CN102927966B - 一种提高结构沉降监测精度的方法 - Google Patents

一种提高结构沉降监测精度的方法 Download PDF

Info

Publication number
CN102927966B
CN102927966B CN201210427715.6A CN201210427715A CN102927966B CN 102927966 B CN102927966 B CN 102927966B CN 201210427715 A CN201210427715 A CN 201210427715A CN 102927966 B CN102927966 B CN 102927966B
Authority
CN
China
Prior art keywords
liquid
fluid connection
liquid level
connection pipe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210427715.6A
Other languages
English (en)
Other versions
CN102927966A (zh
Inventor
李让坤
王鹏军
刘伟
罗洪
徐淑正
杨华中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201210427715.6A priority Critical patent/CN102927966B/zh
Publication of CN102927966A publication Critical patent/CN102927966A/zh
Application granted granted Critical
Publication of CN102927966B publication Critical patent/CN102927966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种提高结构沉降监测精度的方法,属于结构健康监控和传感器应用领域,其特征在于采用一个固定的且不随结构沉降而沉降的液面保持器作为基准液面,同时通过在液体压力传感器的一端加入一个液压平衡管以抵消液体压力传感器的初始压强偏差,减小了所使用的液体压力传感器的量程,提高了液体压力传感器的测量灵敏度,从而提高了结构沉降的监测精度,同时简化了测量过程的校准程序,该方法只需一次静态的初始化校准,克服了传统的结构沉降监测的低精度、校准过程繁琐的缺点。

Description

一种提高结构沉降监测精度的方法
技术领域
本发明涉及一种应用于结构沉降监控的高精度监测方法,属于结构健康监控和传感器应用领域。
背景技术
桥梁、房屋、道路、地面、船体、飞机机身等结构在受到负载及外力作用时,会产生一定的沉降形变。通过对于结构各处的沉降的精确测量,可以对结构的健康状态及安全性能进行监控。
现有的结构沉降测量方法一般采用一个液体连通管连通各处监测点的液体压力传感器,液体连通管的一端连接着一个液面保持器,通过测量液体压力传感器的压强值计算出传感器与液面保持器的基准液面的高度差,从而实现测量目的。该方法有以下缺点:液体压力传感器的量程必须覆盖全部监测点的压强变换范围,必须选择大量程的压力传感器,测量精度相对较低,同时需要对每次测量的结果进行繁琐的偏置校准。
发明内容
一种提高结构沉降监测精度的方法,其特征在于,依次含有以下步骤:
步骤(1),构造一个结构沉降监测系统:
所述结构沉降监测系统含有:被监测结构(1)、液体连通管(2)、液面保持器(3)、测量液体(4)、支撑杆件(5)、液压平衡管(6)以及液体压力传感器(7),其中:
被监测结构(1),是包括桥梁、房屋、道路、底面、船体、飞机机身在内的多种结构中的任何一种,被监测结构(1)上设有多个监测点(9),在所述被监测结构(1)的每个监测点(9)的位置通过支撑杆件(5)固定支撑一个所述液体压力传感器(7)和一个所述液压平衡管(6),
液体连通管(2),分以下三类:
第一类所述液体连通管(21),有一根,一端和所述液面保持器(3)的底部相连通,
第二类所述液体连通管(22),有多根,一端通过液体连通管转接头(8)和第一类液体连通管(21)连通,另一端和述所述液体压力传感器(7)的第二接口(72)相连通,
第三类所述液体连通管(23),有多根,一端和所述液压平衡管(6)的底部相连通,另一端和所述液体压力传感器(7)的第一接口(71)相连通,
测量液体(4),是具有固定密度和非挥发特性的液体,所述测量液体(4)通过所述液体连通管(2)在液面保持器(3)、液体压力传感器(7)和液压平衡管(6)之间流通,
液体压力传感器(7),包括第一接口(71)、第二接口(72)和传感片(73),所述第一接口(71)或第二接口(72)向所述传感片(73)两边输送测量液体(4),以便所述传感片(73)测量其两边测量液体(4)的压强差,
液压平衡管(6),是一个上端开口的柱状容器,内部容纳所述测量液体(4),将测量液体(4)通过第三类液体连通管(23)输送到所述液体压力传感器(7)的第一接口(71),
液面保持器(3),是一个直径大于所述液压平衡管(6)和液体连通管(2)的直径的柱状容器,上端有一个通气孔,所述液面保持器(3)内部容纳所述测量液体(4),将测量液体(4)通过第一类液体连通管(21)和第二类液体连通管(22)输送到所述液体压力传感器(7)的第二接口(72),所述液面保持器(3)固定在被监测结构(1)之外的位置,不随被监测结构(1)的沉降而沉降,
步骤(2),依次按以下步骤监测所述被监测结构(1)的各个监测点(9)的沉降高度H:
步骤(2.1)被监测结构(1)的偏置校正,
在静止状态下,所述被监测结构(1)的各个监测点(9)的沉降为零,依次向所述液面保持器(3)和各个液压平衡管(6)中注入所述测量液体(4),使各个液压平衡管(6)内的液面高度和液面保持器(3)内的液面高度相等,此时液体压力传感器(7)的传感片(73)两边的压强差为零,
在沉降情况下,按以下公式计算所述被监测结构(1)的各个监测点(9)的沉降高度H:
H=S/(ρg)米,
其中S为所述液体压力传感器(7)的传感片(73)两边的压强差,单位为帕斯卡,ρ为所述测量液体(4)的密度,单位为千克/米3,g为重力加速度常量,单位为米/秒2。
同现有的技术相比,本发明采用一个固定的液面保持器作为基准液面,同时通过在液体压力传感器一端加入液压平衡管抵消了传感片两边固有的压强差偏置,从而结构监测可以采用量程小精度高的液体压力传感器,提高结构沉降监测的精度,检测过程只需进行一次初始化偏置校准。本发明可以实现结构沉降的多点同时高精度监测,并可以长期、稳定的工作,有利于实现结构沉降监测的自动化和网络化。
附图说明
图1是本发明提出的提高结构沉降监测精度的方法的示意图;
图2是结构沉降监测方法进行初始偏置校准的示意图;
图3是利用本发明对结构沉降正常监测时的液面变化示意图。
附图标志:
1、被监测结构,2、液体连通管,3、液面保持器,4、测量液体,5、支撑杆件,6、液压平衡管,7、液体压力传感器,71、第一接口,72、第二接口,73、传感片,8、液体连通管转接头,9、监测点。
具体实施方式
提高结构沉降监测精度的方法所使用的装置,包括液体连通管、测量液体、液面保持器、液体压力传感器、液压平衡管,
被监测结构选定若干监测位置作为监测点,每个监测点固定一个液体压力传感器和一个液压平衡管,随着被监测结构一同沉降,所有监测点的液体压力传感器的第二接口通过液体连通管连通到液面保持器的底部,第一接口通过液体连通管连接到监测点各自的液压平衡管的底部。
所述液体压力传感器包括传感片、第一接口和第二接口,液体压力传感器的传感片分割开第一接口和第二接口所通入的测量液体。
所述液面保持器是一个横截面积大于液体连通管横截面积的柱形容器,液面保持器固定在被监测结构之外的位置,不随被监测结构一同沉降,液面保持器内部通过一个小孔与外部大气连通,液面保持器内部容纳一定高度的测量液体。
所述液压平衡管是一个上端开口的柱形容器,液压平衡管内部容纳一定高度的测量液体,对被监测结构进行初始化偏置校准时,所有监测点的液压平衡管的液面高度被设定为与液面保持器中的液面一致。
所述测量液体是具有固定密度和非挥发特性的液体,测量液体通过液体连通管在液面保持器、液体压力传感器和液压平衡管之间流通。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述:
如图1所示,本发明的提高结构沉降监测精度的方法,包括液体连通管2,液面保持器3,测量液体4,支撑杆件5,液压平衡管6,液体压力传感器7。
被监测结构1的每个监测点9通过支撑杆件5固定支撑一个液压平衡管6和一个液体压力传感器7,液压平衡管6和液体压力传感器7随着被监测结构1一起沉降,液压平衡管6通过液体连通管23和液体压力传感器7的第一端口71相连通,液面保持器3固定在被监测结构1之外的位置,不随被监测结构1一起沉降,液面保持器3通过液体连通管21、液体连通管22和所有液体压力传感器7的第二接口72相连通,液面保持器3的直径大于液压平衡管6和液体连通管2的直径,使得液体保持器3的液面不随被监测结构1的沉降而变化。
对于被监测结构各个监测点的沉降测量执行过程如下:
步骤(1),如图2所示,对于被监测结构1进行初始化偏置校准,校准过程在被监测结构1的安静状态下进行,此时被监测结构1各个监测点9都具有零沉降。校准的方法是先将液面保持器3内注入一定高度的测量液体4,然后将各个监测点9的液压平衡管6内注入测量液体4,使所有液压平衡管内6的液面高度与液面保持器3的液面处于同一水平面上,此时液体压力传感器7的传感片73两边的测量液体的压强相等,压强差为零。
步骤(2),如图3所示,被监测结构1处在正常监测状态,各个监测点9各自具有一定的沉降,使得液压平衡管6的液面随着被监测结构1一起下降,而液面保持器3的液面没有变化,这样液体压力传感器7的传感片73两边的测量液体4具有压强差S帕斯卡。
测量液体的密度为ρ千克/米3,重力加速常量为g米/秒2,则被监测结构1的监测点9的沉降高度H=S/(ρg)米。

Claims (1)

1.一种提高结构沉降监测精度的方法,其特征在于,依次含有以下步骤:
步骤(1),构造一个结构沉降监测系统:
所述结构沉降监测系统含有:被监测结构(1)、液体连通管(2)、液面保持器(3)、测量液体(4)、支撑杆件(5)、液压平衡管(6)以及液体压力传感器(7),其中:
被监测结构(1),是包括桥梁、房屋、道路、底面、船体、飞机机身在内的多种结构中的任何一种,被监测结构(1)上设有多个监测点(9),在所述被监测结构(1)的每个监测点(9)的位置通过支撑杆件(5)固定支撑一个所述液体压力传感器(7)和一个所述液压平衡管(6),
液体连通管(2),分以下三类:
第一类所述液体连通管(21),有一根,一端和所述液面保持器(3)的底部相连通,
第二类所述液体连通管(22),有多根,一端通过液体连通管转接头(8)和第一类液体连通管(21)连通,另一端和所述液体压力传感器(7)的第二接口(72)相连通,
第三类所述液体连通管(23),有多根,一端和所述液压平衡管(6)的底部相连通,另一端和所述液体压力传感器(7)的第一接口(71)相连通,
测量液体(4),是具有固定密度和非挥发特性的液体,所述测量液体(4)通过所述液体连通管(2)在液面保持器(3)、液体压力传感器(7)和液压平衡管(6)之间流通,
液体压力传感器(7),包括第一接口(71)、第二接口(72)和传感片(73),所述第一接口(71)或第二接口(72)向所述传感片(73)两边输送测量液体(4),以便所述传感片(73)测量其两边测量液体(4)的压强差,
液压平衡管(6),是一个上端开口的柱状容器,内部容纳所述测量液体(4),将测量液体(4)通过第三类液体连通管(23)输送到所述液体压力传感器(7)的第一接口(71),
液面保持器(3),是一个直径大于所述液压平衡管(6)和液体连通管(2)的直径的柱状容器,上端有一个通气孔,所述液面保持器(3)内部容纳所述测量液体(4),将测量液体(4)通过第一类液体连通管(21)和第二类液体连通管(22)输送到所述液体压力传感器(7)的第二接口(72),所述液面保持器(3)固定在被监测结构(1)之外的位置,不随被监测结构(1)的沉降而沉降,
步骤(2),依次按以下步骤监测所述被监测结构(1)的各个监测点(9)的沉降高度H:
在静止状态下,所述被监测结构(1)的各个监测点(9)的沉降为零,依次向所述液面保持器(3)和各个液压平衡管(6)中注入所述测量液体(4),使各个液压平衡管(6)内的液面高度和液面保持器(3)内的液面高度相等,此时液体压力传感器(7)的传感片(73)两边的压强差为零,
在沉降情况下,按以下公式计算所述被监测结构(1)的各个监测点(9)的沉降高度H:
H=S/(ρg),其中H的单位为米,
其中S为所述液体压力传感器(7)的传感片(73)两边的压强差,单位为帕斯卡,ρ为所述测量液体(4)的密度,单位为千克/米3,g为重力加速度常量,单位为米/秒2
CN201210427715.6A 2012-10-31 2012-10-31 一种提高结构沉降监测精度的方法 Active CN102927966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210427715.6A CN102927966B (zh) 2012-10-31 2012-10-31 一种提高结构沉降监测精度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210427715.6A CN102927966B (zh) 2012-10-31 2012-10-31 一种提高结构沉降监测精度的方法

Publications (2)

Publication Number Publication Date
CN102927966A CN102927966A (zh) 2013-02-13
CN102927966B true CN102927966B (zh) 2014-11-05

Family

ID=47642824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210427715.6A Active CN102927966B (zh) 2012-10-31 2012-10-31 一种提高结构沉降监测精度的方法

Country Status (1)

Country Link
CN (1) CN102927966B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868494B (zh) * 2014-04-03 2016-08-17 山东科技大学 一种地表沉陷监测系统
CN104344809A (zh) * 2014-10-15 2015-02-11 中国十七冶集团有限公司 一种建筑物沉降实时监测装置及其方法
CN104631714B (zh) * 2015-02-09 2017-08-22 中震(北京)工程检测股份有限公司 一种传感器水平承台结构的施工方法
CN104819702B (zh) * 2015-04-21 2017-07-11 同济大学 一种管片变形对静力水准高程传递影响的修正方法
CN104976988B (zh) * 2015-07-14 2024-03-01 江苏省电力公司南京供电公司 一种隧道大高程差沉降测量系统
CN105928491A (zh) * 2016-04-20 2016-09-07 河海大学 一种建筑物竖向位移的测试方法
CN107560595A (zh) * 2016-07-01 2018-01-09 北京纳微时代科技有限公司 建筑物及地质沉降监测方法
CN106066171A (zh) * 2016-07-05 2016-11-02 广西路桥工程集团有限公司 路桥沉降差实时监测系统及其方法
CN110044324A (zh) * 2018-01-15 2019-07-23 北京纳微时代科技有限公司 高差测量系统自动排气的方法
CN108571947A (zh) * 2018-04-19 2018-09-25 水利部交通运输部国家能源局南京水利科学研究院 一种近岸围堤多点沉降监测系统
CN113091696A (zh) * 2021-03-18 2021-07-09 中交四航局第五工程有限公司 液体测量管路中蓄积气体的排除系统及方法
CN113636424A (zh) * 2021-08-03 2021-11-12 日立楼宇技术(广州)有限公司 一种电梯绳头称重装置、称重方法及电梯
CN113834465B (zh) * 2021-11-29 2022-03-08 江苏东微感知技术有限公司 建筑物沉降监测的误差自动校准装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130068A (ja) * 1998-10-29 2000-05-09 Okumura Corp 地山沈下計測装置および地山沈下計測方法
CN202002643U (zh) * 2011-03-16 2011-10-05 中国新兴保信建设总公司 一种超声波测量地表沉降的装置
CN202350780U (zh) * 2011-06-13 2012-07-25 绵阳市奇石缘科技有限公司 基于连通器原理的高智能沉降观测系统
CN202109904U (zh) * 2011-06-14 2012-01-11 湖南五舟检测科技有限公司 一种路基沉降监测设备

Also Published As

Publication number Publication date
CN102927966A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
CN102927966B (zh) 一种提高结构沉降监测精度的方法
CN102494670A (zh) 用静力水准仪监测地基沉降的方法及其使用的静力水准仪
CN101571442B (zh) 用于中等量程的六维力传感器标定装置的标定方法
CN103630328B (zh) 应用于分析循环水槽中试验模型受力情况的装置
CN103292787A (zh) 一种倾角传感器
CN105737796A (zh) 液压水准测量系统及其测量方法
CN107560974A (zh) 智能密度计的检测方法
CN106338272A (zh) 用于构件倾斜角测量的测试装置及其测试方法
CN110954138B (zh) 一种基于便携式检测设备的气压高度计检测方法
CN203298764U (zh) 一种倾角传感器
CN102706310A (zh) 一种臂架夹角检测方法、装置及带此装置的泵车
CN111413026B (zh) 一种多功能压力测量监视系统的在线检测装置
CN202092603U (zh) 液压缸回缩量激光检测装置
CN105758422B (zh) 一种积分式闭环光纤陀螺的测试方法
CN106840019A (zh) 一种钻孔应变仪灵敏度测试系统
CN202133503U (zh) 微型三维力传感器标定装置
CN107063854B (zh) 一种用于测量三轴试验体变的装置
CN203420292U (zh) 直读式桩基位移检测装置
CN202372170U (zh) 一种静力水准仪
CN202033031U (zh) 一种数字化水平测量装置
CN203672371U (zh) 一种基于石英挠性加速度计的倾角测量仪
CN204359424U (zh) 高位槽称重模块精度校验装置
CN206488993U (zh) 一种用于测量三轴试验体变的装置
CN107144295A (zh) 一种基于高度尺测量的便携式静力水准仪校准的装置
CN102358596B (zh) 同步顶升装置加载试验台

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant