CN102937137A - 压电发电滚动轴承单元 - Google Patents

压电发电滚动轴承单元 Download PDF

Info

Publication number
CN102937137A
CN102937137A CN2012104709573A CN201210470957A CN102937137A CN 102937137 A CN102937137 A CN 102937137A CN 2012104709573 A CN2012104709573 A CN 2012104709573A CN 201210470957 A CN201210470957 A CN 201210470957A CN 102937137 A CN102937137 A CN 102937137A
Authority
CN
China
Prior art keywords
piezoelectric
bearing
end plate
ring
piezoelectricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104709573A
Other languages
English (en)
Other versions
CN102937137B (zh
Inventor
余谱
陈仕洪
程超
汪久根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201210470957.3A priority Critical patent/CN102937137B/zh
Publication of CN102937137A publication Critical patent/CN102937137A/zh
Application granted granted Critical
Publication of CN102937137B publication Critical patent/CN102937137B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

本发明公开了一种压电发电滚动轴承单元。本发明包括轴承外圈、轴承内圈、保持架和滚子;在轴承外圈装有压电外圈,在轴承的一个端面装有压电端板。滚动轴承工作时,压电外圈和压电端板会分别受到径向力和轴向力的作用,由于其压电效应,能够将其转换成电能,从而将无用的机械力回收利用;由于工厂所用的轴承数量众多,压电外圈和压电端板产生的电能累计起来可以给工厂提供一部分电能,从而起到节能的作用;采用压电陶瓷材料制成压电外圈和压电端板,使得发电装置结构简单,生产成本低,具有很强的可行性和工程意义。

Description

压电发电滚动轴承单元
技术领域
本发明涉及一种滚动轴承,尤其是涉及一种压电发电滚动轴承单元。
背景技术
在滚动轴承工作时,轴承要承受复合载荷作用(径向载荷、轴向载荷和倾翻力矩),这些载荷由滚动轴承承受。径向载荷、轴向载荷和倾翻力矩,对轴承的回转运动没有任何益处,而且导致轴承零件的疲劳点蚀和表面塑性变形。如果能够利用这些载荷来发电,则可以利用轴承上的载荷达到发电的目的。通过联网每套轴承上所发的电能,则可以产生可观的节能效果,对于重型机械尤其如此。
压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为压电效应。当作用力的方向改变时,电荷的极性也随之改变。
基于上述背景,如果能够通过压电效应,将轴承所受的径向载荷、轴向载荷和倾翻力矩利用起来进行发电,无疑有重要的工程意义。
发明内容
本发明的目的在于提供一种压电发电滚动轴承单元,在轴承的外圈和端面分别装有压电外圈和压电端板,能将轴承承受的径向力和轴向力转换成电能,从而达到节能的目的。
本发明采用的技术方案是:
本发明包括轴承外圈、轴承内圈、保持架和滚子;在轴承外圈装有压电外圈,在轴承的一个端面装有压电端板。
所述压电外圈和压电端板材料为具有压电效应的压电陶瓷。
本发明具有的有益效果是:
1、滚动轴承工作时,压电外圈和压电端板会分别受到径向力和轴向力的作用,由于其压电效应,能够将其转换成电能,从而将无用的机械力回收利用。
2、由于工厂所用的轴承数量众多,压电外圈和压电端板产生的电能累计起来可以给工厂提供一部分电能,从而起到节能的作用。
3、采用压电陶瓷材料制成压电外圈和压电端板,使得发电装置结构简单,生产成本低,具有很强的可行性和工程意义。
附图说明
图1是压电发电滚动轴承单元示意图。
图2是压电发电滚动轴承单元剖面图。
图3是压电外圈径向受力示意图。
图4是压电端板轴向受力示意图。
图1、图2中: 1、轴承外圈,2、轴承内圈,3、保持架,4、滚子,5、压电外圈,6、压电端板。
具体实施方式
下面将结合附图和实施案例对本发明作进一步的说明。
如图1、图2所示,本发明包括轴承外圈1、轴承内圈2、保持架3和滚子4;在轴承外圈1装有压电外圈5,在轴承的一个端面装有压电端板6。
所述压电外圈5和压电端板6材料为具有压电效应的压电陶瓷。
所述的压电外圈5和压电端板6,可以将轴承承受的径向力和轴向力,利用其压电效应,可以产生电能。
如图3、图4所示,所述压电外圈和压电端板是由压电陶瓷材料制作而成。当轴承工作时,产生的轴向力                                                
Figure 2012104709573100002DEST_PATH_IMAGE001
和径向力
Figure 841519DEST_PATH_IMAGE002
会分别作用在压电端板和压电外圈上,由于其具有的压电效应,会在材料表面产生电荷,通过外接电路可以产生输出电压,从而达到发电的目的。相关计算公式如下:
Figure 696342DEST_PATH_IMAGE004
                   (1)
Figure 476079DEST_PATH_IMAGE006
                             (2)
Figure 871289DEST_PATH_IMAGE008
                               (3)
Figure 623344DEST_PATH_IMAGE010
                                     (4)
Figure 445806DEST_PATH_IMAGE012
                                 (5)
Figure 166636DEST_PATH_IMAGE014
                   (6)
Figure 365536DEST_PATH_IMAGE016
Figure 34415DEST_PATH_IMAGE018
式中:d表示压电常数;F表示轴承力;Q表示产生的电荷量;表示压电材料等效电容;
Figure 965462DEST_PATH_IMAGE020
表示相对介电常数;
Figure DEST_PATH_IMAGE021
表示真空介电常数;S表示作用面积;t表示压电材料厚度;W表示压电材料储存的电能;  表示发电功率; 表示发电时间;R表示压电外圈的外圈半径;r表示压电端板的内圈半径;B表示轴承宽度。
对于案例,
Figure 657474DEST_PATH_IMAGE022
Figure DEST_PATH_IMAGE023
Figure 332169DEST_PATH_IMAGE024
, 
Figure DEST_PATH_IMAGE025
Figure 855555DEST_PATH_IMAGE026
t=0.005m,R=0.026m,r=0.015m,B=0.007m,
Figure 2012104709573100002DEST_PATH_IMAGE027
=1s。
代入得,径向力储存电能为,轴向力储存电能为。故该案例中一套轴承总的储存电能为0.31J,发电功率为0.31w。假设该套轴承每天工作8小时,则一年产生的总电量为
由上述计算结果可知,轴承所受的轴向力和径向力分别加载在压电端板和压电外圈上,由于其压电效应,将在表面产生电荷,通过外接电路可以产生输出电压,从而达到发电的目的。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (2)

1.一种压电发电滚动轴承单元,包括轴承外圈(1)、轴承内圈(2)、保持架(3)和滚子(4);其特征在于:在轴承外圈(1)装有压电外圈(5),在轴承的一个端面装有压电端板(6)。
2.根据权利要求1所述的一种压电发电滚动轴承单元,其特征在于:所述压电外圈(5)和压电端板(6)材料为具有压电效应的压电陶瓷。
CN201210470957.3A 2012-11-20 2012-11-20 压电发电滚动轴承单元 Expired - Fee Related CN102937137B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210470957.3A CN102937137B (zh) 2012-11-20 2012-11-20 压电发电滚动轴承单元

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210470957.3A CN102937137B (zh) 2012-11-20 2012-11-20 压电发电滚动轴承单元

Publications (2)

Publication Number Publication Date
CN102937137A true CN102937137A (zh) 2013-02-20
CN102937137B CN102937137B (zh) 2015-01-14

Family

ID=47696051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210470957.3A Expired - Fee Related CN102937137B (zh) 2012-11-20 2012-11-20 压电发电滚动轴承单元

Country Status (1)

Country Link
CN (1) CN102937137B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145548A (zh) * 2020-08-31 2020-12-29 清华大学 自供能滚动轴承、轴承组件和旋转机械

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139396A (en) * 1990-03-05 1992-08-18 Koyo Seiko Co., Ltd. Ball bearing for use in vacuum and turbo-molecular pump incorporating same
CN1090927A (zh) * 1992-10-19 1994-08-17 Abskf公司 轴承中的方法和装置
JP3183158B2 (ja) * 1996-03-29 2001-07-03 株式会社村田製作所 加速度センサ及びその製造方法
CN101629538A (zh) * 2009-07-04 2010-01-20 太原理工大学 一种用于流水能量的收集装置及其收集方法
CN201682431U (zh) * 2009-11-30 2010-12-22 浙江工商大学 一种夹心式锥面压电驱动与发电一体化装置
CN102026833A (zh) * 2008-03-10 2011-04-20 陶瓷技术股份公司 用于在旋转系统中产生能量的装置
CN102723894A (zh) * 2012-05-28 2012-10-10 南京航空航天大学 旋转压电发电装置
CN202946532U (zh) * 2012-11-20 2013-05-22 浙江大学 一种压电发电滚动轴承单元

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139396A (en) * 1990-03-05 1992-08-18 Koyo Seiko Co., Ltd. Ball bearing for use in vacuum and turbo-molecular pump incorporating same
CN1090927A (zh) * 1992-10-19 1994-08-17 Abskf公司 轴承中的方法和装置
JP3183158B2 (ja) * 1996-03-29 2001-07-03 株式会社村田製作所 加速度センサ及びその製造方法
CN102026833A (zh) * 2008-03-10 2011-04-20 陶瓷技术股份公司 用于在旋转系统中产生能量的装置
CN101629538A (zh) * 2009-07-04 2010-01-20 太原理工大学 一种用于流水能量的收集装置及其收集方法
CN201682431U (zh) * 2009-11-30 2010-12-22 浙江工商大学 一种夹心式锥面压电驱动与发电一体化装置
CN102723894A (zh) * 2012-05-28 2012-10-10 南京航空航天大学 旋转压电发电装置
CN202946532U (zh) * 2012-11-20 2013-05-22 浙江大学 一种压电发电滚动轴承单元

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145548A (zh) * 2020-08-31 2020-12-29 清华大学 自供能滚动轴承、轴承组件和旋转机械

Also Published As

Publication number Publication date
CN102937137B (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
Yang et al. Rolling friction contact-separation mode hybrid triboelectric nanogenerator for mechanical energy harvesting and self-powered multifunctional sensors
Shao et al. Triboelectric–electromagnetic hybrid generator for harvesting blue energy
Zhou et al. Multilayered electret films based triboelectric nanogenerator
Chalasani et al. A survey of energy harvesting sources for embedded systems
Lu et al. Swing‐structured triboelectric–electromagnetic hybridized nanogenerator for breeze wind energy harvesting
Chung et al. Capacitor‐integrated triboelectric nanogenerator based on metal–metal contact for current amplification
Yang et al. Integrated flywheel and spiral spring triboelectric nanogenerator for improving energy harvesting of intermittent excitations/triggering
Wang et al. Flexure hinges based triboelectric nanogenerator by 3D printing
Rui et al. Super-durable and highly efficient electrostatic induced nanogenerator circulation network initially charged by a triboelectric nanogenerator for harvesting environmental energy
Gao et al. Robust triboelectric nanogenerator with ratchet‐like wheel‐based design for harvesting of environmental energy
CN202946532U (zh) 一种压电发电滚动轴承单元
Li et al. Synchronous nanogenerator with intermittent sliding friction self-excitation for water wave energy harvesting
Ramya et al. Energy harvesting in wireless sensor networks
Ma et al. An integrated triboelectric–electromagnetic–piezoelectric hybrid energy harvester induced by a multifunction magnet for rotational motion
Rana et al. Ultrahigh‐output triboelectric and electromagnetic hybrid generator for self‐powered smart electronics and biomedical applications
Ren et al. Arc‐shaped triboelectric nanogenerator based on rolling structure for harvesting low‐frequency water wave energy
CN102937137B (zh) 压电发电滚动轴承单元
Azad Triboelectric nanogenerator based on vertical contact separation mode for energy harvesting
Xu et al. Dynamics of triboelectric nanogenerators: A review
Harerimana et al. Efficient circuit design for low power energy harvesting
Elbahr et al. Simulation of a new PZT energy harvester with a lower resonance frequency using COMSOL Multiphysics®
Arnab et al. Generation of electrical energy using piezoelectric material from train wheels: Bangladesh perspective
Fu et al. Ultra‐Robust and High‐Performance Rotational Triboelectric Nanogenerator by Bearing Charge Pumping
Lv et al. High‐Performance and Durable Rotational Triboelectric Nanogenerator Leveraging Soft‐Contact Coplanar Charge Pumping Strategy
Baginsky et al. Two-capacitor electrostatic microgenerators

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150114

Termination date: 20161120