CN102945487A - Same-directional synchronous progressive encryption binary anti-counterfeiting printing method - Google Patents
Same-directional synchronous progressive encryption binary anti-counterfeiting printing method Download PDFInfo
- Publication number
- CN102945487A CN102945487A CN2012104042574A CN201210404257A CN102945487A CN 102945487 A CN102945487 A CN 102945487A CN 2012104042574 A CN2012104042574 A CN 2012104042574A CN 201210404257 A CN201210404257 A CN 201210404257A CN 102945487 A CN102945487 A CN 102945487A
- Authority
- CN
- China
- Prior art keywords
- binary
- order
- counterfeiting information
- control variable
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Editing Of Facsimile Originals (AREA)
Abstract
The invention discloses a same-directional synchronous progressive encryption binary anti-counterfeiting printing method which comprises the following steps: performing encrypting operation and channel encoding to binary anti-counterfeiting information to generate a binary modulating signal, and adopting a modulation mode of a looped look-up table method to embed the anti-counterfeiting information into the whole page through sequential change in a shape of amplitude-modulated dot. Therefore, the anti-counterfeiting information can be recognized from any fragment during presswork recognition. The method can be widely applied to the anti-counterfeiting field of presswork.
Description
Affiliated technical field:
The present invention relates to a kind of anti-counterfeiting printing technology, particularly a kind of going forward one by one synchronously in the same way encrypted the scale-of-two anti-counterfeiting printing technology, and this anti-counterfeiting printing technology can be used for the false proof of various printed matters.
Background technology:
Existing comparatively common method for anti-counterfeit has following several: the first is laser anti-false sign, the anti-fake label that symbol or the special identification icon of product is printed to product with the recessive printing ink daylight fluorescence ink of laser printing technology, and the same class product uses the same labeling, because anti-fake label is easier to forge, and the anti-fake label of forging is used on the fake products, cause the true and false of product to obscure, therefore be difficult to effectively false proof.The second is the cipher counterfeit-proof labeling, its method that adopts is that every product is compiled one group of number, the coding of every product is not identical, be printed on the labeling this number and covering, simultaneously this number is deposited in and can supply in the Computer Database of consumer's inquiry, when the consumer buys product, number on the sign is compared identification by phone or networking computer input Computer Database, identical being very, difference is vacation, and method is simple, identification easily, be difficult for forging, but in actual the use, because coded data is to print labeling after the computing machine unification generates.The true and false coded data of representative products may be faked by illegal copies, and simultaneously, the coding on the product of the also recyclable not inquiry of encoding is made mark and is attached on the false pain product, and antifalse effect is difficult to guarantee.The third is texture anti-fake, false proof with the textural characteristics on its labeling, although difficult forgery, but because the serial number that a bidding pastes, and be plain code, every piece of labeling can be inquired about repeatedly, in the necessary textural characteristics grid that the fake producer can be by warehouseman or shop-assistant be reflected during with the sequence number on the labeling and inquiry have or not phenomenon to plagiarize after forge in batches by this feature.In sum, all there is certain shortcoming in existing method for anti-counterfeit, thereby can not be from prevent fake products at all.
Summary of the invention:
The shortcoming that exists in order to overcome existing various printed matter anti-counterfeiting printing technology, the deficiency that the present invention is directed to existing printed matter anti-counterfeiting printing technology existence is improved prior art, a kind of encryption counterfeit printing technology of shape of scale-of-two coded signal modulation printed matter amplitude has been proposed, this anti-counterfeiting printing technology is embedded in anti-counterfeiting information in the full page by the change of the shape of amplitude, can when identifying, printed matter in any one fragment, identify anti-counterfeiting information, therefore have very strong crush resistance, can fundamentally stop to adopt and take a picture, scanning waits the bootlegging behavior.
The technical solution adopted for the present invention to solve the technical problems is: the amplitude in the flexographic printing hybrid screening and frequency-modulation halftone dot are separately processed, utilize image information, Word message, the anti-counterfeiting information such as trademark information generate 8 one group scale-of-two anti-counterfeiting information table, for preventing producing information spillover in the ciphering process, 8 one group of binary messages in the scale-of-two anti-counterfeiting information table are expanded to 16 one group of binary messages, the generation most-significant byte is 0 16 one group scale-of-two anti-counterfeiting information table entirely, and 16 binary messages of the group of the i in 16 the one group scale-of-two anti-counterfeiting information table are denoted as N
i, i is the positive integer greater than 0, and the eight-digit binary number encryption parameter is denoted as C, and encryption parameter C is the positive integer of 0<=C<=256, and two binary operators and order of operation control variable are denoted as k, and operator and order of operation control variable k are the positive integer of 0<=k<=3, operator
Adopt+,-, *, four kinds of computings of ÷, when operator and order of operation control variable k=0
Be defined as+, * ,-, ÷ ,+, ÷, * ,-, the ÷ computing, when operator and order of operation control variable k=1
Be defined as ÷ ,+,+, * ,-, ÷ ,+, ÷, * computing, when operator and order of operation control variable k=2
Be defined as-, ÷ ,+, * ,+, ÷, * ,-, the ÷ computing, when operator and order of operation control variable k=3
Be defined as+, ÷ ,+, * ,-, ÷, * ,-, the ÷ computing, become the order cryptographic calculation when operator and order of operation control variable k=0 and be defined as
, become the order cryptographic calculation when operator and order of operation control variable k=1 and be defined as
, become the order cryptographic calculation when operator and order of operation control variable k=2 and be defined as
, become the order cryptographic calculation when operator and order of operation control variable k=3 and be defined as
, the initial value of setting encryption parameter C, the initial value k=0 of setting operator and order of operation control variable k sets 16 binary message N in 16 the one group scale-of-two anti-counterfeiting information table
iPosition control variable i=1, first 16 binary message N from 16 one group scale-of-two anti-counterfeiting information table
1Beginning is carried out each 16 binary message in 16 the one group scale-of-two anti-counterfeiting information table
Become the order cryptographic calculation, and each 16 binary message is being carried out
Carry out i+1 and k+1 computing in the time of cryptographic calculation, next computing is pointed to
Wherein i and k have increased by 1, by each 16 binary message in 16 the one group scale-of-two anti-counterfeiting information table are carried out
Become the order cryptographic calculation, generate 16 one group binary add tight defense fake information table, the shape of amplitude is set to two kinds:
With
, wherein
Be defined as the numeral 0,
Be defined as numeral 1, utilize 16 one group the binary add tight defense fake information that generates by circulation look-up table modulation amplitude, make its regular shape according to amplitude in the alteration of form hybrid screening of above-mentioned two kinds of amplitudes, make that the shape of amplitude is well-regulated in the hybrid screening changes, adjacent 16 amplitudes consist of one group of 16 binary message after the modulation, make it carry anti-counterfeiting information, and this anti-counterfeiting information is embedded in the full page site, can more effectively resist based on bootlegging behaviors such as camera, scanner, electronic documents.Embed extractible anti-counterfeiting information by non-in printed matter obviously, can provide valid certificates for genuine piece, have simultaneously stronger anti-forgery ability, and do not increase extra false proof cost.
For solving above-mentioned technical matters, at first anti-counterfeiting information is carried out digitizing, generate 8 one group scale-of-two anti-counterfeiting information table, anti-counterfeiting information can be image information, Word message, trademark information etc., 8 one group of binary messages in the scale-of-two anti-counterfeiting information table are expanded to 16 one group of binary messages, the generation most-significant byte is 0 16 one group scale-of-two anti-counterfeiting information table entirely, and each 16 binary message in 16 the one group scale-of-two anti-counterfeiting information table are carried out
Cryptographic calculation, generate 16 one group binary add tight defense fake information table, utilize 16 binary messages process chnnel codings in 16 the one group binary add tight defense fake information table that generates, generate 16 one group binary modulated signal with error detecting and error correcting function.Chnnel coding can adopt the various ways such as loop coding, convolutional encoding or Turbo coding, original continuous is changed the line map image signal through rasterizing processing (RIP) and hybrid screening output shadow tone hybrid screening picture signal, comprising amplitude and FM screened image signal, 16 one group of binary modulated signals that utilize to generate adopt the shapes of amplitude in the circulation look-up table modulation system modulation hybrid screening picture signals, the shape that makes amplitude according to
With
Regular changing makes that adjacent 16 amplitudes carry 16 scale-of-two anti-counterfeiting information by the change of shape in the hybrid screening picture signal, thereby is created on the hybrid screening picture signal that embeds anti-counterfeiting information in the full page site, realizes anti-counterfeit printing.
When extracting anti-counterfeiting information, at first gather the halftone dot image signal, process is to the fuzzy diagnosis of the shape of amplitude, differentiate the shape of amplitude, extract edge signal and the shape information of amplitude, the shape information of demodulation amplitude is exported 16 one group binary modulated signal.16 one group binary modulated signal to demodulation output carries out channel-decoding, generates 16 one group scale-of-two deciphering anti-counterfeiting information table behind the channel-decoding, and 16 binary messages that scale-of-two is deciphered in the anti-counterfeiting information table are denoted as H
i, by ciphering process as can be known,
H during operator control variable k=0
i=
, H during operator control variable k=1
i=
, H during operator control variable k=2
i=
, H during operator control variable k=3
i=
, 16 binary message H in the scale-of-two deciphering anti-counterfeiting information table
iPosition control variable initial value design be i=1, first H from scale-of-two deciphering anti-counterfeiting information table
1Beginning is carried out H to each 16 binary message in the scale-of-two deciphering anti-counterfeiting information table
i=
Decrypt operation solves scale-of-two anti-counterfeiting information N
i, the generation most-significant byte is 0 16 one group scale-of-two anti-counterfeiting information table entirely, removes most-significant byte, generates 8 one group scale-of-two anti-counterfeiting information table, recovers anti-counterfeiting signal and also exports anti-counterfeiting information.
Description of drawings
The present invention is further described below in conjunction with accompanying drawing.
Fig. 1 loads the anti-counterfeiting information process flow diagram.
Fig. 2 extracts the anti-counterfeiting information process flow diagram.
Embodiment
In loading anti-counterfeiting information process flow diagram 1, original anti-counterfeiting information (image, literal, trade mark) is through digitized processing, generate 8 one group scale-of-two anti-counterfeiting information table, 8 one group of binary messages in the scale-of-two anti-counterfeiting information table are expanded to 16 one group of binary messages, generate most-significant byte and entirely be 0 16 one group scale-of-two anti-counterfeiting information table, 16 binary messages of i group in 16 one group scale-of-two anti-counterfeiting information table are denoted as N
i, i is the positive integer greater than 0, and the eight-digit binary number encryption parameter is denoted as C, and encryption parameter C is the positive integer of 0<=C<=256, and two binary operators and order of operation control variable are denoted as k, and operator and order of operation control variable k are the positive integer of 0<=k<=3, operator
Adopt+,-, *, four kinds of computings of ÷, when operator and order of operation control variable k=0
Be defined as+, * ,-, ÷ ,+, ÷, * ,-, the ÷ computing, when operator and order of operation control variable k=1
Be defined as ÷ ,+,+, * ,-, ÷ ,+, ÷, * computing, when operator and order of operation control variable k=2
Be defined as-, ÷ ,+, * ,+, ÷, * ,-, the ÷ computing, when operator and order of operation control variable k=3
Be defined as+, ÷ ,+, * ,-, ÷, * ,-, the ÷ computing, become the order cryptographic calculation when operator and order of operation control variable k=0 and be defined as
, become the order cryptographic calculation when operator and order of operation control variable k=1 and be defined as
, become the order cryptographic calculation when operator and order of operation control variable k=2 and be defined as
, become the order cryptographic calculation when operator and order of operation control variable k=3 and be defined as
, the initial value of setting encryption parameter C, the initial value k=0 of setting operator and order of operation control variable k sets 16 binary message N in 16 the one group scale-of-two anti-counterfeiting information table
iPosition control variable i=1, first 16 binary message N from 16 one group scale-of-two anti-counterfeiting information table
1Beginning is carried out each 16 binary message in 16 the one group scale-of-two anti-counterfeiting information table
Become the order cryptographic calculation, and each 16 binary message is being carried out
Carry out i+1 and k+1 computing in the time of cryptographic calculation, next computing is pointed to
Wherein i and k have increased by 1, by each 16 binary message in 16 the one group scale-of-two anti-counterfeiting information table are carried out
Become the order cryptographic calculation, generate 16 one group binary add tight defense fake information table, the shape of amplitude is set to two kinds:
With
, wherein
Be defined as the numeral 0,
Be defined as numeral 1,16 binary add tight defense fake informations of generation generate the binary modulated signal with error detecting and error correcting function through chnnel coding.Chnnel coding can adopt the various ways such as loop coding, convolutional encoding or Turbo coding.Original continuous is changed the line map image signal through rasterizing processing (RIP) and hybrid screening output shadow tone hybrid screening picture signal, comprising amplitude and FM screened image signal.Utilize the binary modulated signal that generates to adopt the modulation system of tabling look-up that circulates, the shape of amplitude in the modulation hybrid screening picture signal, make that the shape of amplitude is regular in the hybrid screening changes, generate the hybrid screening picture signal that embeds anti-counterfeiting information, by the circulation modulation system of tabling look-up, make adjacent 16 amplitudes generate 16 bit binary data by the change of shape, make it carry anti-counterfeiting information, and this anti-counterfeiting information is embedded in the full page site, realize anti-counterfeit printing.
In extracting anti-counterfeiting information process flow diagram 2, at first gather the halftone dot image signal, process is to the fuzzy diagnosis of the shape of amplitude, differentiate the shape of amplitude, extract edge signal and the shape information of amplitude, the shape information of demodulation amplitude is exported 16 one group binary modulated signal.16 one group binary modulated signal to demodulation output carries out channel-decoding, generates 16 one group scale-of-two deciphering anti-counterfeiting information table behind the channel-decoding, and 16 binary messages that scale-of-two is deciphered in the anti-counterfeiting information table are denoted as H
i, by ciphering process as can be known,
H during operator control variable k=0
i=
, H during operator control variable k=1
i=
, H during operator control variable k=2
i=
, H during operator control variable k=3
i=
, 16 binary message H in the scale-of-two deciphering anti-counterfeiting information table
iPosition control variable initial value design be i=1, first H from scale-of-two deciphering anti-counterfeiting information table
1Beginning is carried out H to each 16 binary message in the scale-of-two deciphering anti-counterfeiting information table
i=
Decrypt operation solves scale-of-two anti-counterfeiting information N
i, the generation most-significant byte is 0 16 one group scale-of-two anti-counterfeiting information table entirely, removes most-significant byte, generates 8 one group scale-of-two anti-counterfeiting information table, recovers anti-counterfeiting signal and also exports anti-counterfeiting information.
Claims (1)
1. one kind generates the binary modulated signal with anti-counterfeiting information by cryptographic calculation and chnnel coding, and anti-counterfeiting information is embedded in going forward one by one synchronously in the same way in the full page encrypts the scale-of-two antiforging printing method by the circulation modulation system of tabling look-up,
It is characterized in that:Anti-counterfeiting information is carried out digitizing, generate 8 one group scale-of-two anti-counterfeiting information table, anti-counterfeiting information is image information, Word message or trademark information, for preventing producing information spillover in the ciphering process, 8 one group of binary messages in the scale-of-two anti-counterfeiting information table are expanded to 16 one group of binary messages, the generation most-significant byte is 0 16 one group scale-of-two anti-counterfeiting information table entirely, and 16 binary messages of the group of the i in 16 the one group scale-of-two anti-counterfeiting information table are denoted as N
i, i is the positive integer greater than 0, and the eight-digit binary number encryption parameter is denoted as C, and encryption parameter C is the positive integer of 0<=C<=256, and two binary operators and order of operation control variable are denoted as k, and operator and order of operation control variable k are the positive integer of 0<=k<=3, operator
Adopt+,-, *, four kinds of computings of ÷, when operator and order of operation control variable k=0
Be defined as+, * ,-, ÷ ,+, ÷, * ,-, the ÷ computing, when operator and order of operation control variable k=1
Be defined as ÷ ,+,+, * ,-, ÷ ,+, ÷, * computing, when operator and order of operation control variable k=2
Be defined as-, ÷ ,+, * ,+, ÷, * ,-, the ÷ computing, when operator and order of operation control variable k=3
Be defined as+, ÷ ,+, * ,-, ÷, * ,-, the ÷ computing, become the order cryptographic calculation when operator and order of operation control variable k=0 and be defined as
, become the order cryptographic calculation when operator and order of operation control variable k=1 and be defined as
, become the order cryptographic calculation when operator and order of operation control variable k=2 and be defined as
, become the order cryptographic calculation when operator and order of operation control variable k=3 and be defined as
, the initial value of setting encryption parameter C, the initial value k=0 of setting operator and order of operation control variable k sets 16 binary message N in 16 the one group scale-of-two anti-counterfeiting information table
iPosition control variable i=1, first 16 binary message N from 16 one group scale-of-two anti-counterfeiting information table
1Beginning is carried out each 16 binary message in 16 the one group scale-of-two anti-counterfeiting information table
Become the order cryptographic calculation, and each 16 binary message is being carried out
Carry out i+1 and k+1 computing in the time of cryptographic calculation, next computing is pointed to
Wherein i and k have increased by 1, by each 16 binary message in 16 the one group scale-of-two anti-counterfeiting information table are carried out
Become the order cryptographic calculation, generate 16 one group binary add tight defense fake information table, the shape of amplitude is set to two kinds:
With
, wherein
Be defined as the numeral 0,
Be defined as numeral 1, utilize 16 one group the binary add tight defense fake information that generates through chnnel coding, generation has 16 one group of binary modulated signals of error detecting and error correcting function, original continuous is changed the line map image signal through rasterizing processing (RIP) and hybrid screening output shadow tone hybrid screening picture signal, comprising amplitude and FM screened image signal, 16 one group of binary modulated signals that utilize to generate adopt the shapes of amplitude in the circulation look-up table modulation system modulation hybrid screening picture signals, the shape that makes amplitude according to
With
Regular changing, make that adjacent 16 amplitudes carry 16 binary add tight defense fake informations by the change of shape in the hybrid screening picture signal, thereby be created on the hybrid screening picture signal that embeds anti-counterfeiting information in the full page site, realize anti-counterfeit printing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012104042574A CN102945487A (en) | 2012-10-22 | 2012-10-22 | Same-directional synchronous progressive encryption binary anti-counterfeiting printing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012104042574A CN102945487A (en) | 2012-10-22 | 2012-10-22 | Same-directional synchronous progressive encryption binary anti-counterfeiting printing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102945487A true CN102945487A (en) | 2013-02-27 |
Family
ID=47728426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012104042574A Pending CN102945487A (en) | 2012-10-22 | 2012-10-22 | Same-directional synchronous progressive encryption binary anti-counterfeiting printing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102945487A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1780933A1 (en) * | 2005-10-25 | 2007-05-02 | Cryptara Limited | A method of generating a random key |
CN101163007A (en) * | 2007-09-17 | 2008-04-16 | 吴建明 | Credit sign accidental streakline generating method |
CN101777134A (en) * | 2010-03-01 | 2010-07-14 | 北京印刷学院 | Presswork encryption security printing technology based on multi-system quadrature amplitude modulation |
CN102402696A (en) * | 2011-04-25 | 2012-04-04 | 北京印刷学院 | Multi-dimensional encryption anti-counterfeiting printing technology based on binary signals |
-
2012
- 2012-10-22 CN CN2012104042574A patent/CN102945487A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1780933A1 (en) * | 2005-10-25 | 2007-05-02 | Cryptara Limited | A method of generating a random key |
CN101163007A (en) * | 2007-09-17 | 2008-04-16 | 吴建明 | Credit sign accidental streakline generating method |
CN101777134A (en) * | 2010-03-01 | 2010-07-14 | 北京印刷学院 | Presswork encryption security printing technology based on multi-system quadrature amplitude modulation |
CN102402696A (en) * | 2011-04-25 | 2012-04-04 | 北京印刷学院 | Multi-dimensional encryption anti-counterfeiting printing technology based on binary signals |
Non-Patent Citations (1)
Title |
---|
冯登国 等: "《密码学导引》", 30 April 1999, article "密码学导引", pages: 271-273 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102945399A (en) | Triple gradually-increased encryption binary anti-counterfeiting printing method | |
CN102945467A (en) | Single-parameter, single-variable, increasing and circulating encryption type binary anti-counterfeit printing method | |
CN102945490A (en) | Single-parameter and double-variable-sequence encryption type binary anti-counterfeit printing method | |
CN102945397A (en) | Variable-sequence, right-shifting, stepping and increasing encryption type binary anti-counterfeit printing method | |
CN102945463A (en) | Multi-parameter incremental displacement encrypted binary anti-counterfeiting printing method | |
CN102945458A (en) | Single-parameter, increasing and variable-sequence encryption type binary anti-counterfeit printing method | |
CN102945487A (en) | Same-directional synchronous progressive encryption binary anti-counterfeiting printing method | |
CN102945440A (en) | Relative synchronous progressive encryption binary anti-counterfeiting printing method | |
CN102945391A (en) | Same-directional synchronous gradually-increased encryption binary anti-counterfeiting printing method | |
CN102945474A (en) | Relative synchronous gradually-increased encryption binary anti-counterfeiting printing method | |
CN102945394A (en) | Data gradually-increased sequentially-changed encryption binary anti-counterfeiting printing method | |
CN102945427A (en) | Three-dimensional sequentially-changed single-parameter encryption binary anti-counterfeiting printing method | |
CN102945459A (en) | Three-dimensional gradually-increased sequentially-changed single-parameter encryption binary anti-counterfeiting printing method | |
CN102945471A (en) | Binary anti-fake print method encrypting in opposite synchronous increasing way | |
CN102945484A (en) | Binary anti-fake print method encrypting in opposite gradual increasing way | |
CN102945423A (en) | Single-parameter displacement variable-sequence encrypted binary anti-counterfeiting printing method | |
CN102945439A (en) | Double-variant multi-parameter reversed synchronous gradually-increased encryption binary anti-counterfeiting printing method | |
CN102955966A (en) | Binary anti-counterfeit printing method by reverse synchronous increasing encryption | |
CN102945457A (en) | Single-parameter double-displacement variable-sequence encrypted binary anti-counterfeiting printing method | |
CN102955961A (en) | Binary anti-counterfeit printing method by single-parameter gradient and opposite synchronous-progressing encryption | |
CN102955965A (en) | Binary anti-counterfeit printing method by single-parameter gradient and opposite synchronous-increasing encryption | |
CN102945480A (en) | Single-parameter, gradient, same-direction, synchronous and progressive encryption type binary anti-counterfeit printing method | |
CN102945426A (en) | Single-parameter double encrypted binary anti-counterfeiting printing method | |
CN102945421A (en) | Binary anti-fake printing method by reverse synchronous-progressing encryption | |
CN102945392A (en) | Single-parameter, gradient, opposite, synchronous and progressive encryption type binary anti-counterfeit printing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130227 |