CN102945969A - Perovskite type lanthanum-strontium-cobalt-oxygen hierarchy mesoporous nanowires, preparation method and applications thereof - Google Patents

Perovskite type lanthanum-strontium-cobalt-oxygen hierarchy mesoporous nanowires, preparation method and applications thereof Download PDF

Info

Publication number
CN102945969A
CN102945969A CN2012104201091A CN201210420109A CN102945969A CN 102945969 A CN102945969 A CN 102945969A CN 2012104201091 A CN2012104201091 A CN 2012104201091A CN 201210420109 A CN201210420109 A CN 201210420109A CN 102945969 A CN102945969 A CN 102945969A
Authority
CN
China
Prior art keywords
no3
nanowires
butanol
mesoporous
cobalt oxide
Prior art date
Application number
CN2012104201091A
Other languages
Chinese (zh)
Other versions
CN102945969B (en
Inventor
麦立强
赵云龙
石长玮
Original Assignee
武汉理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉理工大学 filed Critical 武汉理工大学
Priority to CN201210420109.1A priority Critical patent/CN102945969B/en
Publication of CN102945969A publication Critical patent/CN102945969A/en
Application granted granted Critical
Publication of CN102945969B publication Critical patent/CN102945969B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells

Abstract

The present invention relates to perovskite type lanthanum-strontium-cobalt-oxygen hierarchy mesoporous nanowires and a preparation method thereof, wherein the lanthanum-strontium-cobalt-oxygen hierarchy mesoporous nanowires can be adopted as a catalyst material of lithium air batteries, fuel cells or other electrochemical devices, have characteristic of a diameter of 100-150 nm, a length of 1-2 mum and a specific surface area of up to 96.8 m<2>/g, and are prepared through overlapping of a plurality of mutually connected nanometer short rods, the overlapping part forms a large amount of accumulation holes, a diameter of the nanometer short rod is 30-50 nm, and a large of small holes caused by structural defects exist on the surface of the nanometer short rod. According to the present invention, a multi-step micro-emulsion self-assembly method is adopted, and a post-annealing treatment is combined to obtain the perovskite type lanthanum-strontium-cobalt-oxygen hierarchy mesoporous nanowires, wherein the perovskite type lanthanum-strontium-cobalt-oxygen hierarchy mesoporous nanowires can be adopted as a catalyst material of lithium air batteries, fuel cells, other electrochemical devices and the like, and have characteristics of good electrocatalytic property and extreme high specific capacitance. In addition, characteristics of cheap raw materials, simple process, environmental protection, and excellent electrochemical performance of materials are provided.

Description

钙钛矿型镧锶钴氧分级介孔纳米线及其制备方法和应用 Perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires and preparation method and application

技术领域 FIELD

[0001] 本发明属于纳米材料与电化学器件技术领域,具体涉及一种钙钛矿型镧锶钴氧(LSCO)分级介孔结构纳米线及其制备方法,该材料可作为在锂空气电池、燃料电池或其他电化学器件的催化剂材料。 [0001] The present invention belongs to the technical field of nanomaterials and electrochemical devices, particularly to a perovskite type lanthanum strontium cobalt oxide (the LSCO) and pore nanowire preparation grade dielectric, can be used as the material in lithium-air batteries, the fuel cell catalyst material or other electrochemical devices.

背景技术 Background technique

[0002] 锂空气电池以其超高的比容量和能量密度被储能领域学者们广泛关注,由于其正极参与化学反应的O2不在电池内部而来源于外界环境,因此锂空气电池可以提供超高的能量密度(5000 Wh/kg),为相同质量锂离子电池的十倍以上。 [0002] The lithium-air battery of its high specific energy storage capacity and energy density are art scholars attention, because of its positive electrode is not involved in the chemical reaction inside the battery and O2 from the outside environment, so lithium-air battery can provide ultrahigh energy density (5000 Wh / kg), the same mass of a lithium ion battery than tenfold. 同时反应过程不会产生对环境有害的物质,为研究新一代高容量绿色储能器件提供了选择,未来可能会在电动汽车等领域中得到较为广泛的应用。 While the reaction process does not produce environmentally harmful substances, provide a choice for the study of a new generation of green high-capacity storage devices, the future may get more widely used in the fields of electric vehicles and the like. 由于电池反应产物和电解液分解产物如Li2O、Li202、Li2CO3等在正极部分沉积,分解产物附着在电池催化剂表面,对氧气传输通道产生堵塞,使催化剂利用效率大大降低,导致普通锂空气电池无法提供足够的能量密度。 Since the battery reaction products and decomposition products such as electrolyte Li2O, Li202, Li2CO3 in the positive electrode portion, etc. is deposited, a catalyst decomposition product adheres to the surface of the battery, oxygen transmission channel clogging, the catalyst efficiency is greatly reduced, resulting in ordinary lithium-air battery can not provide sufficient energy density.

[0003] 分级介孔纳米材料由于其大的比表面积、更好的通透性、更多的表面活性位等结构特征,能减少锂空气电池反应产物和电解液分解产物对氧气传输通道的堵塞,提高催化剂利用效率,提高锂空气电池能量密度,使其具备在催化、电化学等多方面的广泛的应用前景。 [0003] hierarchical mesoporous nanomaterials structural features of its large specific surface area, better permeability, more surface active sites and the like, can be reduced and the reaction product of lithium-air battery electrolyte decomposition products of the oxygen transmission channel blockage , improve catalyst efficiency, improved lithium-air battery energy density, it has many of the broad application prospect catalysis, electrochemistry. 由于钙钛矿型镧锶钴氧材料的结构缺陷,可提供良好的氧气通道,在电催化领域具有重要的应用。 Due to structural defect type perovskite lanthanum strontium cobalt oxide material, provide good oxygen passage, has important applications in the field of electro-catalytic.

[0004] 另外,采用简单的多步微乳液自组装的方法,结合后期慢速退火处理,仅需要控制反应时间与反应温度,即可实现产物可控合成,方法简单,利于市场化推广。 [0004] Further, a simple method of self-assembly multistep microemulsions, combined with the slow post-annealing treatment, is only necessary to control the reaction temperature and the reaction time, the product can achieve controlled synthesis method is simple, facilitates market promotion.

发明内容 SUMMARY

[0005] 本发明的目的在于提供一种工艺简单,具有优良电催化性能的钙钛矿型镧锶钴氧分级介孔纳米线及其制备方法。 [0005] The object of the present invention is to provide a simple process, having a perovskite lanthanum strontium cobalt oxide excellent in catalyst performance apertures Nanowires and Their classification method mediator.

[0006] 本发明还提供了钙钛矿型镧锶钴氧分级介孔纳米线作为锂空气电池、燃料电池或其他电化学器件的催化剂材料的应用。 [0006] The present invention also provides the use of the catalyst material as a hierarchical mesoporous nanowires lithium air battery, fuel cell or other electrochemical devices perovskite lanthanum strontium cobalt oxide.

[0007] 本发明解决上述技术问题所采用的技术方案是:钙钛矿型镧锶钴氧分级介孔纳米线,其直径为10(Tl50 nm,长度为1-2 μ m,其比表面积高达96. 8 m2/g,其由大量相互连接的纳米短棒搭接而成,搭接部分形成大量堆积孔,所述的纳米短棒直径为3(T50 nm,其表面存在大量由于结构缺陷而造成的小孔,其为下述方法制备的产物: [0007] aspect of the present invention to solve the above technical problem is: perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires having a diameter of 10 (Tl50 nm, a length of 1-2 μ m, a specific surface area up to its 96. 8 m2 / g, which is overlapped by a large number of interconnected nano stubs together, overlapping parts form a large accumulation of holes, the diameter of nano stubs 3 (T50 nm, which is large due to the presence of surface and structural defects holes caused by the following method for their preparation product:

1)按异辛烷:正丁醇=15〜18 ml :3 ml配制异辛烷/正丁醇混合液,加入3. O g CTAB,磁力搅拌直至无大颗粒,重复上述步骤,得到两份异辛烷-正丁醇-CTAB的混合物; 1) Press isooctane: n-butanol = 15~18 ml: 3 ml formulated isooctane / n-butanol mixture was added 3. O g CTAB, magnetic stirring until no large particles, repeating the above procedure, two isooctane - -CTAB mixture of n-butanol;

2)再将2. 75 ml的IM KOH水溶液缓慢滴加入到步骤I)得到的其中一份异辛烷_正丁醇-CTAB的混合物中,磁力搅拌至形成澄清稳定的KOH微乳液; 2) then the IM aqueous KOH 2. 75 ml was slowly added dropwise to step I) obtained wherein a mixture of n-butanol, iso-octane _ -CTAB is magnetically stirred to form a clear stable microemulsion KOH;

3)配制 O. 5 mol/L 的La (NO3) 3、Sr (NO3) 2 和Co (NO3) 2 水溶液,按La (NO3) 3 :Sr (NO3) 2 :Co (NO3)2=O. 5ml :0. 5ml :1ml均匀混合,缓慢滴加入步骤I)得到的另一份异辛烷/正丁醇/CTAB的混合物中,磁力搅拌至形成澄清稳定的La(NO3)3-Sr(NO3)2 -Co (NO3)2微乳液; 3) Preparation of O. 5 mol / L of La (NO3) 3, Sr (NO3) 2 and Co (NO3) 2 solution, by La (NO3) 3: Sr (NO3) 2: Co (NO3) 2 = O. 5ml: 0 5ml:. 1ml uniformly mixed, slowly added dropwise step I) obtained in another isooctane / n-butanol / of CTAB is magnetically stirred to form a clear stable La (NO3) 3-Sr (NO3 ) 2 -Co (NO3) 2 microemulsion;

4)将步骤2 )所得的KOH微乳液和步骤3 )所得的La (NO3) 3 -Sr (NO3) 2 -Co (NO3) 2微乳液混合,快速搅拌I小时,然后缓慢搅拌4飞小时,得到产物; 4) Step 2) The obtained microemulsion KOH and 3) the resulting La (NO3) micro-mixing the emulsion 3 -Sr (NO3) 2 -Co (NO3) 2, with rapid stirring I h, then slowly stirred for 4 hours fly, to give the product;

5)将步骤4)得到的产物离心分离,用乙醇和去离子水反复离心洗涤、干燥,得到钙钛矿型镧锶钴氧分级介孔纳米线。 The product was centrifuged for 5) in step 4) was separated, washed with ethanol and deionized water, centrifuged again, and dried, to obtain perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires.

[0008] 按上述方案,洗涤得到的产物在80°C下干燥12〜24小时。 [0008] In the above-described embodiment, washing the resulting product was dried at 80 ° C 12~24 hours.

[0009] 按上述方案,还包括有退火处理,即将干燥产物在氩气下以1°C /min的升温速度升温到75(T850°C。 [0009] In the above-described embodiment, further comprising an annealing process, the dried product coming under argon at 1 ° C / min heating rate is raised to 75 (T850 ° C.

[0010] 所述的钙钛矿型镧锶钴氧分级介孔纳米线的制备方法,其特征在于包括有以下步骤: [0010] The perovskite type lanthanum strontium cobalt oxide nanowires prepared hole graded dielectric, comprising the steps of:

1)按异辛烷:正丁醇=15〜18 ml :3 ml配制异辛烷/正丁醇混合液,加入3. O g CTAB,磁力搅拌直至无大颗粒,重复上述步骤,得到两份异辛烷-正丁醇-CTAB的混合物; 1) Press isooctane: n-butanol = 15~18 ml: 3 ml formulated isooctane / n-butanol mixture was added 3. O g CTAB, magnetic stirring until no large particles, repeating the above procedure, two isooctane - -CTAB mixture of n-butanol;

2)再将2. 75 ml的IM KOH水溶液缓慢滴加入到步骤I)得到的其中一份异辛烷_正丁醇-CTAB的混合物中,磁力搅拌至形成澄清稳定的KOH微乳液; 2) then the IM aqueous KOH 2. 75 ml was slowly added dropwise to step I) obtained wherein a mixture of n-butanol, iso-octane _ -CTAB is magnetically stirred to form a clear stable microemulsion KOH;

3)配制 O. 5 mol/L 的La (NO3) 3、Sr (NO3) 2 和Co (NO3) 2 水溶液,按La (NO3) 3 :Sr (NO3) 2 :Co (NO3)2=O. 5ml :0. 5ml :1ml均匀混合,缓慢滴加入步骤I)得到的另一份异辛烷/正丁醇/CTAB的混合物中,磁力搅拌至形成澄清稳定的La(NO3)3-Sr(NO3)2 -Co (NO3)2微乳液; 3) Preparation of O. 5 mol / L of La (NO3) 3, Sr (NO3) 2 and Co (NO3) 2 solution, by La (NO3) 3: Sr (NO3) 2: Co (NO3) 2 = O. 5ml: 0 5ml:. 1ml uniformly mixed, slowly added dropwise step I) obtained in another isooctane / n-butanol / of CTAB is magnetically stirred to form a clear stable La (NO3) 3-Sr (NO3 ) 2 -Co (NO3) 2 microemulsion;

4)将步骤2 )所得的KOH微乳液和步骤3 )所得的La (NO3) 3 -Sr (NO3) 2 -Co (NO3) 2微乳液混合,快速搅拌I小时,然后缓慢搅拌4飞小时,得到产物; 4) Step 2) The obtained microemulsion KOH and 3) the resulting La (NO3) micro-mixing the emulsion 3 -Sr (NO3) 2 -Co (NO3) 2, with rapid stirring I h, then slowly stirred for 4 hours fly, to give the product;

5)将步骤4)得到的产物离心分离,用乙醇和去离子水反复离心洗涤、干燥和退火处理,得到钙钛矿型镧锶钴氧分级介孔纳米线。 5) The Step 4) The product was separated by centrifugation, washed with ethanol and washed repeatedly with deionized water, centrifuged, dried and tempered, to obtain perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires.

[0011] 按上述方案,洗涤得到的产物在80°C下干燥12〜24小时。 [0011] In the above-described embodiment, washing the resulting product was dried at 80 ° C 12~24 hours.

[0012] 按上述方案,还包括有退火处理,即将干燥产物在氩气下以1°C /min的升温速度升温到75(T850°C。 [0012] In the above-described embodiment, further comprising an annealing process, the dried product coming under argon at 1 ° C / min heating rate is raised to 75 (T850 ° C.

[0013] 所述的钙钛矿型镧锶钴氧分级介孔纳米线作为锂空气电池、燃料电池或其他电化学器件的催化剂材料的应用。 [0013] Application of the catalyst material hierarchical mesoporous nanowires as a lithium-air battery, fuel cell or other electrochemical device of the perovskite lanthanum strontium cobalt oxide.

[0014] 本发明的有益效果是:本发明利用多步微乳液自组装法,结合后期退火处理,获得了钙钛矿型镧锶钴氧分级介孔纳米线,该材料作为锂空气电池、燃料电池或其他电化学器件等催化剂材料,有良好的电催化性能,具有极高的比电容量;本发明具有原料廉价、工艺简单环保、材料电化学性能优异的特点;本发明在锂空气电池、燃料电池或其他电化学器件上有较大的应用潜力。 [0014] Advantageous effects of the present invention are: the use of the present invention is a multi-step self-assembly microemulsion, binding post-annealing treatment, to obtain a perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires, the material as a lithium-air battery, fuel the catalyst material like a battery or other electrochemical device, good electrocatalytic properties, having a high specific electric capacity; the present invention has an inexpensive raw materials, environmental simple process, excellent in electrochemical performance characteristics; in the lithium air battery of the present invention, there are great potential on the fuel cell or other electrochemical device.

[0015] 本发明的钙钛矿型镧锶钴氧分级介孔纳米线的分级介孔结构与其性能的提高密切相关,第一,电催化性能与比表面积具有紧密关系,LSCO分级介孔纳米线的比表面积高达96. 8 m2 g — \明显高于文献报道的LSCO材料和LSCO纳米颗粒11. 87 m2 g 1 ;第二,即使在电解液分解产物沉积在催化剂和电极表面的情况下,相互搭接的LSCO纳米短棒所提供的非连续的孔道结构依然可为氧气的传到提供连续的通道;第三,钙钛矿型的本身存在缺陷的结构和LSCO纳米短棒表面的多孔结构可在更低尺度上增加氧气的流动性,在动力学上提高ORR催化效率;第四,这种分级结构可有效减小材料自团聚的发生,在催化过程中保证与氧气的充分接触,充分发挥纳米材料的优势。 [0015] perovskite lanthanum strontium cobalt oxide of the present invention to improve the classification dielectric properties of its hierarchical mesoporous pores nanowire closely related, first, electrocatalytic properties of the hole having a specific surface area of ​​the nanowire close relationship, the LSCO medium grade the specific surface area of ​​up to 96. 8 m2 g - \ significantly higher than that reported in the literature and materials LSCO LSCO nanoparticles 11. 87 m2 g 1; the second, the electrolytic solution is deposited decomposition products even in the case where the surface of the catalyst and the electrode, each discontinuous pore structure overlapping nano stubs provided LSCO can still provide a continuous channel for the spread of oxygen; third, defect perovskite-type structure and the structure itself porous surface may stubs LSCO nano increase at lower scales oxygen mobility, improving catalytic efficiency in the ORR kinetic; fourth, this hierarchical structure can effectively reduce the material from the agglomeration occurs, to ensure full contact with oxygen in a catalytic process, full the advantages of nanomaterials. 这表明分级介孔结构可有效地提高电化 This indicates hierarchical mesoporous structure can effectively improve the electrochemical

4CN 102945969 A 说明书 3/6 页 4CN 102945969 A description 3/6

学性能,钙钛矿型镧锶钴氧分级介孔纳米线在锂空气电池、燃料电池或其他电化学器件上有较大的应用潜力。 Properties, perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires have great potential in the lithium air battery, fuel cell or other electrochemical device.

附图说明 BRIEF DESCRIPTION

[0016] 图I是本发明实施例I所得的钙钛矿型镧锶钴氧分级介孔纳米线的XRD图,嵌入图为钙钛矿型镧锶钴氧原子结构模型图; [0016] FIG. I is obtained in Example I perovskite lanthanum strontium cobalt oxide hierarchical embodiment of the present invention via hole XRD pattern nanowires embedded graph perovskite lanthanum strontium cobalt structural model oxygen atom;

图2是本发明实施例I所得的钙钛矿型镧锶钴氧分级介孔纳米线N2吸附脱附曲线,嵌入图为钙钛矿型镧锶钴氧分级介孔纳米线的BJH孔径分布曲线; FIG 2 is a BJH pore size distribution curve obtained in Example I perovskite lanthanum strontium cobalt oxide embodiment of the present invention, hierarchical mesoporous nanowires N2 adsorption curve, the embedded graph perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires ;

图3是本发明实施例I所得的钙钛矿型镧锶钴氧分级介孔纳米线的SEM图; FIG 3 is obtained in Example I perovskite lanthanum strontium cobalt oxide embodiment of the present invention via SEM hierarchical FIG hole nanowire;

图4是本发明实施例I所得的钙钛矿型镧锶钴氧分级介孔纳米线的TEM图; FIG 4 is obtained in Example I perovskite lanthanum strontium cobalt oxide hierarchical embodiment of the present invention via hole TEM FIG nanowire;

图5是本发明实施例I所得的钙钛矿型镧锶钴氧分级介孔纳米线的HRTEM图; FIG 5 is obtained in Example I perovskite lanthanum strontium cobalt oxide hierarchical embodiment of the present invention via hole HRTEM FIG nanowire;

图6是本发明实施例I所得的钙钛矿型镧锶钴氧分级介孔纳米线节点处的HRTEM图和所选区域FFT花样; FIG 6 is obtained in Example I perovskite lanthanum strontium cobalt oxide dielectric hierarchical embodiment of the present invention and FIG HRTEM selected area of ​​the hole at the node FFT nanowire pattern;

图7是本发明实施例I所得的钙钛矿型镧锶钴氧分级介孔纳米线的合成机理图; FIG 7 is obtained in Example I perovskite lanthanum strontium cobalt oxide dielectric hierarchical embodiment of the present invention FIG aperture synthesis mechanism nanowire;

图8是本发明实施例I所得的的钙钛矿型镧锶钴氧分级介孔纳米线+活性炭(AC)的玻碳电极在不同转速下的ORR极化电流曲线; FIG 8 is a perovskite lanthanum strontium cobalt oxide obtained in Example I of the present embodiment of the invention, hierarchical mesoporous nanowires + carbon (AC) of the glassy carbon electrode current ORR polarization curves at different speeds;

图9是本发明实施例I所得的玻碳电极在1600 rpm的转速下的ORR、OER极化曲线;图10是基于本发明实施例I所得的钙钛矿型镧锶钴氧分级介孔纳米线+活性炭(AC)的锂空气电池在常压纯氧中的放电曲线。 FIG. 9 is obtained in Example I ORR glassy carbon electrode at 1600 rpm rotation speed of the embodiment of the present invention, OER polarization curves; FIG. 10 is obtained based on Example I perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanostructured embodiment of the present invention line + activated carbon (AC) of a lithium-air battery discharge curve of pure oxygen at atmospheric pressure.

具体实施方式 Detailed ways

[0017] 为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。 [0017] For a better understanding of the present invention, in conjunction with the following examples further illustrate the present invention, but the present invention is not limited to the following embodiments.

[0018] 实施例I : [0018] Example I:

钙钛矿型镧锶钴氧分级介孔纳米线的制备方法,包括如下步骤: Perovskite lanthanum strontium cobalt oxide fractionation method for preparing nanowires via hole, comprising the steps of:

O按异辛烷:正丁醇=15 ml :3 ml配制异辛烷/正丁醇混合液,加入3. O g CTAB,磁力搅拌直至无大颗粒,重复上述步骤,得到两份异辛烷-正丁醇-CTAB的混合物; O by isooctane: n-butanol = 15 ml: 3 ml formulated isooctane / n-butanol mixture was added 3. O g CTAB, magnetic stirring until no large particles, repeating the above steps, isooctane to give two - -CTAB mixture of n-butanol;

2)再将2. 75 ml的IM KOH水溶液缓慢滴加入到步骤I)得到的其中一份异辛烷_正丁醇-CTAB的混合物中,磁力搅拌至形成澄清稳定的KOH微乳液; 2) then the IM aqueous KOH 2. 75 ml was slowly added dropwise to step I) obtained wherein a mixture of n-butanol, iso-octane _ -CTAB is magnetically stirred to form a clear stable microemulsion KOH;

3)配制 O. 5 mol/L 的La (NO3) 3、Sr (NO3) 2 和Co (NO3) 2 水溶液,按La (NO3) 3 :Sr (NO3) 2 :Co (NO3)2=O. 5ml :0. 5ml :1ml均匀混合,缓慢滴加入步骤I)得到的另一份异辛烷/正丁醇/CTAB的混合物中,磁力搅拌至形成澄清稳定的La(NO3)3-Sr(NO3)2 -Co (NO3)2微乳液; 3) Preparation of O. 5 mol / L of La (NO3) 3, Sr (NO3) 2 and Co (NO3) 2 solution, by La (NO3) 3: Sr (NO3) 2: Co (NO3) 2 = O. 5ml: 0 5ml:. 1ml uniformly mixed, slowly added dropwise step I) obtained in another isooctane / n-butanol / of CTAB is magnetically stirred to form a clear stable La (NO3) 3-Sr (NO3 ) 2 -Co (NO3) 2 microemulsion;

4)将步骤2 )所得的KOH微乳液和步骤3 )所得的La (NO3) 3 -Sr (NO3) 2 -Co (NO3) 2微乳液混合,快速搅拌I小时,然后缓慢搅拌6小时,得到产物; 4) Step 2) The obtained microemulsion KOH and 3) the resulting La (NO3) micro-mixing the emulsion 3 -Sr (NO3) 2 -Co (NO3) 2, with rapid stirring I h, then slowly stirred for 6 hours, to give product;

5)将步骤4)得到的产物离心分离,用乙醇和去离子水反复离心洗涤;洗涤的产物在80°C下干燥24小时;干燥产物在氩气下以1°C /min的升温速度升温到800°C退火处理,得到钙钛矿型镧锶钴氧分级介孔纳米线。 5) The Step 4) The product obtained by centrifugation separation, washed with ethanol and deionized water, repeated centrifugation; washed product was dried at 80 ° C 24 hours; dried product was heated at a temperature rise rate of 1 ° C / min in argon to 800 ° C annealing treatment, to obtain a perovskite type lanthanum strontium cobalt oxide hierarchical mesoporous nanowires.

[0019] [0019]

本发明中钙钛矿型镧锶钴氧分级介孔纳米线由X-射线衍射仪确定。 The present invention perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires is determined by the X- ray diffractometer. 如图I所示,X-射 As shown in FIG. I, X- shooting

5线衍射图谱表明,经退火后得到的镧锶钴氧分级介孔纳米线为纯相Laa5Sra5CO02.91,JCPDScard No. 00-048-0122: a=5. 4300 A, b=5. 4300 A, c=13. 2516 A。 5-ray diffraction pattern showed that, after annealing obtained lanthanum strontium cobalt oxide hierarchical mesoporous nanowires were pure Laa5Sra5CO02.91, JCPDScard No. 00-048-0122:.. A = 5 4300 A, b = 5 4300 A, c = 13. 2516 A. 通过原子结构模型,确定LSCO为典型的钙钛矿结构,且由于氧缺位的存在,可能进一步增加离子或氧气的传导。 By atomic structural model to determine typical LSCO perovskite structure, and due to the presence of absence of oxygen, may further increase or oxygen ion-conducting. 如图3所示,扫描电子显微镜测试表明,产物钙钛矿型镧锶钴氧分级介孔纳米线直径约为150 nm,由大量相互连接的纳米短棒搭接而成,搭接部分形成大量堆积孔。 3, scanning electron microscopy test shows that the product perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires diameter of about 150 nm, overlapped by a large number of interconnected nano stubs together, form a large overlapping portion accumulation of holes. 进一步信息可从TEM和HRTEM图中获得,如4_5所示,分级介孔纳米线的长度为1_2 μ m,LSCO的纳米短棒直径约40 nm,发现在LSCO纳米短棒表面仍然存在大量由于结构缺陷而造成的孔结构。 Further information can be obtained from TEM and HRTEM figures, 4_5 as shown, the length grading via hole nanowire 1_2 μ m, LSCO nano stubs diameter of about 40 nm, still significant due to the structure found in the nano stubs surface LSCO hole caused by structural defects. 近距离观察LSCO分级介孔纳米线中纳米短棒连接结点处,发现LSCO纳米短棒并不是简单搭接在一起,而是具有取向的连接。 LSCO close observation hierarchical mesoporous nanowires connecting stubs nm node, simply find LSCO nano not overlap with stubs, but has a connection orientation. 观察结点处的HRTEM图,发现在形成LSCO分级介孔纳米线时,LSCO纳米短棒在原子层面上紧密连结在一起。 Observation HRTEM FIG junction point found in forming LSCO hierarchical mesoporous nanowires, nano LSCO stub tightly joined together on an atomic level. 如图6所示,通过HRTEM的晶格条纹和在选区位置的FFT衍射花样,发现在LSCO纳米短棒之间的连结部位,存在着不同的生长方向,因此,这表明LSCO纳米短棒和分级介孔纳米线的晶化形成不是同步的。 6, the FFT and HRTEM lattice fringes in the diffraction pattern selection position, found in the connecting portion between LSCO nano stub, different growth directions exist, thus indicating that the stubs and nano grade LSCO crystallization mesoporous nanowires formed not synchronized. 如图7所示,LSCO纳米短棒首先在La (NO3) 3,Sr (NO3) 2,Co (NO3) 2和KOH的微乳液的高速搅拌作用下晶化生长,随着搅拌速度的降低、并控制微乳液中水核尺寸的增加,LSCO纳米短棒将会发生自组装,同时,LSCO纳米短棒将自身作为模板,引导纳米短棒的进一步的取向生长,最终形成LSCO分级介孔纳米线。 7, the LSCO grown nano stubs first crystallization under high speed stirring microemulsion La (NO3) 3, Sr (NO3) 2, Co (NO3) 2 and KOH, and decreases as the stirring speed, and controlling the core size increasing water microemulsions, nano LSCO stubs self-assembly will occur at the same time, LSCO nano stubs itself as a template, the guide stubs nano further epitaxy, eventually forming LSCO hierarchical mesoporous nanowires . 如图2所示,N2吸附脱附曲线和BJH孔径分布曲线表明LSCO分级介孔纳米线存在本身纳米棒表面孔道和纳米棒堆积形成的孔,平均孔径为10. 17nm,为典型介孔纳米线。 2, N2 adsorption and desorption isotherms BJH pore size distribution curve shows the presence of pores itself LSCO graded dielectric nanorods surface channels and pores are formed nanorods deposited nanowires average pore size of 10. 17nm, a typical mesoporous nanowires . 分级介孔纳米线的比表面积为96. 8 m2/g,远远超过类似尺寸的纳米线。 The specific surface area hierarchical mesoporous nanowires 96. 8 m2 / g, far more than a similarly sized nanowires.

[0020] 本发明中钙钛矿型镧锶钴氧(LSCO)分级介孔纳米线的氧还原反应和氧析出反应的催化活性采用旋转圆盘电极法测试,取O. 75 mg LSCO分级介孔纳米线混合4. 25 mg活性炭AC(XC-72),分散在含122 μ I质量分数为5 wt% Nafion的I ml水:异丙醇体积比为3:1的液体中,超声处理,获得均质墨汁状液体。 [0020] In the present invention the catalytic activity of perovskite lanthanum strontium cobalt oxide (the LSCO) grade oxygen via hole nanowire oxygen evolution reaction and a reduction reaction using a rotating disk electrode test method, taking O. 75 mg LSCO hierarchical mesoporous 4. 25 mg nanowire mixing charcoal AC (XC-72), was dispersed in 122 μ I containing a mass fraction of 5 wt% Nafion I ml of water: isopropanol volume ratio of 3: 1 in the liquid, sonicated to obtain homogeneous ink-like liquid. 取同样质量的制备的材料,首先滴附在玻碳电极表面(直径为5mm),烘干后约20 μ g。 Material prepared to take the same quality, the first drops attached glassy carbon electrode (diameter 5mm), from about 20 μ g after drying. 在O. IM KOH通氧气,扫描速率SmVs—1,测试在室温下进行。 , Tests were conducted at room temperature on oxygen O. IM KOH, scan rate SmVs-1. 如图8所示,LSCO分级介孔纳米线+AC在转速为1600 rpm时的半波电位在、.77V,相比AC、LSC0纳米颗粒+AC有明显的正移,说明经过构筑分级介孔纳米线,催化剂催化活性有明显的提高。 8, the LSCO hierarchical mesoporous nanowires + AC half-wave potential at a speed of 1600 rpm at the time of, .77V, compared to AC, LSC0 nanoparticles + AC was positively shift instructions through the build hierarchical mesoporous nanowires, catalytic activity is significantly improved. LSCO分级介孔纳米线+AC的极限扩算电流可达-13 mA cm—2,远超过等量的活性炭或其他锂空气电池催化剂。 LSCO hierarchical mesoporous nanowires + AC current up to the limit count extender -13 mA cm-2, far more than the same amount of activated carbon catalyst or other lithium-air battery.

[0021] 从图9可以看出,钙钛矿型镧锶钴氧(LSCO)分级介孔纳米线具有良好的0RR、0ER [0021] As can be seen from FIG. 9, perovskite lanthanum strontium cobalt oxide (the LSCO) hierarchical mesoporous nanowires have good 0RR, 0ER

催化活性。 Catalytic activity.

[0022] 本发明中钙钛矿型镧锶钴氧(LSCO)分级介孔纳米线组装锂空气电池在纯氧气中测试,LSCO分级介孔纳米线+AC的锂空气电池具有超高的比容量,如图10所示,可达11059mAh/g,放电平台在2. 7 V左右,对应的比能量高达27647 Wh/kg。 [0022] The present invention perovskite lanthanum strontium cobalt oxide (the LSCO) hierarchical mesoporous nanowires lithium air battery is assembled test in pure oxygen, LSCO hierarchical mesoporous nanowires + AC lithium air battery of ultra-high specific capacity , 10, up to 11059mAh / g, discharge plateau at about 2. 7 V, corresponding to the specific energy up to 27647 Wh / kg. 其比容量远高于AC(1444mAh/g), LSCO纳米颗粒+AC (5302 mA/g)锂空气电池。 Its capacity is far higher than the AC (1444mAh / g), LSCO nanoparticles + AC (5302 mA / g) lithium-air battery.

[0023] [0023]

实施例2 : Example 2:

钙钛矿型镧锶钴氧(LSCO)分级介孔纳米线的制备方法,包括如下步骤: Perovskite lanthanum strontium cobalt oxide (the LSCO) fractionation method for preparing nanowires via hole, comprising the steps of:

O按异辛烷:正丁醇=15 ml :3 ml配制异辛烷/正丁醇混合液,加入3. O g CTAB,磁力搅拌直至无大颗粒,重复上述步骤,得到两份异辛烷-正丁醇-CTAB的混合物; O by isooctane: n-butanol = 15 ml: 3 ml formulated isooctane / n-butanol mixture was added 3. O g CTAB, magnetic stirring until no large particles, repeating the above steps, isooctane to give two - -CTAB mixture of n-butanol;

2)再将2. 75 ml的IM KOH水溶液缓慢滴加入到步骤I)得到的其中一份异辛烷_正丁醇-CTAB的混合物中,磁力搅拌至形成澄清稳定的KOH微乳液; 2) then the IM aqueous KOH 2. 75 ml was slowly added dropwise to step I) obtained wherein a mixture of n-butanol, iso-octane _ -CTAB is magnetically stirred to form a clear stable microemulsion KOH;

3)配制 O. 5 mol/L 的La (NO3) 3、Sr (NO3) 2 和Co (NO3) 2 水溶液,按La (NO3) 3 :Sr (NO3) 2 :Co (NO3)2=O. 5ml :0. 5ml :1ml均匀混合,缓慢滴加入步骤I)得到的另一份异辛烷/正丁醇/CTAB的混合物中,磁力搅拌至形成澄清稳定的La(NO3)3-Sr(NO3)2 -Co (NO3)2微乳液; 3) Preparation of O. 5 mol / L of La (NO3) 3, Sr (NO3) 2 and Co (NO3) 2 solution, by La (NO3) 3: Sr (NO3) 2: Co (NO3) 2 = O. 5ml: 0 5ml:. 1ml uniformly mixed, slowly added dropwise step I) obtained in another isooctane / n-butanol / of CTAB is magnetically stirred to form a clear stable La (NO3) 3-Sr (NO3 ) 2 -Co (NO3) 2 microemulsion;

4)将步骤2 )所得的KOH微乳液和步骤3 )所得的La (NO3) 3 -Sr (NO3) 2 -Co (NO3) 2微乳液混合,快速搅拌I小时,然后缓慢搅拌6小时,得到产物; 4) Step 2) The obtained microemulsion KOH and 3) the resulting La (NO3) micro-mixing the emulsion 3 -Sr (NO3) 2 -Co (NO3) 2, with rapid stirring I h, then slowly stirred for 6 hours, to give product;

5)将步骤4)得到产物离心分离,用乙醇和去离子水反复离心洗涤;洗涤的产物在80°C下干燥24小时;干燥产物在氩气下以1°C /min的升温速度升温到750°C退火处理,得到钙钛矿型镧锶钴氧分级介孔纳米线。 5) The Step 4) to give the product centrifuged, washed with ethanol and deionized water, repeated centrifugation; washed product was dried at 80 ° C 24 hours; dried product was heated at 1 ° C / heating min speed under argon to 750 ° C annealing treatment, to obtain a perovskite type lanthanum strontium cobalt oxide hierarchical mesoporous nanowires.

[0024] [0024]

实施例3 : Example 3:

钙钛矿型镧锶钴氧(LSCO)分级介孔纳米线的制备方法,包括如下步骤: Perovskite lanthanum strontium cobalt oxide (the LSCO) fractionation method for preparing nanowires via hole, comprising the steps of:

O按异辛烷:正丁醇=18 ml :3 ml配制异辛烷/正丁醇混合液,加入3. O g CTAB,磁力搅拌直至无大颗粒,重复上述步骤,得到两份异辛烷-正丁醇-CTAB的混合物; O by isooctane: n-butanol = 18 ml: 3 ml formulated isooctane / n-butanol mixture was added 3. O g CTAB, magnetic stirring until no large particles, repeating the above steps, isooctane to give two - -CTAB mixture of n-butanol;

2)再将2. 75 ml的IM KOH水溶液缓慢滴加入到步骤I)得到的其中一份异辛烷_正丁醇-CTAB的混合物中,磁力搅拌至形成澄清稳定的KOH微乳液; 2) then the IM aqueous KOH 2. 75 ml was slowly added dropwise to step I) obtained wherein a mixture of n-butanol, iso-octane _ -CTAB is magnetically stirred to form a clear stable microemulsion KOH;

3)配制 O. 5 mol/L 的La (NO3) 3、Sr (NO3) 2 和Co (NO3) 2 水溶液,按La (NO3) 3 :Sr (NO3) 2 :Co (NO3)2=O. 5ml :0. 5ml :1ml均匀混合,缓慢滴加入步骤I)得到的另一份异辛烷/正丁醇/CTAB的混合物中,磁力搅拌至形成澄清稳定的La(NO3)3-Sr(NO3)2 -Co (NO3)2微乳液; 3) Preparation of O. 5 mol / L of La (NO3) 3, Sr (NO3) 2 and Co (NO3) 2 solution, by La (NO3) 3: Sr (NO3) 2: Co (NO3) 2 = O. 5ml: 0 5ml:. 1ml uniformly mixed, slowly added dropwise step I) obtained in another isooctane / n-butanol / of CTAB is magnetically stirred to form a clear stable La (NO3) 3-Sr (NO3 ) 2 -Co (NO3) 2 microemulsion;

4)将步骤2 )所得的KOH微乳液和步骤3 )所得的La (NO3) 3 -Sr (NO3) 2 -Co (NO3) 2微乳液混合,快速搅拌I小时,然后缓慢搅拌5小时,得到产物; 4) Step 2) The obtained microemulsion KOH and 3) the resulting La (NO3) micro-mixing the emulsion 3 -Sr (NO3) 2 -Co (NO3) 2, with rapid stirring I h, then slowly stirred for 5 hours, to give product;

5)将步骤4)得到产物离心分离,用乙醇和去离子水反复离心洗涤;洗涤的产物在80°C下干燥24小时;干燥产物在氩气下以1°C /min的升温速度升温到800°C退火处理,得到钙钛矿型镧锶钴氧分级介孔纳米线。 5) The Step 4) to give the product centrifuged, washed with ethanol and deionized water, repeated centrifugation; washed product was dried at 80 ° C 24 hours; dried product was heated at 1 ° C / heating min speed under argon to 800 ° C annealing treatment, to obtain a perovskite type lanthanum strontium cobalt oxide hierarchical mesoporous nanowires.

[0025] [0025]

实施例4 : Example 4:

钙钛矿型镧锶钴氧(LSCO)分级介孔纳米线的制备方法,包括如下步骤: Perovskite lanthanum strontium cobalt oxide (the LSCO) fractionation method for preparing nanowires via hole, comprising the steps of:

O按异辛烷:正丁醇=15 ml :3 ml配制异辛烷/正丁醇混合液,加入3. O g CTAB,磁力搅拌直至无大颗粒,重复上述步骤,得到两份异辛烷-正丁醇-CTAB的混合物; O by isooctane: n-butanol = 15 ml: 3 ml formulated isooctane / n-butanol mixture was added 3. O g CTAB, magnetic stirring until no large particles, repeating the above steps, isooctane to give two - -CTAB mixture of n-butanol;

2)再将2. 75 ml的IM KOH水溶液缓慢滴加入到步骤I)得到的其中一份异辛烷_正丁醇-CTAB的混合物中,磁力搅拌至形成澄清稳定的KOH微乳液; 2) then the IM aqueous KOH 2. 75 ml was slowly added dropwise to step I) obtained wherein a mixture of n-butanol, iso-octane _ -CTAB is magnetically stirred to form a clear stable microemulsion KOH;

3)配制 O. 5 mol/L 的La (NO3) 3、Sr (NO3) 2 和Co (NO3) 2 水溶液,按La (NO3) 3 :Sr (NO3) 2 :Co (NO3)2=O. 5ml :0. 5ml :1ml均匀混合,缓慢滴加入步骤I)得到的另一份异辛烷/正丁醇/CTAB的混合物中,磁力搅拌至形成澄清稳定的La(NO3)3-Sr(NO3)2 -Co (NO3)2微乳液; 3) Preparation of O. 5 mol / L of La (NO3) 3, Sr (NO3) 2 and Co (NO3) 2 solution, by La (NO3) 3: Sr (NO3) 2: Co (NO3) 2 = O. 5ml: 0 5ml:. 1ml uniformly mixed, slowly added dropwise step I) obtained in another isooctane / n-butanol / of CTAB is magnetically stirred to form a clear stable La (NO3) 3-Sr (NO3 ) 2 -Co (NO3) 2 microemulsion;

4)将步骤2 )所得的KOH微乳液和步骤3 )所得的La (NO3) 3 -Sr (NO3) 2 -Co (NO3) 2微乳液混合,快速搅拌I小时,然后缓慢搅拌4小时,得到产物; 4) Step 2) The obtained microemulsion KOH and 3) the resulting La (NO3) micro-mixing the emulsion 3 -Sr (NO3) 2 -Co (NO3) 2, with rapid stirring I h, then slowly stirred for 4 hours, to give product;

5)将步骤4)得到产物离心分离,用乙醇和去离子水反复离心洗涤;洗涤的产物在80°C下干燥12小时;干燥产物在氩气下以1°C /min的升温速度升温到850°C退火处理,得到钙钛矿型镧锶钴氧分级介孔纳米线。 5) The Step 4) to give the product centrifuged, washed with ethanol and deionized water, repeated centrifugation; washed product at 80 ° C for drying for 12 hours; dried product was heated at 1 ° C / heating min speed under argon to 850 ° C annealing treatment, to obtain a perovskite type lanthanum strontium cobalt oxide hierarchical mesoporous nanowires. [0026] [0026]

实施例5 : Example 5:

钙钛矿型镧锶钴氧(LSCO)分级介孔纳米线的制备方法,包括如下步骤: Perovskite lanthanum strontium cobalt oxide (the LSCO) fractionation method for preparing nanowires via hole, comprising the steps of:

1)按异辛烷:正丁醇=15ml:3 ml配制异辛烷/正丁醇混合液,加入3. O g CTAB,磁力搅拌直至无大颗粒,重复上述步骤,得到两份异辛烷-正丁醇-CTAB的混合物; 1) Press isooctane: n-butanol = 15ml: 3 ml isooctane formulated two isooctane / n-butanol mixture was added 3. O g CTAB, magnetic stirring until no large particles, repeating the above procedure, - -CTAB mixture of n-butanol;

2)再将2. 75 ml的IM KOH水溶液缓慢滴加入到步骤I)得到的其中一份异辛烷_正丁醇-CTAB的混合物中,磁力搅拌至形成澄清稳定的KOH微乳液; 2) then the IM aqueous KOH 2. 75 ml was slowly added dropwise to step I) obtained wherein a mixture of n-butanol, iso-octane _ -CTAB is magnetically stirred to form a clear stable microemulsion KOH;

3)配制 O. 5 mol/L 的La (NO3) 3、Sr (NO3) 2 和Co (NO3) 2 水溶液,按La (NO3) 3 :Sr (NO3) 2 :Co (NO3)2=O. 5ml :0. 5ml :1ml均匀混合,缓慢滴加入步骤I)得到的另一份异辛烷/正丁醇/CTAB的混合物中,磁力搅拌至形成澄清稳定的La(NO3)3-Sr(NO3)2 -Co (NO3)2微乳液; 3) Preparation of O. 5 mol / L of La (NO3) 3, Sr (NO3) 2 and Co (NO3) 2 solution, by La (NO3) 3: Sr (NO3) 2: Co (NO3) 2 = O. 5ml: 0 5ml:. 1ml uniformly mixed, slowly added dropwise step I) obtained in another isooctane / n-butanol / of CTAB is magnetically stirred to form a clear stable La (NO3) 3-Sr (NO3 ) 2 -Co (NO3) 2 microemulsion;

4)将步骤2 )所得的KOH微乳液和步骤3 )所得的La (NO3) 3 -Sr (NO3) 2 -Co (NO3) 2微乳液混合,快速搅拌I小时,然后缓慢搅拌4小时,得到产物; 4) Step 2) The obtained microemulsion KOH and 3) the resulting La (NO3) micro-mixing the emulsion 3 -Sr (NO3) 2 -Co (NO3) 2, with rapid stirring I h, then slowly stirred for 4 hours, to give product;

5)将步骤4)得到产物离心分离,用乙醇和去离子水反复离心洗涤;洗涤的产物在80°C下干燥12小时;得到钙钛矿型镧锶钴氧分级介孔纳米线。 5) The Step 4) to give the product centrifuged, washed with ethanol and deionized water, repeated centrifugation; washed product was dried at 80 ° C for 12 h; obtained perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires.

Claims (7)

1.钙钛矿型镧锶钴氧分级介孔纳米线,其直径为10(Tl50 nm,长度为1-2 μ m,其比表面积高达96. 8 m2/g,其由大量相互连接的纳米短棒搭接而成,搭接部分形成大量堆积孔,所述的纳米短棒直径为3(T50 nm,其表面存在大量由于结构缺陷而造成的小孔,其为下述方法制备的产物:1)按异辛烷:正丁醇=15〜18 ml :3 ml配制异辛烷/正丁醇混合液,加入3. O g CTAB,磁力搅拌直至无大颗粒,重复上述步骤,得到两份异辛烷-正丁醇-CTAB的混合物;2)再将2. 75 ml的IM KOH水溶液缓慢滴加入到步骤I)得到的其中一份异辛烷_正丁醇-CTAB的混合物中,磁力搅拌至形成澄清稳定的KOH微乳液;3)配制 O. 5 mol/L 的La (NO3) 3、Sr (NO3) 2 和Co (NO3) 2 水溶液,按La (NO3) 3 :Sr (NO3) 2 :Co (NO3)2=O. 5ml :0. 5ml :1ml均匀混合,缓慢滴加入步骤I)得到的另一份异辛烷/正丁醇/CTAB的混合物中,磁力搅拌至形成澄清稳定 1. perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires having a diameter of 10 (Tl50 nm, a length of 1-2 μ m, which is up to 96. 8 m2 / g specific surface area, which consists of a large number of interconnected nano stubs lap from the lap portion of the large accumulation of holes are formed, the diameter of nano stubs 3 (T50 nm, the presence of large pores due to structural defects caused by the surface of the product which is prepared by the following method: 1) press isooctane: n-butanol = 15~18 ml: 3 ml formulated isooctane / n-butanol mixture was added 3. O g CTAB, magnetic stirring until no large particles, repeating the above procedure, two isooctane - -CTAB mixture of n-butanol; 2) and then 2. 75 ml IM KOH solution was slowly added dropwise to step I) obtained wherein a mixture of n-butanol, iso-octane _ - CTAB is magnetically stirring to form a clear stable microemulsion KOH; 3) formulated O. 5 mol / L of La (NO3) 3, Sr (NO3) 2 and an aqueous solution of 2 Co (NO3), press La (NO3) 3: Sr (NO3) 2: Co (NO3) 2 = O 5ml:.. 0 5ml: 1ml uniformly mixed, slowly added dropwise step I) obtained in another isooctane / n-butanol / of CTAB is magnetically stirred to form a clear stable La(NO3)3-Sr(NO3)2 -Co (NO3)2微乳液;4)将步骤2 )所得的KOH微乳液和步骤3 )所得的La (NO3) 3 -Sr (NO3) 2 -Co (NO3) 2微乳液混合,快速搅拌I小时,然后缓慢搅拌4飞小时,得到产物;5)将步骤4)得到的产物离心分离,用乙醇和去离子水反复离心洗涤、干燥,得到钙钛矿型镧锶钴氧分级介孔纳米线。 La (NO3) 3-Sr (NO3) 2 -Co (NO3) 2 microemulsion; 4) in step 2) the resulting microemulsion of KOH and 3) the resulting La (NO3) 3 -Sr (NO3) 2 -Co (NO3) 2 microemulsion mixed with rapid stirring I h, then slowly stirred for 4 flying hours, to give the product; the product was centrifuged for 5) in step 4) was separated, washed with ethanol and deionized water, repeated centrifugation and dried to obtain a perovskite lanthanum strontium cobalt oxide ore grading type mesoporous nanowires.
2.按权利要求I所述的钙钛矿型镧锶钴氧分级介孔纳米线,其特征在于洗涤得到的产物在80°C下干燥12〜24小时。 2. Press as claimed in claim perovskite lanthanum strontium cobalt oxide grade I according mesoporous nanowires, characterized in that the obtained product was washed and dried at 80 ° C for 12~24 hours.
3.按权利要求I或2所述的钙钛矿型镧锶钴氧分级介孔纳米线,其特征在于还包括有退火处理,即将干燥产物在氩气下以l°c /min的升温速度升温到75(T850°C。 3. I claim perovskite lanthanum strontium cobalt oxide or the hierarchical mesoporous nanowires 2, characterized by further comprising an annealing treatment, temperature elevation rate to the dried product is about l ° c / min in argon warmed to 75 (T850 ° C.
4.权利要求I所述的钙钛矿型镧锶钴氧分级介孔纳米线的制备方法,其特征在于包括有以下步骤:1)按异辛烷:正丁醇=15〜18 ml :3 ml配制异辛烷/正丁醇混合液,加入3. O g CTAB,磁力搅拌直至无大颗粒,重复上述步骤,得到两份异辛烷-正丁醇-CTAB的混合物;2)再将2. 75 ml的IM KOH水溶液缓慢滴加入到步骤I)得到的其中一份异辛烷_正丁醇-CTAB的混合物中,磁力搅拌至形成澄清稳定的KOH微乳液;3)配制 O. 5 mol/L 的La (NO3) 3、Sr (NO3) 2 和Co (NO3) 2 水溶液,按La (NO3) 3 :Sr (NO3) 2 :Co (NO3)2=O. 5ml :0. 5ml :1ml均匀混合,缓慢滴加入步骤I)得到的另一份异辛烷/正丁醇/CTAB的混合物中,磁力搅拌至形成澄清稳定的La(NO3)3-Sr(NO3)2 -Co (NO3)2微乳液;4)将步骤2 )所得的KOH微乳液和步骤3 )所得的La (NO3) 3 -Sr (NO3) 2 -Co (NO3) 2微乳液混合,快速搅拌I小时,然后缓慢搅拌4飞小时,得到产物;5)将步骤4 I 4. claim perovskite lanthanum strontium cobalt oxide fractionation method for preparing nanowires via hole, comprising the following steps: 1) Press isooctane: n-butanol = 15~18 ml: 3 formulated ml isooctane / n-butanol mixture was added 3. O g CTAB, magnetic stirring until no large particles, repeating the above steps, isooctane to give two - -CTAB mixture of n-butanol; 2) then 2 . IM KOH solution of 75 ml was slowly added dropwise to step I) obtained wherein a mixture of n-butanol, iso-octane _ -CTAB is magnetically stirred to form a clear stable microemulsion KOH; 3) formulated O. 5 mol / L of La (NO3) 3, Sr (NO3) 2 and Co (NO3) 2 solution, by La (NO3) 3: Sr (NO3) 2: Co (NO3) 2 = O 5ml:.. 0 5ml: 1ml uniformly mixed, slowly added dropwise step I) obtained in another isooctane / n-butanol / of CTAB is magnetically stirred to form a clear stable La (NO3) 3-Sr (NO3) 2 -Co (NO3) 2 microemulsion; 4) in step 2) the resulting microemulsion of KOH and 3) the resulting La (NO3) micro-mixing the emulsion 3 -Sr (NO3) 2 -Co (NO3) 2, with rapid stirring I h, then slowly stirred fly 4 hours to give the product; 5) step 4 )得到的产物离心分离,用乙醇和去离子水反复离心洗涤、干燥和退火处理,得到钙钛矿型镧锶钴氧分级介孔纳米线。 ) Of the product was separated by centrifugation, washed with ethanol and deionized water, centrifuged again, dried and tempered, to obtain perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires.
5.按权利要求4所述的钙钛矿型镧锶钴氧分级介孔纳米线的制备方法,其特征在于洗涤得到的产物在80°C下干燥12〜24小时。 Claim 5. perovskite lanthanum strontium cobalt oxide prepared according to the method hole 4 nanowires graded dielectric, characterized in that the resultant washed product was dried at 80 ° C 12~24 hours.
6.按权利要求4或5所述的钙钛矿型镧锶钴氧分级介孔纳米线的制备方法,其特征在于还包括有退火处理,即将干燥产物在氩气下以1°C /min的升温速度升温到75(T850°C。 Perovskite lanthanum strontium cobalt oxide as claimed in claim 4 or 6. 5 classification method for preparing nanowires via holes, characterized by further comprising an annealing process, the dried product coming under argon at 1 ° C / min heating to a temperature of 75 (T850 ° C.
7.权利要求I所述的钙钛矿型镧锶钴氧分级介孔纳米线作为锂空气电池、燃料电池或其他电化学器件的催化剂材料的应用。 I 7. claim perovskite lanthanum strontium cobalt oxide nanowires hierarchical mesoporous material as a catalyst lithium air battery, fuel cell or other electrochemical devices.
CN201210420109.1A 2012-10-29 2012-10-29 Perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires and preparation method and application CN102945969B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210420109.1A CN102945969B (en) 2012-10-29 2012-10-29 Perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires and preparation method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210420109.1A CN102945969B (en) 2012-10-29 2012-10-29 Perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires and preparation method and application

Publications (2)

Publication Number Publication Date
CN102945969A true CN102945969A (en) 2013-02-27
CN102945969B CN102945969B (en) 2014-10-01

Family

ID=47728890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210420109.1A CN102945969B (en) 2012-10-29 2012-10-29 Perovskite lanthanum strontium cobalt oxide hierarchical mesoporous nanowires and preparation method and application

Country Status (1)

Country Link
CN (1) CN102945969B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472833B1 (en) 2016-06-28 2016-10-18 Abigail Thurmond Methods and apparatuses relating to zinc-air batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974887A (en) * 2006-11-10 2007-06-06 北京工业大学 Prepn process of nanometer wire and nanometer rod of monocrystalline perovskite type compound oxide La0.6Sr0.4CoO3
US20070138459A1 (en) * 2005-10-13 2007-06-21 Wong Stanislaus S Ternary oxide nanostructures and methods of making same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138459A1 (en) * 2005-10-13 2007-06-21 Wong Stanislaus S Ternary oxide nanostructures and methods of making same
CN1974887A (en) * 2006-11-10 2007-06-06 北京工业大学 Prepn process of nanometer wire and nanometer rod of monocrystalline perovskite type compound oxide La0.6Sr0.4CoO3

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472833B1 (en) 2016-06-28 2016-10-18 Abigail Thurmond Methods and apparatuses relating to zinc-air batteries

Also Published As

Publication number Publication date
CN102945969B (en) 2014-10-01

Similar Documents

Publication Publication Date Title
Cao et al. 3D hierarchical porous α‐fe2o3 nanosheets for high‐performance lithium‐ion batteries
Tang et al. Spatially confined hybridization of nanometer‐sized NiFe hydroxides into nitrogen‐doped graphene frameworks leading to superior oxygen evolution reactivity
Xia et al. Synthesis of Free‐Standing Metal Sulfide Nanoarrays via Anion Exchange Reaction and Their Electrochemical Energy Storage Application
Lu et al. Bimetal‐organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high‐performance electrocatalysts for oxygen evolution reaction
Ganesan et al. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions
Mondal et al. Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability
Bai et al. Unusual Formation of ZnCo2O4 3D Hierarchical Twin Microspheres as a High‐Rate and Ultralong‐Life Lithium‐Ion Battery Anode Material
Yang et al. Hollow Zn/Co ZIF Particles Derived from Core–Shell ZIF‐67@ ZIF‐8 as Selective Catalyst for the Semi‐Hydrogenation of Acetylene
Tahir et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review
Wang et al. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries
Hou et al. Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting
Zhang et al. Formation of ZnMn2O4 ball‐in‐ball hollow microspheres as a high‐performance anode for lithium‐Ion batteries
Yu et al. Formation of NixCo3− xS4 hollow nanoprisms with enhanced pseudocapacitive properties
Zhao et al. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors
Xiao et al. Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction
Lee et al. Cobalt-based compounds and composites as electrode materials for high-performance electrochemical capacitors
Liu et al. Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries
Deng et al. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries
Zhou et al. MOF Template‐Directed Fabrication of Hierarchically Structured Electrocatalysts for Efficient Oxygen Evolution Reaction
Liu et al. Design, synthesis, and energy-related applications of metal sulfides
Guan et al. Rational design of metal‐organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis
Wu et al. Sn‐Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for High‐Rate and Long Life Li‐Ion Batteries
Zhu et al. Ultrathin‐nanosheet‐induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes
Li et al. Prussion blue-supported annealing chemical reaction route synthesized double-shelled Fe2O3/Co3O4 hollow microcubes as anode materials for lithium-ion battery
Bai et al. Hierarchical Co3O4@ Ni (OH) 2 core-shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model