 8
- 238000001514 detection method Methods 0.000 abstract description 7
- 238000002474 experimental method Methods 0.000 abstract description 4
- 238000009738 saturating Methods 0.000 abstract description 4
- 239000003570 air Substances 0.000 abstract description 2
- 238000004140 cleaning Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 5
- 239000011435 rock Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
本发明公开了一种对多孔介质进行水蒸汽饱和的核磁共振仪器探头配套装置,它包括内部装有多孔介质样品的探头管,所述探头管上方连接有一真空泵,所述探头管下方连接有水槽及饱和装置和加热装置,所述水槽及饱和装置由加热装置加热后输送水蒸气到探头管内;所述真空泵可以将探头管内部的样品抽真空,从而对样品孔隙内部的空气、液体、杂质进行清理;本发明与传统核磁共振岩心检测装置相比,通过饱和水蒸汽解决了样品细微孔隙饱和不足的问题;本发明饱和、加热、真空装置与探头相连接的设计,保证实验过程中样品的温度和密封状态,提升了核磁共振对岩心样品的检测精度和准确度。
The invention discloses a nuclear magnetic resonance instrument probe supporting device for saturating porous media with water vapor, which includes a probe tube with a porous medium sample inside, a vacuum pump connected above the probe tube, and a water tank connected below the probe tube and a saturation device and a heating device, the water tank and the saturation device are heated by the heating device and transport water vapor into the probe tube; the vacuum pump can vacuum the sample inside the probe tube, thereby removing the air, liquid, and impurities in the sample pores. Cleaning; compared with the traditional nuclear magnetic resonance core detection device, the present invention solves the problem of insufficient saturation of the fine pores of the sample through saturated water vapor; the design of the saturation, heating and vacuum device connected with the probe in the present invention ensures the temperature of the sample during the experiment And the sealed state, which improves the detection precision and accuracy of nuclear magnetic resonance for core samples.
Description
技术领域 technical field
本发明涉及一种对多孔介质进行水蒸汽饱和的核磁共振仪器探头配套装置。The invention relates to a matching device for a probe of a nuclear magnetic resonance instrument capable of saturating a porous medium with water vapor.
背景技术 Background technique
煤岩等由各种有机质、无机矿物和孔裂隙构造的多孔介质,在采用核磁共振方法研究其中的孔隙度、渗透率、饱和度以及孔隙分布情况时,需要采用与常规核磁波谱分析和成像分析所不同的方法。由于样品本身不产生核磁信号,实验人员必须将样品孔隙中的气体、液体以及杂质抽空,并注入蒸馏水并密封,完成以上前处理步骤后,才能得到可靠的实验数据。Coal rock and other porous media composed of various organic matter, inorganic minerals and pores and fissures, when using NMR methods to study the porosity, permeability, saturation and pore distribution, it is necessary to use conventional NMR spectroscopy and imaging analysis different methods. Since the sample itself does not generate NMR signals, the experimenter must evacuate the gas, liquid and impurities in the sample pores, inject distilled water and seal it. After completing the above pretreatment steps, reliable experimental data can be obtained.
然而对于低孔渗煤岩样品来说,常规饱水装置很难甚至不能进入样品中孔隙中,导致饱水不完全。这会导致核磁共振检测精度的下降。However, for low-porosity coal-rock samples, it is difficult or even impossible for conventional water saturation devices to enter the pores of the sample, resulting in incomplete saturation. This will lead to a decrease in the accuracy of NMR detection.
本发明认识到以上传统手段和设备的弊端,故采用对样品在线持续饱和水蒸汽的方法,以期实现最佳检测效果。The present invention recognizes the disadvantages of the above traditional means and equipment, so it adopts the method of continuously saturating the sample with water vapor on-line, in order to achieve the best detection effect.
发明内容 Contents of the invention
本发明目的是:提供一种对多孔介质进行水蒸汽饱和的核磁共振仪器探头配套装置。The object of the present invention is to provide a supporting device for a probe of a nuclear magnetic resonance instrument capable of saturating a porous medium with water vapor.
本发明的技术方案是:一种对多孔介质进行水蒸汽饱和的核磁共振仪器探头配套装置,它包括内部装有多孔介质样品的探头管,所述探头管上方连接有一真空泵,所述探头管下方连接有水槽及饱和装置和加热装置,所述水槽及饱和装置由加热装置加热后输送水蒸气到探头管内。The technical solution of the present invention is: a nuclear magnetic resonance instrument probe matching device for water vapor saturation of porous media, which includes a probe tube with a porous medium sample inside, a vacuum pump is connected above the probe tube, and a vacuum pump is connected below the probe tube. A water tank, a saturation device and a heating device are connected, and the water tank and the saturation device are heated by the heating device to transport water vapor into the probe tube.
优选的,所述真空泵通过气体抽真空出口管道与探头管相连,所述气体抽真空出口管道伸入探头管中与样品相连,真空泵可以将探头管内部的样品抽真空,从而对样品孔隙内部的空气、液体、杂质进行清理。Preferably, the vacuum pump is connected to the probe tube through a gas vacuum outlet pipeline, and the gas vacuum outlet pipeline extends into the probe tube to connect with the sample, and the vacuum pump can vacuum the sample inside the probe tube, thereby reducing the pressure of the sample inside the sample pore. Clean up air, liquid and impurities.
优选的,所述探头管内装有有机玻璃填充材料,样品在探头管中由有机玻璃填充材料固定位置,并保证探头管内的气密性,所述探头管外壁由具有隔热效果的真空绝热泡沫所料制成。Preferably, the probe tube is equipped with plexiglass filling material, the sample is fixed in the probe tube by the plexiglass filling material, and the airtightness in the probe tube is ensured, and the outer wall of the probe tube is made of vacuum insulation foam with heat insulation effect Made as expected.
优选的,在位于所述真空泵和所述探头管之间的气体抽真空出口管道上设有第一气密控制阀,探头管内部设有温度、压力传感器,所述加热装置通过加热管道连接在探头管下方,所述加热管道穿过水槽及饱和装置,所述水槽及饱和装置通过气体饱和入口管道连接在探头管下方,所述气体饱和入口管道伸入探头管下部与样品连接,所述气体饱和入口管道上设有第二气密控制阀。Preferably, a first airtight control valve is provided on the gas vacuum outlet pipeline between the vacuum pump and the probe tube, temperature and pressure sensors are arranged inside the probe tube, and the heating device is connected to the Below the probe tube, the heating pipeline passes through the water tank and the saturation device, and the water tank and the saturation device are connected under the probe tube through a gas-saturated inlet pipeline, and the gas-saturated inlet pipeline extends into the lower part of the probe tube to connect with the sample. A second airtight control valve is provided on the saturated inlet pipeline.
优选的,所述加热装置通过加热管道对水槽及饱和装置进行加热,水槽及饱和装置受热后产生的水蒸气通过气体饱和入口管道输送到探头管内,所述加热装置可以通过加热管道对探头管的温度进行维持。Preferably, the heating device heats the water tank and the saturation device through the heating pipeline, and the water vapor generated after the water tank and the saturation device is heated is transported into the probe tube through the gas saturation inlet pipeline, and the heating device can heat the probe tube through the heating pipeline. The temperature is maintained.
优选的,所述探头管外壁由具有隔热效果的真空绝热泡沫所料制成。Preferably, the outer wall of the probe tube is made of vacuum insulation foam material with heat insulation effect.
本发明的优点是:The advantages of the present invention are:
1. 本发明与传统核磁共振岩心检测装置相比,通过饱和水蒸汽解决了样品细微孔隙饱和不足的问题。1. Compared with the traditional nuclear magnetic resonance core detection device, the present invention solves the problem of insufficient saturation of the fine pores of the sample through saturated water vapor.
2. 本发明饱和、加热、真空装置与探头相连接的设计,保证实验过程中样品的温度和密封状态,提升了核磁共振对岩心样品的检测精度和准确度。2. The design of the connection between the saturation, heating, and vacuum devices of the present invention and the probe ensures the temperature and sealing state of the sample during the experiment, and improves the detection accuracy and accuracy of the nuclear magnetic resonance for the core sample.
附图说明 Description of drawings
下面结合附图及实施例对本发明作进一步描述:The present invention will be further described below in conjunction with accompanying drawing and embodiment:
图1为饱和水蒸气的核磁共振探头配套装置连接示意图;Fig. 1 is the schematic diagram of the connection of the supporting device of the nuclear magnetic resonance probe saturated with water vapor;
图2为本发明工作流程图。Fig. 2 is the working flow chart of the present invention.
其中:1、真空泵;2、第一气密控制阀;3、永磁体;4、磁体模块外壳;5、探头管外壁;6、有机玻璃填充材料;7、岩心样品;8、第二气密控制阀;9、水槽及饱和装置;10、加热装置;11、气体饱和入口管道;12、气体抽真空出口管道;13、加热管道;14、温度、压力传感器。Among them: 1. Vacuum pump; 2. First airtight control valve; 3. Permanent magnet; 4. Magnet module shell; 5. Outer wall of probe tube; 6. Organic glass filling material; 7. Core sample; 8. Second airtight Control valve; 9. Water tank and saturation device; 10. Heating device; 11. Gas saturation inlet pipe; 12. Gas vacuum outlet pipe; 13. Heating pipe; 14. Temperature and pressure sensors.
具体实施方式 Detailed ways
实施例:如图1所示,本发明包括探头管、真空泵1、水槽及饱和装置9和加热装置10,还包括连接各模块的导气管通道,以及气密阀门和温度、压力传感器;但不包括沿用核磁共振仪器的永磁体3、磁体模块外壳4以及作为检测对象的岩心样品7。Embodiment: as shown in Figure 1, the present invention comprises probe pipe,
探头管外壁5选用真空绝热泡沫塑料。The
探头管与真空泵1之间设有第一气密控制阀2;所述气体饱和入口管道11上设有第二气密控制阀8,探头管内设有温度、压力传感器14,用以保证探头管内部压力和温度符合实验要求。A first airtight control valve 2 is provided between the probe tube and the
本实施例的工作原理如下:The working principle of this embodiment is as follows:
实验前,岩心样品7在样品管中由有机玻璃填充材料6固定位置,保证探头管内的气密性。在实验运用过程中,首先,打开气体出口处的第一气密控制阀2,紧闭气体入口处的第二气密控制阀8;运用真空泵1将探头管内抽真空;其次,打开气体入口处的第二气密控制阀8,关闭气体出口处的第一气密控制阀2,使用加热装置10令水槽及饱和装置9中的蒸馏水汽化,并将水蒸气通过气体饱和入口管道11灌入样品管中,通过温度、压力传感器14得到的探头管内的温度和压强来确定样品7隙中的水蒸气是否达到饱和。当样品7隙中的水蒸汽达到饱和后,再次关闭气体入口处的第二气密控制阀8,加热装置10通过对加热管道13进行加热,让热量通过管道金属热传导的方式使探头管的温度得到维持;使用核磁共振仪器对样品7进行信号采集;最后,打开气体出口处的第一气密控制阀2,根据实验要求重复上述过程。Before the experiment, the
以上仅是本发明的具体应用范例,对本发明的保护范围不构成任何限制。除上述实施例外,本发明还可以有其它实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明所要求保护的范围之内。The above are only specific application examples of the present invention, and do not constitute any limitation to the protection scope of the present invention. In addition to the above-mentioned embodiments, the present invention can also have other embodiments. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection claimed by the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210452296.1A CN102954977B (en) | 2012-11-13 | 2012-11-13 | A kind of to porous medium carry out water vapour saturated nuclear magnetic resonance apparatus probe corollary apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210452296.1A CN102954977B (en) | 2012-11-13 | 2012-11-13 | A kind of to porous medium carry out water vapour saturated nuclear magnetic resonance apparatus probe corollary apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102954977A true CN102954977A (en) | 2013-03-06 |
CN102954977B CN102954977B (en) | 2016-02-03 |
Family
ID=47764060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210452296.1A Expired - Fee Related CN102954977B (en) | 2012-11-13 | 2012-11-13 | A kind of to porous medium carry out water vapour saturated nuclear magnetic resonance apparatus probe corollary apparatus |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102954977B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103344354A (en) * | 2013-07-01 | 2013-10-09 | 大连理工大学 | In-porous-medium fluid temperature visualization measuring device |
CN103776490A (en) * | 2014-01-13 | 2014-05-07 | 大连理工大学 | Magnetic-resonance imaging method for synchronous measurement of fluid speed and temperature in porous medium |
CN105973314A (en) * | 2016-07-14 | 2016-09-28 | 河海大学 | Porous medium saturation and non-saturation measurement system and method under surface water level change |
CN106525887A (en) * | 2016-09-22 | 2017-03-22 | 大连工业大学 | Temperature-changeable low-field nuclear magnetic resonance detecting device |
CN109540957A (en) * | 2018-12-29 | 2019-03-29 | 北京泓泰天诚科技有限公司 | A kind of Permanent magnetic MR spectrometer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070241752A1 (en) * | 2006-03-14 | 2007-10-18 | Thomas Meersmann | Nuclear electric quadrupolar properties of hyperpolarized gases to probe surfaces and interfaces |
CN202196178U (en) * | 2011-07-29 | 2012-04-18 | 中国海洋石油总公司 | Core barrel for nuclear magnetic resonance imager |
CN102680373A (en) * | 2012-05-23 | 2012-09-19 | 辽宁工程技术大学 | Double-purpose vapor and electric-heating three-shaft desorption and permeation test device |
-
2012
- 2012-11-13 CN CN201210452296.1A patent/CN102954977B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070241752A1 (en) * | 2006-03-14 | 2007-10-18 | Thomas Meersmann | Nuclear electric quadrupolar properties of hyperpolarized gases to probe surfaces and interfaces |
CN202196178U (en) * | 2011-07-29 | 2012-04-18 | 中国海洋石油总公司 | Core barrel for nuclear magnetic resonance imager |
CN102680373A (en) * | 2012-05-23 | 2012-09-19 | 辽宁工程技术大学 | Double-purpose vapor and electric-heating three-shaft desorption and permeation test device |
Non-Patent Citations (1)
Title |
---|
石强: "煤体结构及渗流特性的核磁共振成像实验研究", 《CNKI优秀硕士学位论文全文库工程科技Ⅰ辑》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103344354A (en) * | 2013-07-01 | 2013-10-09 | 大连理工大学 | In-porous-medium fluid temperature visualization measuring device |
CN103344354B (en) * | 2013-07-01 | 2015-10-28 | 大连理工大学 | A kind of In-porous-medium fluid temperature visualization measurement mechanism |
CN103776490A (en) * | 2014-01-13 | 2014-05-07 | 大连理工大学 | Magnetic-resonance imaging method for synchronous measurement of fluid speed and temperature in porous medium |
CN103776490B (en) * | 2014-01-13 | 2016-03-02 | 大连理工大学 | The MR imaging method of a kind of porous medium fluid velocity inside and temperature synchro measure |
CN105973314A (en) * | 2016-07-14 | 2016-09-28 | 河海大学 | Porous medium saturation and non-saturation measurement system and method under surface water level change |
CN106525887A (en) * | 2016-09-22 | 2017-03-22 | 大连工业大学 | Temperature-changeable low-field nuclear magnetic resonance detecting device |
CN109540957A (en) * | 2018-12-29 | 2019-03-29 | 北京泓泰天诚科技有限公司 | A kind of Permanent magnetic MR spectrometer |
Also Published As
Publication number | Publication date |
---|---|
CN102954977B (en) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102954977B (en) | A kind of to porous medium carry out water vapour saturated nuclear magnetic resonance apparatus probe corollary apparatus | |
CN202102631U (en) | A physical simulation platform for CO2 migration under geological storage conditions | |
CN205593878U (en) | Coal body heating methane desorption experimental apparatus | |
CN102125815B (en) | High-pressure experimental system for simulating leakage type natural gas hydrate formation/decomposition | |
CN103323380B (en) | Concrete in-situ non-destructive gas permeability measurement method | |
CN109632557B (en) | Gas-liquid two-phase saturated coal rock sample experimental device and saturation testing method | |
CN104897543A (en) | Multi-phase permeameter and rock permeability determination method | |
CN112557199B (en) | Rock gas breakthrough pressure measuring device suitable for high-temperature and high-pressure conditions | |
CN106908314B (en) | An experimental system and method for thermal cracking of cores under high pressure environment | |
CN115078356A (en) | High-temperature high-pressure condensate gas phase state micro-fluidic experimental method in porous medium | |
CN103616321B (en) | A kind of X-ray CT measuring system of Gas And Water Relative Permeability | |
CN102495090A (en) | Device and method for low-temperature high-pressure nuclear magnetic resonance imaging of natural gas hydrate | |
CN106771090A (en) | Along the assay method and measure device of journey emulsification of crude oil ability during a kind of simulation surfactant flooding | |
CN204314197U (en) | The spontaneous in the same way imbibition instrument of a kind of fracturing liquid | |
CN106814011A (en) | It is a kind of to determine the device and method that foam generates boundary in porous media | |
CN103913553A (en) | Sailing measurement device for seawater dissolved inorganic carbon (DIC) | |
CN103697962B (en) | Drainage weighing type gas nozzle gas jet volume testing method and device | |
CN204255812U (en) | The device for testing permeability coefficient of original state coarse-grained soil | |
CN111735913A (en) | In-situ detection device for building materials pollutants | |
CN101655422B (en) | A device for recovering particles by vacuum collision method | |
CN202196178U (en) | Core barrel for nuclear magnetic resonance imager | |
CN103344354B (en) | A kind of In-porous-medium fluid temperature visualization measurement mechanism | |
CN105241783A (en) | Coal-series shale gas absorption/desorption percolation experiment device | |
CN209979621U (en) | Infiltration-enhancing leaching test system for low-permeability uranium-bearing sandstone | |
CN106323839A (en) | Experiment method and device for measuring adsorption amount of nanoparticles in porous medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP01 | Change in the name or title of a patent holder |
Address after: 100000 Haidian District, Xueyuan Road, No. 29, Patentee after: China University of Geosciences (Beijing) Patentee after: SUZHOU NIUMAG ELECTRONIC TECHNOLOGY CO., LTD. Address before: 100000 Haidian District, Xueyuan Road, No. 29, Patentee before: China University of Geosciences (Beijing) Patentee before: Suzhou Niumai Electronics Co., Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160203 Termination date: 20161113 |
|
CF01 | Termination of patent right due to non-payment of annual fee |