CN102925125B - 用作隔离液的原位微乳液 - Google Patents

用作隔离液的原位微乳液 Download PDF

Info

Publication number
CN102925125B
CN102925125B CN201210432084.7A CN201210432084A CN102925125B CN 102925125 B CN102925125 B CN 102925125B CN 201210432084 A CN201210432084 A CN 201210432084A CN 102925125 B CN102925125 B CN 102925125B
Authority
CN
China
Prior art keywords
microemulsion
oil
fluid
water
sbm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210432084.7A
Other languages
English (en)
Other versions
CN102925125A (zh
Inventor
L·昆特罗
C·F·克里斯蒂安
A·J·麦克拉
C·陶勒斯
D·E·克拉克
T·A·琼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of CN102925125A publication Critical patent/CN102925125A/zh
Application granted granted Critical
Publication of CN102925125B publication Critical patent/CN102925125B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/524Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells
    • E21B37/06Methods or apparatus for cleaning boreholes or wells using chemical means for preventing or limiting, e.g. eliminating, the deposition of paraffins or like substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Colloid Chemistry (AREA)
  • Earth Drilling (AREA)
  • Lubricants (AREA)

Abstract

可在烃回收操作期间在用OBM或SBM钻井之后使用一种或多种处理液原位形成具有过量的油或水或两者的纳米乳液、细乳液、微乳液体系(Winsor III)或单相微乳液(Winsor IV)。所述具有过量的油或水或两者的纳米乳液、细乳液、微乳液体系或单相微乳液从井和井眼表面移出油和固体。在一个非限制性实施方案中,单相微乳液(SPME)或其它原位形成的流体可由极性相、非极性相、至少一种增粘剂和至少一种表面活性剂产生。

Description

用作隔离液的原位微乳液
本申请是中国专利申请号200880013045.5的分案申请。 
技术领域
本发明涉及在油井钻孔之后从井眼中移出或清除油基钻井液(OBM)或合成基钻井液(SBM)的方法和组合物,且更具体地,在一个非限制性实施方案中,涉及使用在处理液(fluid pill)中原位形成的与过量的油或水或两者平衡的纳米乳液、细乳液、微乳液体系(Winsor III)或单相微乳液(Winsor IV)从井眼中移出或清除OBM、SBM及其它污染物的方法和组合物。 
背景 
在地下油井和气井的钻井中使用的钻井液以及其它钻井液应用和钻井程序是众所周知的。在旋转钻井中,有多种对钻井液(也称为钻井泥浆或简单称为“泥浆”)所预期的作用和特性。钻井液应该运载来自钻头下面的切屑和其它微粒,将它们运输穿过环空,并容许它们在表面上分离,而同时冷却并清洁旋转钻头。钻井泥浆还打算降低钻柱与孔侧面之间的磨擦力,同时保持钻孔的暴露部分的稳定性。配制钻井液以防止地层流体从透水岩渗透而不想要的流入。钻井液还可用于收集并解释得自于钻屑、芯部和电法测井(electrical log)的信息。应了解,在本文中所要求保护的发明的范围内,术语“钻井液”还包含“钻进液”和“完井液”。 
钻井液通常根据它们的基液分类。在水基泥浆中,固体颗粒悬浮在水或盐水中。油可在该水中乳化。尽管如此,该水为连续相。盐水基钻井液当然为水基泥浆(WBM),其中水性组分为盐水。油基泥浆(OBM)为相反的或颠倒的。固体颗粒悬浮在油中,且水或盐水在该油中乳化,且因此该油为连续相。油基泥浆可为全油基粗乳液或油包水粗乳液,其还被称为逆乳液。在油基泥浆中,油可由包括但不限于柴油、矿物 油、酯或α-烯烃的任何油组成。如果与通过常规炼油技术所生产的油相比,该油为合成的,则该泥浆为合成基泥浆或SBM。非水性泥浆可称作以O/SBM速记(short hand)的一类。 
对于选择或使用用于油和/或气勘探的钻井液的那些人显而易见的是,所选流体的基本组分适当平衡以获得对于具体最终应用的必要特性。因为需要钻井液同时执行许多任务,所以该合乎需要的平衡并不总是容易获得。 
隔离液为用于物理上分隔一种专用液体与另一专用液体的液体。专用液体通常遭受污染,因此在两者之间使用与两者相容的隔离液。常见的隔离液简单地是水,但同样典型的是溶剂基隔离液和含有大部分互溶溶剂的隔离液。然而,经常加入其它化学品以增强流体对于特定操作的性能。隔离液主要是在改变泥浆类型或从泥浆改变为完井液时使用。在前者情况下,油基流体必须与水基流体保持分隔。隔离液的其它常见用途是在固井操作期间将泥浆与水泥分隔开。对于固井来说,化学处理过的水性隔离液或隔离液序列通常将钻井泥浆与随后泵送到井下的水泥浆分隔开。清洁用隔离液同样广泛用于在钻入井眼部分之后清洁套管、提升管及其它设备。清洁用隔离液不仅从井眼中移出剩余钻井液,而且还移出切屑、加重剂颗粒(例如重晶石)及其它残留油质碎片和污染物。 
实际上,在整个井眼的完井程序中在井眼中驱替钻井液或钻进液变成澄清盐水已成为一项非常重要的过程,它导致优化的烃回收。不良驱替可导致低于计划生产率,此归因于由于泥浆残余沉积物留在包括金属和/或地层面的井眼表面上引起的地层损害。低效驱替的其它后果包括粘住装填器、完井工具定位问题、钻探设备和过滤时间增加、处理成本增加和腐蚀麻点增加。驱替液和隔离液通常含有至少一种表面活性剂、任选至少一种增粘剂,且设计成尽可能接近于“活塞流”或层流。另一方面,设计一些隔离液用来提供湍流以进一步洗掉油和油质碎片。它们可用来驱替O/SBM和WBM两者。 
如果能发明帮助并改善清除残留OBM、SBM和任何碎片或其它污染 物的能力并更彻底地将其移出而不引起额外的地层损害的组合物和方法,则这将是合乎需要的。 
发明概述 
在一种非限制性的形式中,提供了从井眼中移出油基泥浆或合成基泥浆(O/SBM)的至少一部分的方法,包括用O/SBM在烃储层中钻井眼。将处理液泵送到该井眼中,其中所述处理液含有至少一种表面活性剂、任选至少一种增粘剂和水或盐水。所需要的处理液(pill)密度通过加入增浓剂如重晶石而获得。一旦将处理液泵送到井下并使其与OBM接触,OBM的油和油质组分将乳化到隔离液中,在井眼中形成原位乳液。该乳液接触O/SBM并基本上将其从井眼中移出。通过该方法还可移出微粒及其它碎片。可预期本文中的方法除准备用于固井操作之外在提供用于清洁套管、提升管及其它井下设备的改善的清洁用处理液、隔离液、驱替液等方面找到特殊用途。 
在一个非限制性实施方案中,使用至少两种相继泵送的处理液。将第一处理液泵送到井眼中,其中该第一处理液为含有至少一种加重剂、至少一种表面活性剂、至少一种增粘剂和水或盐水的增重的驱离隔离液。盐水在本文中定义为含有一种或多种盐的水;规定术语“盐水”包括海水。在第一处理液之后,将第二处理液泵送到井眼中。第二处理液包括至少一种表面活性剂、水或盐水(即含有盐的水,例如海水)。再一次,当这些处理液接触O/SBM时,在井眼中与在井眼中遇到的残留OBM原位形成乳液。第一处理液和/或第二处理液还可含有任选的助表面活性剂。第二处理液中的表面活性剂可与第一处理液中的表面活性剂相同或不同。两种处理液的其它属性在于它们将表面的润湿性从油润湿改变为水润湿。 
在一个替代的实施方案中,另外提供了包括极性相、非极性相、表面活性剂(在一种非限制性的情况下为聚甘油酯表面活性剂)和至少一种增粘剂的热力学稳定的宏观上均匀的的单相微乳液(SPME)。 
附图简述 
图1为在两种不同温度下作为油基泥浆与驱替隔离液A的共混物的 组成的函数的屈服点的图;且 
图2为用于模拟涂有合成基泥浆的钻孔壁的玻璃烧杯的一系列八张照片,其中加入并移出两种不同的隔离液以显示它们效果。 
详细描述 
已经发现了通过使用原位产生的乳液,特别是微乳液,从井和井眼表面驱替并清除油基钻井液或合成基钻井液以及其它井眼污染物质的方法和组合物。该井眼通过形成原位乳液、细乳液、微乳液或纳米乳液的一种或多种相继泵送的处理液或隔离液的体系而进行清洁。在一个非限制性实施方案中,已经发现细乳液、微乳液、纳米乳液和单相乳液特别有用。 
在两种相继泵送的处理液或隔离液的体系中,第一处理液为具有单一表面活性剂或表面活性剂包、加重剂、增粘剂和淡水或盐水(例如海水)的增重的驱离隔离液。在一个非限制性的变型中,在一个非限制性实例中,所述表面活性剂包可包括烷基多糖苷和聚甘油酯。第二处理液可为具有单一表面活性剂或表面活性剂包和水或盐水的清洁用隔离液。第二处理液的单一表面活性剂或表面活性剂包可与第一处理液的单一表面活性剂或表面活性剂包相同或不同。在仅使用一种处理液的实施方案中,该处理液可含有单一表面活性剂或表面活性剂包、任选至少一种增粘剂和淡水或盐水(例如海水)。可使用两种或更多种相继泵送的处理液。 
所描述的隔离液的另一任选的应用是在井眼中先于水泥浆从环形空间驱替钻井液,例如以预冲洗的形式。可配制水性的先导隔离液(aqueous lead spacers)以使驱替的钻井液与水泥浆之间的混合最小化以及从环形空间清除污染物质并通过原位乳液的产生使井眼表面水润湿。 
更具体地,O/SBM与极性相(通常为水)和表面活性剂接触将OBM或SBM转化为纳米乳液、细乳液、微乳液(Winsor III)和/或单相微乳液(SPME)如Winsor IV或类似化学的,如将要更加详细地描述的。单相微乳液可定义为双连续水包油(O/W)或油包水(W/O)的。在本发明现象的 一种非限制性的解释中,O/W SPME接触油基泥浆并形成水连续的(水包油)微乳液。该接触可通过以正常或常规方式流通井而实现,该方式是指泵送流体穿过包括钻孔和所有构成主要体系的地表罐的整个活性流体体系。在一些非限制性的实施方案中,可获得益处而不流通井或基本不流通井,但在很多情况下可以预期的是流通井可改善总体结果。如所说明的,同时已经发现微乳液、细乳液或纳米乳液可在井下原位形成。也就是说,不必在地表形成微乳液并将其泵送到井下。 
更具体地,本文中的方法和组合物包括使用原位形成的流体如微乳液来移出油基泥浆(OBM)或合成油基泥浆(SBM),其包括由这些泥浆形成的残留油质碎片及其它污染物(如来自重晶石加重剂),和将这些表面和颗粒的润湿性从油润湿性逆转为水润湿性并消除或最小化在用SBM或OBM钻的油井中的井眼损害。当至少一种表面活性剂和极性相(通常为水,但不限于水)接触OBM或SBM并使O/SBM的非极性物质溶解时,可形成原位流体(例如微乳液、纳米乳液等)。在本文中应理解术语OBM包含SBM。 
形成原位流体的益处之一在于清洁用流体在配制中不需要任何油或溶剂,当与井下OBM或SBM接触时,这赋予更高的油结合能力或清洁能力。另一益处在于固体颗粒及其它污染物质(如果存在的话)由油润湿性转变为水润湿性。因为在流体例如微乳液或纳米乳液的原位形成期间,接触了OBM(或SBM)并使微粒和碎片由油润湿性转变为水润湿性,所以表面活性剂或表面活性剂共混物和极性相(例如水)还可含有一种或多种增粘剂。在很多情况下,表面活性剂可为表面活性剂共混物且经常为表面活性剂-助表面活性剂混合物,其中该助表面活性剂为短的两亲性物质如醇(在非限定性实例中,为以它们的不同异构体形式存在的丙醇、丁醇、戊醇)以及二醇和乙氧基化的和丙氧基化的醇或酚。 
应了解,对于本发明的方法和其组合物,没有必要认为移出所有OBM或SBM或所有污染物颗粒才是成功的。如果与不使用原位流体(例如单相微乳液)相比,使用使用原位流体(例如单相微乳液)移出了更多的O/SBM、颗粒及其它污染物,则获得了成功。或者,如果移出O/SBM、 碎片及其它污染物的至少一部分,则认为本文中的方法和组合物是成功的。在一个非限制性实施方案中,O/SBM、碎片和/或其它污染物的至少大部分(>50%)被移出,在本文上下文中认为此为基本上移出。一般来说,当然希望尽可能多地移出OBM/SBM、污染物和碎片。 
与缺乏原位流体(例如SPME)的其它相同的方法和组合物相比,本文中的方法和组合物具有以下优势:通过避免完井设备(独立筛、可扩展筛、砾石充填包等)被残留碎片堵塞而降低对井的潜在损害,并因此增加烃回收和/或增加注水速率。微乳液为以下至少三种组分的热力学稳定的宏观上均匀的混合物:极性相和非极性相(通常但不限于水和有机相)和至少一种表面活性剂(经常多于一种表面活性剂,例如具有助表面活性剂如醇、二醇或酚或它们的烷氧基衍生物,特别是当使用离子表面活性剂时),如在以下参考文献中所提及:J.L.Salager和R.E.Anton,“离子微乳液(Ionic Microemulsions)”,第8章,在P.Kumar和K.L.Mittal编辑的《微乳液科技手册》(Handbook of Microemulsion Science and Technology),Marcel Dekker Inc.New York1999,第247-280页中。微乳液自发形成且明显有别于热力学不稳定的粗乳液,后者的形成依靠剧烈的混合能量。微乳液在本领域中为众所周知的,且注意力郑重地涉及S.Ezrahi、A.Aserin和N.Garti,“第7章:单相(Winsor IV)微乳液体系的聚结行为(Aggregation Behavior in One-Phase(Winsor IV)Microemulsion Systems)”,在P.Kumar和K.L.Mittal编辑的《微乳液科技手册》(Handbook of Microemulsion Science and Technology),Marcel Dekker,Inc.,New York,1999,第185-246页中。 
所引用的章节描述了由Winsor定义的微乳液相制剂的类型:Winsor I、Winsor II和Wins or III。体系或制剂定义为:当其含有与过量的油相平衡的微乳液时,Winsor I;当其含有与过量的水平衡的微乳液时,Winsor II;和当其含有与过量的水和过量的油平衡的中相微乳液时,Wins or III。作者还描述了没有过量的油或过量的水的单相微乳液Winsor IV。虽然不希望受任何一种理论的限制,但认为在本方法中形成的微乳液和本方法的组合物为Winsor IV型,这基本上是指整个隔离液体系为微乳液相。“基本上”在一个非限制性实施方案中是指大于隔离液体系的50%,且或者在另一非限制性变型中,是指大于隔离液体系的50%。热力学稳定的单相Winsor IV微乳液并且可通过配方或组成方面的改变演变形成细乳液或纳米乳液,该细乳液或纳米乳液为可长时间稳定但并非如微乳液般永久稳定的具有亚微米尺寸液滴的两相体系,如在以下参考文献中所说明:J.L.Salager,在Emulsions and Emulsion Stability(乳液和乳液稳定性)中的“乳液相逆转现象(Emulsion Phase Inversion Phenomena)”,J.编辑,第2版,第4章,第185-226页,Taylor和Francis,London(2006)。 
适于使用本文中的这些方法产生原位流体(例如单相微乳液)的表面活性剂包括但不必限于非离子表面活性剂、阴离子表面活性剂、阳离子表面活性剂和两性表面活性剂,且尤其是它们的共混物。助溶剂或助表面活性剂如醇为在微乳液配制中使用的任选的添加剂。合适的非离子表面活性剂包括但不必限于烷基多糖苷、脱水山梨糖醇酯、甲基糖苷酯、醇乙氧基化物或聚乙二醇酯。在一个非限制性变型中,聚乙二醇酯是特别合适的。合适的阳离子表面活性剂包括但不必限于精氨酸甲酯、烷醇胺和亚烷基二酰胺。合适的阴离子表面活性剂包括但不必限于碱金属的烷基硫酸盐、烷基或烷基芳基磺酸盐、直链或支链的烷基醚硫酸盐和磺酸盐、醇聚丙氧基化的和/或聚乙氧基化的硫酸盐、烷基或烷基芳基二磺酸盐、烷基焦硫酸盐、烷基磺基琥珀酸盐、烷基醚硫酸盐、直链和支链的醚硫酸盐和它们的混合物。在一个非限制性实施方案中,可使用共混物形式的至少两种表面活性剂来原位产生单相微乳液以及另一原位流体。合适的表面活性剂还可包括含有非离子间隔臂中心伸出部(spacer-arm central extension)和离子或非离子极性基团的表面活性剂。在非限制性实施方案中,该非离子间隔臂中心伸出部可为聚丙氧基化、聚乙氧基化的结果或两者的混合物。 
适于本文中的方法和组合物的其它表面活性剂包括但不限于在以下文献中论述的表面活性剂:M.J.Rosen,表面活性剂和界面现象(Surfactants and I nterfacial Phenomena),第二版,John Wiley&Sons Inc.,1989;和K.Holmber,“新表面活性剂(Novel Surfactants)”,在表面活性剂科学系列(Surfactant Science Series),第74卷,Marcel Dekker Inc,New York,1998中。 
在本文中的另一非限制性实施方案中,所述原位流体制剂(例如粗乳液、纳米乳液等)可含有助表面活性剂,该助表面活性剂可为具有约3至约10个碳原子的醇,在另一非限制性实施方案中,其可为具有约4至约6个碳原子的醇。合适的助表面活性剂的具体实例包括但不必限于丁醇。这些助表面活性剂可被烷氧基化,例如乙氧基化和/或丙氧基化,尽管大多数情况下应该存在充分的乙氧基化以实现所述方法的目的。在一个非限制性实施方案中,乙氧基单元的数目为约3至约15个,或者从约6个,独立地最多达约10个。 
在一个非限制性变型中,可使用任选的助表面活性剂。与表面活性剂一起使用的助表面活性剂的比例难以预先确定,且一般来说且可受许多相关因素影响,所述因素包括但不必限于表面活性剂的性质、助表面活性剂的性质、待移出、驱替或以其它方式影响的钻井液的类型、井眼条件等。在一个非限制性实施方案中,合适的隔离液包括多糖苷与聚甘油酯(如自Oleon N.V.购得的PG8-10酯)的表面活性剂共混物,其具有3.4/1的游离OH/酯化OH摩尔比,任选具有被7.5或更高EO乙氧基化的烷基醇。 
在另一非限制性实施方案中,所述原位流体(例如单相微乳液)含有非极性液体,其可包括合成流体,该合成流体包括但不必限于酯流体;链烷烃(如得自Baker Hughes Drilling Fluids的PARA-TEQTM流体)和异构化的烯烃(如得自Baker Hughes Drilling Fluids的ISO-TEQTM)。然而,在制备本文中的流体体系中,柴油和矿物油如ESCAID110(得自Exxon)或EDC99-DW油(得自TOTAL)也可用作非极性液体。其它合适的非极性液体包括但不必限于柠檬烯、二甲苯、互溶溶剂等。如先前提到的,原位形成所述流体(例如纳米乳液、单相微乳 液等)的优势在于需要使用更少的非极性液体(与预形成的微乳液相比),因为该非极性液体在OBM(或SBM)本身中存在。这赋予微乳液更高的能力(例如吸收油的能力)。 
在相继使用两种处理液的非限制性情形中,第一处理液可为含有一种或多种加重剂的增重的驱离隔离液。加重剂是用于增加密度的高比重和精细分开的固体物质。合适的加重剂包括但不必限于重晶石、赤铁矿、艾里米特(ilemite)、菱铁矿等。 
本文中的处理液、增重的驱离隔离液及其它处理液还可含有至少一种增粘剂。增粘剂为增加处理液的粘度的组分。合适的增粘剂包括但不必限于可水合的多糖例如黄原胶(其可为交联的或可为不交联的)、羟乙基纤维素(HEC)或羧甲基纤维素(CMC)、粘弹性表面活性剂、合成聚合物例如聚丙烯酰胺、丙烯酸与丙烯酰胺的共聚物、聚丙烯酸酯、粘土例如膨润土、海泡石和硅镁土等和它们的混合物。 
应了解,待产生或形成的原位流体的量和待加入或待包括的用于原位形成的组分(极性组分和表面活性剂和助表面活性剂(如果存在的话))的量通常难以预先相当精确地确定和预测,因为它们取决于许多相关因素,所述因素包括但不必限于:盐水类型;O/SBM类型;形成的温度;所用的特定表面活性剂或表面活性剂共混物;所用的特定助表面活性剂(如果存在的话)等。尽管如此,为了给出所用量的一些意见,在一个非限制性实施方案中,原位流体(例如单相微乳液)中的非水性组分的比例可为约1至约50体积%,且在另一非限制性实施方案中,可从约5体积%独立地最高达约20体积%。 
预期盐水将是原位流体(例如SPME)的常见组分,且预期任何常用盐水和产生它们的盐适于本文中的组合物和方法。虽然预期水为用于制造原位微乳液的极性液体,但应了解其它极性液体如醇和二醇可单独或与水一起使用。 
进一步具体地,本文中的方法和组合物可涉及设计用来物理上改变OBM(例如逆乳液)的一步法清除隔离液。本发明的方法物理上改变O/SBM、结合到原位形成的SPME(例如)且随后进一步微乳化或吸收的任 何所得油组分或碎片的性质。在外部油转化为水中的内部乳化油加上油润湿颗粒转化为水润湿颗粒的情况下,O/SBM的大部分和任何剩余碎片或污染物被移出或微尺寸化到仅最小或减少量的损害组分保留在储层面上的程度。 
在另一非限制性实施方案中,适用于产生盐水的盐包括但不必限于氯化钠、氯化钾、氯化钙、溴化钠、溴化钙、溴化锌、甲酸钠、甲酸钾、甲酸铯和它们的组合。盐水的密度可为约8.4磅/加仑至约17磅/加仑(约1至约2kg/L),尽管在本文中的别处可给出其它密度。 
所述原位流体(例如单相微乳液)处理可由不同的盐水和油共混物组成。该组合物取决于所用隔离液的所需密度和配方。 
该技术不需要或不判别任何逆乳液。换句话说,单相微乳液可适用于针对任何OBM体系的驱替或清除,而与用于配制泥浆的基油类型或乳化剂无关。该多功能性容许操作人员根据井眼需要灵活配制钻井液。在一些现有方法中情况不是这样,其中需要非常具体的胺乳化剂,因为它们需要酸质子化来逆转润湿性。在一个非限制性实施方案中,所述方法和组合物在缺乏胺乳化剂如树脂胺和/或式为R-N-E(CH2CH2R′A)xH]2的胺乳化剂的情况下实施。 
关于其它OBM或逆乳液去除方法的另一重要特征在于OBM乳液的油相溶解到单相微乳液(或其它原位流体如纳米乳液、细乳液或其它乳液形式)中。当与先前方法相比时,本发明的处理方法降低了形成微乳液所必需的能量。该效能减少了起下钻数目并减少完井所需的时间。 
现在,本发明将在实施例中就本发明的实际实施作进一步讨论,所述实施例不打算限制本发明,而仅仅进一步举例说明本发明。此外,虽然原位流体可称为“微乳液”或“单相微乳液”,但应了解所述方法和组合物预计适用于其它原位流体,包括但不限于细乳液、纳米乳液和所有类型的微乳液。 
实施例
已开发出微乳液技术(原位SPME)来配制本文中称为隔离液A的非 常有效的隔离液产品。本文中的方法和组合物的微乳液技术使用表面活性剂与水/盐水和油的组合,该组合易于从套管、工具和其它钻井设备组件中清洁油、油基泥浆产物和固体。添加剂A和B为如上所述的表面活性剂共混物,其定制设计用来配制隔离液以从套管和提升管中清洁合成基或油基泥浆残余物并水润湿它们的表面。这些体系不含有机溶剂或烃溶剂(至少直到原位形成乳液为止)且是基于水性的。 
驱替程序 
添加剂A 
该添加剂设计用于隔离液中以从套管中推动并清除出O/SBM且启动该清洁处理而不使用溶剂。从井眼中驱替流体体系最佳通过使用高泵送速率、钻杆旋转和粘性的增重的隔离液实现。高粘度通过在高泵送速率下使隔离液能够留在“堵塞物”中或层流流动而帮助保持隔离液的完整性。隔离液可以足够大以根据泵送速率容许5-10分钟的接触时间。钻杆旋转帮助打碎可能积聚在环空的某些部分中、特别是高度倾斜的井眼中的泥浆的胶凝袋。以层流或湍流形式泵送的隔离液将移出O/SBM和残油污染的固体。在一个非限制性实施方案中,使各隔离液在井眼中流通以接触OBM或SBM,并在环空的最大直径上覆盖环空的至少500-1000英尺(152-305米)。 
该粘性推动隔离液的密度通常超过钻井液密度0.2磅/加仑(0.02kg/L)。粘度可使用D增粘剂增加到约1.5的钻井液的屈服点,以使该两种流体的混合最小化。(D增粘剂是自Baker Hughes Drilling Fluids购得的高分子量黄原胶多糖。) 
添加剂B 
添加剂B可用于隔离液中,该隔离液为可以以湍流形式泵送以清洁并水润湿全部金属表面的近牛顿流体。包括添加剂B的隔离液为设计用来移出全部残留碎片并溶解保留在套管及其它钻井设备组件中的任何残油或合成流体的尾部隔离液。 
添加剂B可直接加入到混合竖坑中并用轻质或浆式混合器轻轻搅拌。体积基于井孔构造-通常为500英尺至1000英尺(152-305米)的最大 环空体积,且通常为50-100bbl(8-16m3)。 
驱替SBM的隔离液序列汇总于表I中。或MIL-CARB高纯度加重剂自Baker Hughes Drilling Fluids购得。 
表I 
用于驱替合成基泥浆(SBM)的隔离液序列 
流变学相容性 
在40℉和150℉(4℃和66℃)下对隔离液A进行流变学相容性测试。实验程序如下,且结果示于表II和III中,且绘于图1中。 
实验程序 
1.将12.0磅/加仑(1.4kg/L)O/SBM泥浆在量筒中测量0体积%(0mL)、10体积%(40mL)、40体积%(160mL)、70体积%(280mL)、90体积%(360mL)和100体积%(400mL),加到不锈钢圆锥形杯中。 
2.将各个圆锥形杯填充至待测试的隔离液总体积为400mL。 
3.将各个样品在Hamilton Beach混合器上以6000rpm混合15分钟。 
4.将该流体样品分成200mL样品。 
5.为了在40℉(4℃)下测试,将样品预冷却且随后在35±5℉(1.7℃±2.8℃)温度下注入冷却夹套中。 
6.为了在150℉(66℃)下测试,将样品预热且随后注入温度通过热电偶调节到150±5℉(66±2.8℃)的热杯中。 
7.当隔离液被冷却或加热时,将范氏(Fann)35粘度计维持在300rpm下以便混合。 
8.当将隔离液冷却到40℉(4℃)或加热到150℉(66℃)时,得到范氏读数(600、300、200、100、6、3rpm值)。 
9.记录10秒和10分钟凝胶。 
表II 
在40℉(4℃)下具有12.0磅/加仑(1.4kg/L)SBM的隔离液A 
表III 
在150℉(66℃)下具有12.0磅/加仑(1.4kg/L)SBM的隔离液A 
这些测试(其结果绘于图1中)显示相对于100%SBM的流变学,改变SBM/隔离液共混比例没有显著增加流变性质。这些性质由此表明隔离液将从井眼中有效驱替SBM。 
因为隔离液B具有类似于水的粘度,所以流变学评估显示极低塑性粘度和屈服点。这将容许在井眼中湍流流动。 
隔离液有效性-烧杯测试 
在测试中使用透明玻璃烧杯来模拟钻孔壁以观察隔离液A和B如何从其表面移出泥浆。实验程序如下和显示各个阶段的照片呈现在图2中。发现两种隔离液都从烧杯中有效地移出泥浆。注意与第一张相片相比,最后两张相片中烧杯的透明度。 
烧杯测试的实验程序 
1.称量400mL烧杯的重量并在烧杯上涂有2克常规SBM。 
2.在涂有SBM的烧杯中加入隔离液A且在范氏粘度计上以100rpm 运转10分钟。 
3.倒出隔离液A。 
4.在该烧杯中放入隔离液B且以100rpm运转10分钟。 
5.移出隔离液B。用去离子水和乙醇非常轻柔地漂洗烧杯。 
6.在真空烘箱中干燥30分钟(在75℉(24℃)下)。 
7.再次称量烧杯重量以测定移出的SBM的量。该测试在40℉和150℉(4℃和55℃)下运转。 
在上述说明书中,本发明已参考其具体实施方案进行描述,且已在用于从烃井眼中移出油基泥浆和合成基泥浆方面提出有效的方法和组合物。然而,显然可对其做出各种改进和改变而不脱离如所附的权利要求书所阐述的本发明的广泛范围。因此,本说明书将以说明性而非限制性意义考虑。例如,落入所要求的参数范围内但在本文中在用以改善油基泥浆或合成基泥浆的移出的特定组合物中未具体指定或尝试的用于形成单相微乳液的组分和其它用于形成原位流体的组分如表面活性剂、溶剂、非极性液体等的具体组合及其比例,预期在本发明的范围内。 
本发明可适当地包括公开的要素,由公开的要素组成或基本由公开的要素组成,且可在缺乏未公开的要素的情况下实施。 
权利要求中到处使用的词语“包括”和“包含”应解释为“包括但不限于”。 

Claims (6)

1.热力学稳定的单相微乳液,其包含极性相、非极性相、聚甘油酯表面活性剂和至少一种增粘剂。
2.权利要求1的单相微乳液,其中所述极性相为水或盐水。
3.权利要求1的单相微乳液,其中所述极性相为选自由卤化物盐水和甲酸盐盐水组成的集合的盐水。
4.权利要求1或3的单相微乳液,其中所述非极性相选自由油基泥浆、合成基泥浆、残留油质碎片和它们的组合组成的集合。
5.权利要求1或3的单相微乳液,其还包含选自由以下物质组成的集合的第二表面活性剂:
非离子表面活性剂,其选自由烷基多糖苷、脱水山梨糖醇酯、甲基糖苷酯、烷氧基化的醇和它们的混合物组成的集合;
阴离子表面活性剂,其选自由碱金属的烷基硫酸盐、烷基或烷基芳基磺酸盐、直链或支链的烷基醚硫酸盐和磺酸盐、醇聚丙氧基化的和/或聚乙氧基化的硫酸盐、烷基或烷基芳基二磺酸盐、烷基焦硫酸盐、烷基磺基琥珀酸盐、烷基醚硫酸盐、直链和支链的醚硫酸盐和它们的混合物组成的集合;和
阳离子表面活性剂,其选自由精氨酸甲酯、烷醇胺和亚烷基二酰胺和它们的混合物组成的集合。
6.权利要求5的单相微乳液,其中所述烷氧基化的醇为醇乙氧基化物。
CN201210432084.7A 2007-04-25 2008-04-23 用作隔离液的原位微乳液 Expired - Fee Related CN102925125B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US91396907P 2007-04-25 2007-04-25
US60/913,969 2007-04-25
US12/107,185 2008-04-22
US12/107,185 US8871695B2 (en) 2007-04-25 2008-04-22 In situ microemulsions used as spacer fluids

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2008800130455A Division CN101675140B (zh) 2007-04-25 2008-04-23 用作隔离液的原位微乳液

Publications (2)

Publication Number Publication Date
CN102925125A CN102925125A (zh) 2013-02-13
CN102925125B true CN102925125B (zh) 2015-01-28

Family

ID=39580197

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201210432084.7A Expired - Fee Related CN102925125B (zh) 2007-04-25 2008-04-23 用作隔离液的原位微乳液
CN2008800130455A Expired - Fee Related CN101675140B (zh) 2007-04-25 2008-04-23 用作隔离液的原位微乳液

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2008800130455A Expired - Fee Related CN101675140B (zh) 2007-04-25 2008-04-23 用作隔离液的原位微乳液

Country Status (7)

Country Link
US (2) US8871695B2 (zh)
CN (2) CN102925125B (zh)
AU (1) AU2008245843B2 (zh)
BR (1) BRPI0811027B1 (zh)
MX (1) MX2009010518A (zh)
NO (1) NO345760B1 (zh)
WO (1) WO2008134332A1 (zh)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9512345B2 (en) 2004-10-20 2016-12-06 Halliburton Energy Services, Inc. Settable spacer fluids comprising pumicite and methods of using such fluids in subterranean formations
US20110172130A1 (en) * 2004-10-20 2011-07-14 Girish Dinkar Sarap Treatment Fluids Comprising Vitrified Shale and Methods of Using Such Fluids in Subterranean Formations
US8357639B2 (en) 2007-07-03 2013-01-22 Baker Hughes Incorporated Nanoemulsions
US8091646B2 (en) * 2007-07-03 2012-01-10 Baker Hughes Incorporated Single phase microemulsions and in situ microemulsions for cleaning formation damage
US8881822B2 (en) * 2008-11-07 2014-11-11 M-1 L.L.C. Non-aqueous breaker fluids and methods of use thereof
US9222013B1 (en) 2008-11-13 2015-12-29 Cesi Chemical, Inc. Water-in-oil microemulsions for oilfield applications
GB2477071B (en) * 2008-12-01 2014-07-30 Baker Hughes Inc Method of making a nanoemulsion composition
MX2012004023A (es) * 2009-10-14 2012-05-08 Basf Se Proceso para la extraccion terciaria de petroleo utilizando mezclas de agentes tensioactivos.
US8207096B2 (en) * 2009-12-30 2012-06-26 Halliburton Energy Services Inc. Compressible packer fluids and methods of making and using same
CN102134476B (zh) * 2010-01-25 2013-08-21 中国石油化工集团 一种疏水化暂堵钻井液
EP2545138A1 (de) * 2010-03-10 2013-01-16 Basf Se Verwendung von tensidmischungen von polycarboxylaten zum mikroemulsionsfluten
US20110237467A1 (en) * 2010-03-25 2011-09-29 Chevron U.S.A. Inc. Nanoparticle-densified completion fluids
AU2011201846B2 (en) * 2010-04-21 2016-03-17 Baker Hughes Incorporated Microemulsions used as spacer fluids
US8517100B2 (en) 2010-05-12 2013-08-27 Schlumberger Technology Corporation Compositions and methods for cleaning a wellbore prior to cementing
WO2012011994A1 (en) 2010-07-22 2012-01-26 Exxonmobil Upstrem Research Company System and method for stimulating a multi-zone well
WO2012011993A1 (en) 2010-07-22 2012-01-26 Exxonmobil Upstream Research Company Methods for stimulating multi-zone wells
US8763705B2 (en) 2011-03-25 2014-07-01 Schlumberger Technology Corporation Compositions and methods for cleaning a wellbore prior to cementing
CN102746838B (zh) * 2011-04-22 2014-01-15 中国石油天然气股份有限公司 气井井筒解堵剂
US9051507B2 (en) 2012-03-23 2015-06-09 Intevep, S.A. Completion fluid
CA2874593C (en) 2012-04-15 2017-05-09 Glenn S. Penny Surfactant formulations for foam flooding
US9200192B2 (en) 2012-05-08 2015-12-01 Cesi Chemical, Inc. Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons
US11407930B2 (en) 2012-05-08 2022-08-09 Flotek Chemistry, Llc Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons
CN102796501A (zh) * 2012-08-16 2012-11-28 大庆百晟石油科技有限公司 一种三元复合断链液
CA2889422A1 (en) * 2012-10-26 2014-05-01 Schlumberger Canada Limited Compositions and methods for completing subterranean wells
US9012379B2 (en) * 2013-03-05 2015-04-21 Halliburton Energy Services, Inc. Alkyl polyglycoside derivative as biodegradable spacer surfactant
US9464223B2 (en) 2013-03-14 2016-10-11 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US9068108B2 (en) 2013-03-14 2015-06-30 Cesi Chemical, Inc. Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
US10053619B2 (en) 2013-03-14 2018-08-21 Flotek Chemistry, Llc Siloxane surfactant additives for oil and gas applications
US10590332B2 (en) 2013-03-14 2020-03-17 Flotek Chemistry, Llc Siloxane surfactant additives for oil and gas applications
US9321955B2 (en) 2013-06-14 2016-04-26 Flotek Chemistry, Llc Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
US11180690B2 (en) 2013-03-14 2021-11-23 Flotek Chemistry, Llc Diluted microemulsions with low surface tensions
US9428683B2 (en) 2013-03-14 2016-08-30 Flotek Chemistry, Llc Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
US10717919B2 (en) 2013-03-14 2020-07-21 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US10000693B2 (en) 2013-03-14 2018-06-19 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US10577531B2 (en) 2013-03-14 2020-03-03 Flotek Chemistry, Llc Polymers and emulsions for use in oil and/or gas wells
US10287483B2 (en) 2013-03-14 2019-05-14 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol
US10421707B2 (en) 2013-03-14 2019-09-24 Flotek Chemistry, Llc Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells
US10941106B2 (en) 2013-03-14 2021-03-09 Flotek Chemistry, Llc Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells
US9868893B2 (en) 2013-03-14 2018-01-16 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US11254856B2 (en) 2013-03-14 2022-02-22 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US9884988B2 (en) 2013-03-14 2018-02-06 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
AU2013400729A1 (en) 2013-09-19 2016-02-11 Halliburton Energy Services, Inc. Oil-in-water stable, emulsified spacer fluids
US9890624B2 (en) 2014-02-28 2018-02-13 Eclipse Ior Services, Llc Systems and methods for the treatment of oil and/or gas wells with a polymeric material
US9890625B2 (en) 2014-02-28 2018-02-13 Eclipse Ior Services, Llc Systems and methods for the treatment of oil and/or gas wells with an obstruction material
CN103923634B (zh) * 2014-05-07 2016-04-06 淮南华俊新材料科技有限公司 一种用于油井酸化的微乳液互溶剂
CA2891278C (en) 2014-05-14 2018-11-06 Cesi Chemical, Inc. Methods and compositions for use in oil and / or gas wells
CA3042567C (en) 2014-07-28 2021-12-14 Flotek Chemistry, Llc Methods and compositions related to gelled layers in oil and/or gas wells
EP3048154A1 (en) * 2015-01-21 2016-07-27 Services Pétroliers Schlumberger Compositions and methods for completing subterranean wells
US10100243B2 (en) 2015-07-13 2018-10-16 KMP Holdings, LLC Environmentally preferable microemulsion composition
US10494563B2 (en) * 2015-09-01 2019-12-03 Baker Hughes, A Ge Company, Llc Method of improving mobility of heavy crude oils in subterranean reservoirs
WO2017132253A1 (en) 2016-01-25 2017-08-03 Peroxychem Llc Well treatment methods and compositions
CN106085395A (zh) * 2016-06-20 2016-11-09 中国石油大学(华东) 一种适用于油基钻井液的微乳液型冲洗液体系及制备方法
AU2016429781B2 (en) * 2016-11-21 2021-11-11 Halliburton Energy Services, Inc. Nanoemulsions for use in subterranean fracturing treatments
CN107057671B (zh) * 2017-05-26 2019-09-27 山东大学 一种具有自修复能力的油包水乳液界面封隔体系、其制备方法及油水分离工艺与应用
US10563119B2 (en) 2017-07-27 2020-02-18 Saudi Arabian Oil Company Methods for producing seawater based, high temperature viscoelastic surfactant fluids with low scaling tendency
US10934472B2 (en) 2017-08-18 2021-03-02 Flotek Chemistry, Llc Compositions comprising non-halogenated solvents for use in oil and/or gas wells and related methods
CN107703260B (zh) * 2017-09-26 2019-11-05 焦地 液体混合能量测试多功能摇床及测试方法
WO2019088851A2 (en) 2017-10-30 2019-05-09 Craig Nazzer Method for separating drill fluid from oily drill cuttings slurries
US11053433B2 (en) 2017-12-01 2021-07-06 Flotek Chemistry, Llc Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
CN108384527B (zh) * 2018-02-10 2020-07-28 长江大学 一种用于深水合成基钻井液的泥饼清洗液及其应用
CN108410439B (zh) * 2018-04-25 2020-04-10 南阳忠兴石油工程技术服务有限公司 一种凝胶泡沫与原位微乳液组合应用油井增产的方法
US11167222B2 (en) * 2019-06-20 2021-11-09 Baker Hughes Holdings Llc Single-phase microemulsion additive for separation of oil and water
US11401460B2 (en) * 2019-07-07 2022-08-02 Chevron U.S.A. Inc. Methods for pressure protection using a gas
CN110484221A (zh) * 2019-09-16 2019-11-22 中国石油集团西部钻探工程有限公司 固完井用油基泥浆隔离液及其制备方法
US11104843B2 (en) 2019-10-10 2021-08-31 Flotek Chemistry, Llc Well treatment compositions and methods comprising certain microemulsions and certain clay control additives exhibiting synergistic effect of enhancing clay swelling protection and persistency
US11492873B2 (en) 2020-09-03 2022-11-08 Baker Hughes Oilfield Operations, Llc Method of removing non-aqueous drilling mud with banana containing fluid
US11976239B2 (en) 2020-09-03 2024-05-07 Baker Hughes Oilfield Operations Llc Method of removing non-aqueous drilling mud with banana containing fluid
US11512243B2 (en) 2020-10-23 2022-11-29 Flotek Chemistry, Llc Microemulsions comprising an alkyl propoxylated sulfate surfactant, and related methods

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US508026A (en) * 1893-11-07 la chance
US2882973A (en) * 1957-06-17 1959-04-21 Shell Dev Recovery of oil from tar sands
US3050141A (en) * 1958-12-11 1962-08-21 Pan American Petroleum Corp Emulsion drilling fluid and method
US3504744A (en) * 1968-07-15 1970-04-07 Marathon Oil Co Production of crude oil using micellar dispersions
US4017405A (en) * 1973-03-26 1977-04-12 Union Oil Company Of California Soluble oil composition
US4125156A (en) * 1977-06-06 1978-11-14 Phillips Petroleum Company Aqueous surfactant systems for in situ multiphase microemulsion formation
US5008026A (en) 1989-01-30 1991-04-16 Halliburton Company Well treatment compositions and method
CA2099012C (en) * 1991-01-30 1999-08-03 Albert F. Chan Well cleanout using caustic alkyl polyglycoside compositions
US5341882A (en) * 1993-02-10 1994-08-30 Shell Oil Company Well drilling cuttings disposal
US5370185A (en) * 1993-09-08 1994-12-06 Shell Oil Company Mud solidification with slurry of portland cement in oil
US6090754A (en) * 1995-05-11 2000-07-18 Atlantic Richfield Company Surfactant blends for well operation
US5830831A (en) * 1995-05-11 1998-11-03 Atlantic Richfield Company Surfactant blends for well operations
US6022834A (en) * 1996-05-24 2000-02-08 Oil Chem Technologies, Inc. Alkaline surfactant polymer flooding composition and process
US6022833A (en) * 1996-10-30 2000-02-08 Henkel Kommanditgesellschaft Auf Aktien Multicomponent mixtures for use in geological exploration
TW354352B (en) * 1996-10-30 1999-03-11 Henkel Kgaa A process for easier cleaning on the basis of water/oil inversion emulifier
US5874386A (en) * 1998-02-13 1999-02-23 Atlantic Richfield Company Method for cleaning drilling fluid solids from a wellbore using a surfactant composition
GB9905668D0 (en) 1999-03-12 1999-05-05 Univ Napier Method
GB9915214D0 (en) 1999-06-29 1999-09-01 Bp Exploration Operating Microemulsions
US6593279B2 (en) * 1999-12-10 2003-07-15 Integrity Industries, Inc. Acid based micro-emulsions
US6631764B2 (en) * 2000-02-17 2003-10-14 Schlumberger Technology Corporation Filter cake cleanup and gravel pack methods for oil based or water based drilling fluids
GB0005839D0 (en) 2000-03-10 2000-05-03 Provita Eurotech Ltd Storage and delivery of micro-organisms
US7238647B2 (en) * 2000-07-05 2007-07-03 Institut Francais Du Petrole Method and fluid for controlling the saturation of a formation around a well
GB0021633D0 (en) * 2000-09-04 2000-10-18 Univ Napier Surfactant
US6613720B1 (en) * 2000-10-13 2003-09-02 Schlumberger Technology Corporation Delayed blending of additives in well treatment fluids
US6672388B2 (en) * 2001-06-13 2004-01-06 Lamberti Usa, Inc. Process for the cleaning of oil and gas wellbores
US6691805B2 (en) * 2001-08-27 2004-02-17 Halliburton Energy Services, Inc. Electrically conductive oil-based mud
WO2003074833A2 (en) * 2002-03-01 2003-09-12 Cesi Chemical, A Flotek Company Composition and process for well cleaning
US6989354B2 (en) * 2003-01-24 2006-01-24 Halliburton Energy Services, Inc. Invertible well bore servicing fluid
US7134496B2 (en) * 2004-09-03 2006-11-14 Baker Hughes Incorporated Method of removing an invert emulsion filter cake after the drilling process using a single phase microemulsion
US7709421B2 (en) * 2004-09-03 2010-05-04 Baker Hughes Incorporated Microemulsions to convert OBM filter cakes to WBM filter cakes having filtration control
US8091644B2 (en) * 2004-09-03 2012-01-10 Baker Hughes Incorporated Microemulsion or in-situ microemulsion for releasing stuck pipe
US7231976B2 (en) * 2004-11-10 2007-06-19 Bj Services Company Method of treating an oil or gas well with biodegradable low toxicity fluid system
GB0424933D0 (en) * 2004-11-12 2004-12-15 Surfactant Technologies Ltd A surfactant system
US7467633B2 (en) * 2005-03-10 2008-12-23 Huntsman Petrochemical Corporation Enhanced solubilization using extended chain surfactants
GB0507507D0 (en) 2005-04-14 2005-05-18 Surfactant Technologies Ltd A surfactant system
US7318477B2 (en) 2005-05-10 2008-01-15 Akzo Nobel N.V. Method and composition for cleaning a well bore prior to cementing
US7655603B2 (en) * 2005-05-13 2010-02-02 Baker Hughes Incorported Clean-up additive for viscoelastic surfactant based fluids
BRPI0719779A2 (pt) 2006-10-11 2014-04-22 Baker Hughes Inc Formação para fluido in situ para barro baseado em óleo de limpeza ou em óleo sintético
US8302691B2 (en) * 2007-01-19 2012-11-06 Halliburton Energy Services, Inc. Methods for increasing gas production from a subterranean formation
US8210263B2 (en) * 2007-07-03 2012-07-03 Baker Hughes Incorporated Method for changing the wettability of rock formations
US7833943B2 (en) * 2008-09-26 2010-11-16 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same

Also Published As

Publication number Publication date
MX2009010518A (es) 2009-10-19
NO345760B1 (no) 2021-07-12
WO2008134332A1 (en) 2008-11-06
CN101675140B (zh) 2013-10-30
AU2008245843B2 (en) 2014-05-29
NO20093067A (no) 2009-11-16
CN102925125A (zh) 2013-02-13
AU2008245843A1 (en) 2008-11-06
US8871695B2 (en) 2014-10-28
US20150031588A1 (en) 2015-01-29
NO20093067L (no) 2009-11-16
BRPI0811027A2 (pt) 2014-12-09
BRPI0811027B1 (pt) 2020-01-21
CN101675140A (zh) 2010-03-17
US20080274918A1 (en) 2008-11-06

Similar Documents

Publication Publication Date Title
CN102925125B (zh) 用作隔离液的原位微乳液
US8415279B2 (en) Microemulsions used as spacer fluids
CN102076809B (zh) 用于改变岩石地层可润湿性的方法
Sharma et al. Comparative effectiveness of production performance of Pickering emulsion stabilized by nanoparticle–surfactant–polymerover surfactant–polymer (SP) flooding for enhanced oil recoveryfor Brownfield reservoir
Puerto et al. Surfactant systems for EOR in high-temperature, high-salinity environments
US6283213B1 (en) Tandem spacer fluid system and method for positioning a cement slurry in a wellbore annulus
US8727005B1 (en) Wellbore servicing compositions and methods of making and using same
US7134496B2 (en) Method of removing an invert emulsion filter cake after the drilling process using a single phase microemulsion
US8227382B2 (en) Breaker fluids and methods of using the same
BRPI0514825B1 (pt) Método de remoção de emulsão invertida de água-em-óleo e partículas de crosta de lodo a partir de um furo de poço de reservatório de hidrocarboneto
Wang et al. Use of nanoemulsion for effective removal of both oil-based drilling fluid and filter cake
EP2074189A2 (en) In situ fluid formation for cleaning oil-or synthetic-oil-based mud
CA2797471A1 (en) Compositions and methods for cleaning a wellbore prior to cementing
Al-Hashim et al. Alkaline surfactant polymer formulation for Saudi Arabian carbonate reservoirs
CN101522851A (zh) 用于清洗油基或合成油基泥浆的原位流体形成
Ghalambor et al. Effect of basic parameters on the viscosity of synthetic-based drilling fluids
Boyd et al. Low-viscosity base fluid for low-toxicity oil-mud systems
AU2011201846B2 (en) Microemulsions used as spacer fluids
US20220290031A1 (en) Aqueous foam compositions and methods of making and using thereof
WO2017127304A1 (en) Spacer fluid having sized particulates and methods of using the same
WO2024096956A1 (en) Wellbore servicing fluid and methods of making and using same
Kiani et al. Wettability Alteration of Reservoir Rock by Nonionic, Anionic and Cationic Surfactant in Water-Based Drilling Fluid
Al-Rubkhi et al. Low Tension Water Flood (LTWF) for Enhanced Oil Recovery in a Tight Carbonate Oilfield
GB2390861A (en) Solution of ethoxylated propoxylated alcohol used in downhole cementing operations
Hemphill et al. Obtaining native-state cores with a specially designed water-free coring fluid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150128

Termination date: 20170423

CF01 Termination of patent right due to non-payment of annual fee