CN102914798A - 实时传输多功能海底地震仪 - Google Patents

实时传输多功能海底地震仪 Download PDF

Info

Publication number
CN102914798A
CN102914798A CN2012103645894A CN201210364589A CN102914798A CN 102914798 A CN102914798 A CN 102914798A CN 2012103645894 A CN2012103645894 A CN 2012103645894A CN 201210364589 A CN201210364589 A CN 201210364589A CN 102914798 A CN102914798 A CN 102914798A
Authority
CN
China
Prior art keywords
real
time transmission
submarine seismograph
cabin
transmission multi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103645894A
Other languages
English (en)
Inventor
游庆瑜
郝天珧
赵春蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geology and Geophysics of CAS
Original Assignee
Institute of Geology and Geophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geology and Geophysics of CAS filed Critical Institute of Geology and Geophysics of CAS
Priority to CN2012103645894A priority Critical patent/CN102914798A/zh
Publication of CN102914798A publication Critical patent/CN102914798A/zh
Pending legal-status Critical Current

Links

Images

Abstract

一种实时传输多功能海底地震仪,实时传输多功能海底地震仪,包括仪器舱、水下声学调制解调器、脱钩机构、沉耦架;仪器舱包含玻璃仪器舱和塑料仪器舱,玻璃仪器舱固装于塑料仪器舱内,脱钩机构位于塑料仪器舱顶端,水下声学调制解调器的水下modom固装于脱钩机构的侧面,在脱钩机构与沉耦架之间以拉紧钢丝固接,将仪器舱固定于沉耦架中。由于本发明采用了先进的水下声学调制解调器,先进的声学带宽扩频技术,实现了实时传输多功能海底地震仪在水下的实时通讯功能,并且有效地克服了传统产品在水下通信中存在的低可靠性、低数据速率和高功耗等问题。适用于浅海海洋地质观测。

Description

实时传输多功能海底地震仪
技术领域
本发明涉及海洋勘探领域,具体为海洋地震观测技术领域和水下声学传播技术,特别涉及一种具有实时传输数据的多功能海底地震仪。 
背景技术
中国科学院地质与地球物理研究所是我国研制海底地震仪的主要单位,承担了国内绝大多数的海底地震仪研制任务。十一五”期间在财政部支持的国家重大科研装备研制专项中,中国科学院地质与地球物理研究所自主研制的七通道多功能宽带海底地震仪打破了国外对我国海底宽频带地震仪的垄断,并在南海、黄海、渤海进行了成功地应用,取得了大量的宝贵的科学数据。2009年4月,利用我们自主研制的宽带海底地震仪,我国首次在深水海区(4300米)记录到天然地震数据。 
随着油气勘探向深水和海洋残留盆地发展的进程以及对天然气水合物的勘探研究需求,对海底数字地震仪性能指标的要求也越来越高,例如海底地震仪要适应大于3000m的水深、海底地震仪要具有高分辨率和长时间的连续工作能力以及实时传输数据等能力。其中,海底地震仪特别是具有实时传输功能的海底地震仪越来越被很多国家和地球科学研究单位所重视。早期水声通信机使用的是模拟信号通信,模拟信号容易受到海洋中 的鱼类、舰船、波浪等产生的混乱噪声的影响;这些噪声有时混杂在一起进一步地使海洋中的声场变得极为混乱,导致海底地震仪接收到的信号更加模糊不清。 
随着计算机技术的发展,使得水声数字通信成为可能,特别是数字信号处理器的出现,成功解决了大量水下信息的传播问题。例如中国专利申请第200510110671号公开的光电双通道自动了望跟随半潜器,该半潜器既可全潜于水下隐蔽,又可仅露出潜望窗进行探测,它将探测的图像信号经加密后以水声无线信号传输到水下母艇。水下母艇发出的加密控制指令,以水声数字通信的数据传输形式传送到半潜器,经解密后指挥半潜器工作。但是在该光电双通道自动了望跟随半潜器申请中没有公开如何具体地实现数据通信的,这也正如申请人所言“经过加密处理的水声无线信号不致被敌人修改、破译、截获或利用”。也就是,仅仅给出了数字通信的设想,而没有给出具体实现的手段。 
此外,还有中国专利申请第02154475号公开的基于CAN总线的深海长距离数字通信系统,该基于CAN总线的深海长距离数字通信系统包括一个水上主机节点和一个水下终端节点,水上主机节点由0号节点通信模块和控制主机组成,水下终端节点由与0号节点通信模块结构相同的1号节点通信模块和水下拖体控制器组成,节点内部通过串行通信接口RS-232交换数据,节点通过CAN总线接口挂接在万米铠装电缆的两端。该发明主要依托于CAN现场总线技术,实现深海海底长距离无中继数字通信的要求,不用进行数模转换。但是该技术依托于CAN现场总线技术,无法大范围推广使用。 
由于海底地震仪工作的环境以及数据传输的需要,继续一种能将数字通讯有效地结合到海底地震仪器设备中,实现了海底地震仪与水面的实时传输的方法及设备。 
发明内容
本发明的目的是公开一种实时传输多功能海底地震仪,是在已有七通道多功能海底地震仪的基础上,通过对国外产品技术的消化吸收改进而成,其提高了性能指标,可以更好的满足海洋科学研究与海洋油气探测的需要。 
为达到上述目的,依据本发明的第一方面,提供一种实时传输多功能海底地震仪,其包括仪器舱、水下声学调制解调器、脱钩机构、沉耦架;仪器舱包含玻璃仪器舱和塑料仪器舱,玻璃仪器舱固装于塑料仪器舱内,脱钩机构位于塑料仪器舱顶端,水下声学调制解调器的水下modom固装于脱钩机构的侧面,在脱钩机构与沉耦架之间以拉紧钢丝固接,将仪器舱固定于沉耦架中;其中,仪器舱内部集成了七通道采集器系统、水声通讯模块以及三分量姿控宽带地震计和三分量高频检波器,所述七通道采集器系统、水声通讯模块以及三分量姿控宽带地震计和三分量高频检波器为集成一体化的地震计组合体,使玻璃仪器舱球内部成为一个整体;在玻璃仪器舱球外对七通道采集器系统、水声通讯模块以及三分量姿控宽带地震计和三分量高频检波器进行组装、调试,然后放进玻璃仪器舱球内,通过玻璃仪器舱球挤压O型圈来固定;水下声学调制解调器,用于实现仪器舱与水面的接收设备的通信。 
优选地,实时传输多功能海底地震仪以7个通道采集地震数据,数字记录海底地震信息,采用无线蓝牙技术进行现场检测;玻璃仪器舱球内部为单球一体化结构。 
优选地,水下声学调制解调器是由水下modom和水上modom两部分组成;水下modom通过固定卡和尼龙扎带安装在脱钩机构的侧面,由一根水密线缆与玻璃舱内部微机通讯模块相连,实现了海底地震仪与水面的接收设备(微机)实时传输功能。 
优选地,在设计水下声学调制解调器的工作模式时采用微功耗方案,在水声MODEM控制时采用了睡眠模式功率消耗:8mW;只是在固定时段使水声modem处于接收模式功率消耗:0.75瓦,在此时段若没有收到通讯请求就再次进入睡眠模式。 
优选地,玻璃仪器舱包含常平装置、三分量姿控宽带地震计、采集器系统和海底地震仪电源,常平装置利用姿态传感器(7)和姿态调整电机(3)对三分量姿控宽带地震计(4)以及三分量高频检波器(9)进行姿态调整;在采集器系统的前放电路中在信号输入端加配一阶无源LC低通抗混叠滤波器,采集器系统采用温补晶振构成的振荡电路作为内部时钟;海底地震仪电源采用10AH锂电池。 
优选地,仪器舱还包括频闪灯;当仪器舱上浮时,频闪灯在黑夜里能有效的指示仪器舱所在方位且方便回收。 
进一步地,频闪灯被置于仪器舱舱球的上部利用水压开关进行控制,当仪器舱上浮,水压减小,频闪灯工作,频闪灯的光源采用发光效率高,穿透性较好的高亮度发光二极管,可以连续工作12小时以上。 
优选地,脱钩机构25为双层结构,脱钩机构25包括不锈钢镙柱16、镙杆支撑板17、绕丝固定板21,其中,片状环绕丝固定板21和片状环镙杆支撑板17上下平行设置,以多数个不锈钢镙柱16将两者固接,其中两个位于直径上的镙柱16上端伸出固定板21的上表面相互连接,构成吊钩20;镙杆支撑板17内孔直径与塑料仪器舱26顶部外圆直径相适配。 
进一步地,片状环绕丝固定板21上表面设有正极13、脱钩滑块18、绕丝钉19、负极22,正极13、负极22位于固定板21内孔直径方向的相对两侧,正极13上套接压丝垫片15后螺接锁紧螺母14,负极22上套接负极保护套23;在与正极13、负极22构成的直径方向相垂直的直径方向上两端,于固定板21周缘上设有向圆心的凹槽211,两凹槽211内各设有一脱钩滑块18,L状脱钩滑块18与凹槽211相适配,其向上突起的固定壁181中间有一固接口182,固接口182供拉紧钢丝27缠绕连接,其底座183上设有多个绕丝钉19和一禁锢镙栓184;在固定板21上表面还设有多个绕丝钉19,绕丝钉19均匀分布,分布的位置与正极13、负极22的位置构成圆环形。 
依据本发明的第二方面,提供一种实时传输多功能海底地震仪进行数据采集的方法,其包括步骤: 
1)选择好投放地点和方位,作业船行驶到指定地点; 
2)用拉紧钢缆把仪器舱与沉耦架固定好,通过蓝牙设置实时传输多功能海底地震仪的采集参数,并关闭蓝牙通讯; 
3)把实时传输多功能海底地震仪投放到海底; 
4)实时传输多功能海底地震仪着地后,立即用水下声学调制解调器系 统进行准确定位; 
5)通过水下声学调制解调器,可以随时在水下声学调制解调器工作范围内,对实时传输多功能海底地震仪进行参数检测和数据提取等相关操作; 
6)当需要回收实时传输多功能海底地震仪时,在该实时传输多功能海底地震仪所在的位置附近海域通过水下声学调制解调器系统发出回收信号,实时传输多功能海底地震仪接到信号后,开始熔断钢丝,约5分钟仪器舱与沉耦架28脱离,自动上浮至水面; 
7)仪器舱浮出海面后通过GPS天线33发送仪器舱所在的位置信息,根据该信息或目测方式确定仪器舱方位,进行打捞上船;然后提取所记录的数据供分析和研究。 
在本发明中,实时传输多功能海底地震仪以7个通道采集地震数据,数字记录海底地震信息,采用无线蓝牙技术进行现场检测,通过水声调制解调器实现水下实时传输,能够在海上连续多次进行地震观测作业。 
实时传输多功能海底地震仪具有以下特点: 
(1)可以定期巡航,定时检查并控制实时传输多功能海底地震仪的工作状态,监测工作电压、查看地震计状态、随时启动和关闭记录器等; 
(2)不需要回收仪器舱,就可以在地震事件后提取特定所需的数据; 
(3)实现了实时连续地海底地震观测 
附图说明
图1为本发明的实时传输多功能海底地震仪常平架装置的结构图; 
图2为本发明的实时传输多功能海底地震仪脱钩机构示意图; 
图3为本发明的实时传输多功能海底地震仪脱钩机构的熔断钢丝绕线示意图; 
图4为本发明的实时传输多功能海底地震仪外观立体结构图; 
图5为本发明的实时传输多功能海底地震仪总结构示意图。 
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 
在本发明中,实时传输多功能海底地震仪包括仪器舱、水下声学调制解调器、脱钩机构、沉耦架;仪器舱包含玻璃仪器舱和塑料仪器舱,玻璃仪器舱固装于塑料仪器舱内,脱钩机构位于塑料仪器舱顶端,水下声学调制解调器的水下modom固装于脱钩机构的侧面,在脱钩机构与沉耦架之间以拉紧钢丝固接,将仪器舱固定于沉耦架中;其中,仪器舱内部集成了七通道采集器系统、水声通讯模块以及三分量姿控宽带地震计和三分量高频检波器,所述七通道采集器系统、水声通讯模块以及三分量姿控宽带地震计和三分量高频检波器为集成一体化的地震计组合体,使玻璃仪器舱球内 部成为一个整体;在玻璃仪器舱球外对七通道采集器系统、水声通讯模块以及三分量姿控宽带地震计和三分量高频检波器进行组装、调试,然后放进玻璃仪器舱球内,通过玻璃仪器舱球挤压O型圈来固定;水下声学调制解调器,用于实现仪器舱与水面的接收设备的通信。 
具体地,请参阅图1~图5所示,为本发明的实时传输多功能海底地震仪结构示意图。其中各个附图标记指示如下:直流电机1、常平环2、姿态调整电机3、三分量姿控宽带地震计4、电机套5、凸型底座(常平装置支架1)6、姿态传感器7、半圆压板8、三分量高频检波器9、轴承座(常平装置支架2)10、电池圈底座11、轴承12、正极13、锁紧螺母14、压丝垫片15、不锈钢镙柱16、镙杆支撑板17、脱钩滑块18、绕丝钉19、不锈钢吊钩20、绕丝固定板21、负极22、负极保护套23、熔断钢丝24、脱钩机构25、塑料仪器舱26、拉紧钢27、沉耦架28、安全圈29、锁紧镙栓30、微处理机31、真空气嘴32、GPS天线33、电子电路板34、玻璃仪器舱球35、O型圈36、电池组37、常平装置38、耦合圈39、熔断钢丝熔断点(两处)40、水密电缆41、水下modom42、尼龙扎带43、固定卡44。 
还有凹槽211、固定壁181、固接口182,、底座183、禁锢镙栓184、固定圆盘281、圆环状突起282、支撑杆283、顶环284。 
本发明的实时传输多功能海底地震仪由塑料仪器舱26、脱钩机构25、沉耦架28三部分组成。 
下面参考附图结合各个部件,对本发明进行更加详尽的说明。 
一、仪器舱: 
仪器舱26是实时传输多功能海底地震仪可回收部分,它是由玻璃仪 器舱和塑料仪器舱组成的,玻璃仪器舱内部采用单球一体化结构,主要包括: 
(1)常平装置 
在本发明中,设计了利用姿态传感器7和姿态调整电机3对三分量姿控宽带地震计4以及三分量高频检波器9(地震计组合体)进行姿态调整的改进方案,通过改进常平装置的结构原理,使得内部地震计组合体的常平动作的保持不需要灌注硅油,不需要呈密封结构,且体积重量均能大大地降低,更为重要的改善是,姿控调整的范围能有较大的提高,扩展为30度左右。将使实时传输多功能海底地震仪在更为复杂的海底地形下正常的工作。最大工作倾斜角度达到了国外同类宽带海底地震仪的水平。 
姿态传感器7采用固态mems(微型传感器)器件微机械结构,工作稳定可靠。 
其工作方式如下:三分量姿控宽带地震计4放置于常平环2上,再整体通过轴承固定于常平装置的支架上,玻璃仪器舱球35至三分量姿控宽带地震计4为刚性连接,由此保证地动信号的低失真传递。当实时传输多功能海底地震仪在海底着地后,姿态传感器7,感知到海底姿态调平时,常平面由位于常平环2顶部的垂直向步进电机1上拉脱离开玻璃仪器舱球35根据姿态传感器7的信号由步进电机1调至水平并重新放回玻璃仪器舱球35底部并加压固定。 
常平装置38将电池组37、三分量姿控宽带地震计4、电子电路34和高频检波器9联结成了一个整体,形成了内部结构的一体化。仪器舱组装、调试工作都可以在耐压玻璃仪器舱球35外完成。玻璃仪器舱球35可看成 仅是个机壳,将测试好的实时传输多功能海底地震仪放入玻璃仪器舱球35中,由O型圈36压缩固定,完成组装。这种结构也降低了实时传输多功能海底地震仪的附加振颤。 
(2)采用姿控宽带地震计 
实时传输多功能海底地震仪中集成了三分量姿控宽带地震计4,三分量姿控宽带地震计4是近年来新兴的技术,它是一种电化学换能的地震计,没有机械零点和锁摆的问题使实时传输多功能海底地震仪的工作可靠性大大提高。 
(3)采集器系统 
a)前放电路采用厂家推荐的放大电路形式,在信号输入端加配一阶无源LC低通抗混叠滤波器,采用极低噪音精密双运算放大器构成实时传输多功能海底地震仪的放大电路,增益为30dB,放大电路噪音折合到输入端为0.4μV(峰-峰值)。具有很高的抗干扰能力。 
b)实时传输多功能海底地震仪采用温补晶振构成的振荡电路作为内部时钟,在0℃至4℃温度范围内其精度优于5×10-8。影响石英晶体振荡频率精度的主要是温度因素,而海底的温度相对恒定,在2000米深的海底,温度的年变化仅在0.5度,所以时钟精度能有效地保证。为减小线路板的噪音,系统所需的所有不同频率的时钟(主要是模数转换时钟和单片机时钟)采用对同一时钟分频获得。 
c)数据存储采用数码相机和播放机上广泛采用的SD(Secure Digital)卡,具有统一接口,容量可从16G扩展到32G或更高。 
d)在电路设计中坚持微功耗设计原则;为了系统功耗微功耗的目的,数据采集器的硬件电路设计遵从了以下的原则:(1)采用CMOS型器件,(2)采用1.8V、3V和5V单电源低电压供电;(3)数字电路尽量采用较低频率的工作时钟;(4)尽量降低系统的无功功耗,整体功耗<0.3W。 
f)采集器的A/D转换采用4阶∑-Δ型ADS1251增量调制器,AD时钟由单片机LPC2103分频输出,数字滤波的功能采用软件编程完成。AD每完成一次转换,触发单片机产生一次中断,单片机的中断程序将AD数据读入内存。这种方式不仅可以在降低功耗和缩小体积的基础上得到足够的动态范围(>120dB),还能根据实际的不同需要,动态调整其频率-相位特性。控制模块采用ARM7内核高性能单片机(NXP公司LPC2103)。工作电压3.3/1.8V,60M主频,在完成A/D转换数字滤波的同时控制存储、通讯等其它模块工作。单片机工作在空闲模式(idle mode),中断驱动模式。 
g)控制器连接了7通道完全相同的AD模块(第1-3通道连接宽带地震计,第4-6通道连接高频检波器、第7通道连接水听计通道),通过多路开关(MAX4052)进行切换,利用单片机的6PIO脚作为地址线选通读入1-7通道的AD数据。 
(4)实时传输多功能海底地震仪电源 
实时传输多功能海底地震仪电池采用10AH锂电池,每套仪器舱安装10枚。每个锂电池单独带保护器,的电池按环状固定在玻璃舱球的下部,地震仪通过单片机对每个电池的充放电状态和电压进行检测,并能通过交互界面显示。充电通过舱球上的插座进行,用户可以了解每个电池的充电电量、充电时间等信息。通过专用的充电器用户可以在数十小时内完成对 实时传输多功能海底地震仪的充电工作。每次充电操作用户都能掌握充电前后电池电压状态,充电电量等信息,能及时发现电池失效或性能降低的情况。从而对失效电池及时进行更换,或根据电池性能降低的情况缩短实时传输多功能海底地震仪在海底工作的时间。 
内置的电源管理模块能实时地监督电池的电能储量,当能量低于某一预定值,地震仪会关闭除了水声通信之外的所有耗电设备,使地震仪在海底滞留一年以上的时间仍能正常回收。 
(5)数据提取方式 
为了保证海上的多次作业顺利进行,数据提取模块必须操作方便并且需要较快的传输速度。OBS中内嵌了USB接口模块与PC机进行高速数据交换,能在不打开舱球的前提下,以较高的速度(2M字节/秒)实现OBS的数据提取。USB接口采用A型USB插头和A型USB插座 
数据提取方法: 
1.仪器舱回收以后,接上电源线 
2.连接蓝牙,PC机与仪器舱进行交互通讯 
3.在交互软件中打开仪器仪器舱内置读卡器,插上USB插头端,进行数据读取。 
(6)无线数传模块 
无线数传模块采用OEM产品。其发射功率为1~5W,有效距离约5-10Km左右。定位精度可达数十米以内。考虑到无线数传模块内置于玻璃舱球内 空间的限制采用50欧450MHz鞭装胶套天线与发射机配套,接收系统几乎不受空间的限制所以采用50欧12dB高增益天线与接收机配套。无线数传模块调制方式采用FSK(频移键控)方式,抗干扰能力强。为进一步提高抗设备干扰能力,通讯速度采用较低的1200bps。通讯协议为RS232格式:1位起始位,8位数据位,偶校验,1位停止位。 
传输距离对发射机的天线高度非常敏感。由于发射机天线内置于球内,安装高度受到极大限制。为此采取以下措施:(a)减轻回收重量(b)天线贴近球壁安装(c)通过配重使回收时天线位于球的顶部。 
采用交织编码技术能够有效减少突发性干扰引起的误码,其原理为将待发数码按列排成矩阵,再按行的顺序发送,如信道中因突发性干扰发生连续误码,解交织的误码被分散到不同码字能被BCH有效纠错。 
采用同步机制减少前导同步码,有效的减少发射的时间,提高发射效率;避免电池连续大电流放电引起“极化现象”。具体地说,每次发送和接收的起始时间都由GPS输出PPS的沿确定。 
实施传输多功能实时传输多功能海底地震仪的无线数据传输方法: 
1.当仪器舱释放后,仪器舱内部的GPS打开,上浮至水面接收GPS信号; 
2.当GPS信号被锁定后,仪器舱当前经纬度被记录在仪器舱的存储空间内; 
3.再通过无线数传模块发送经纬度信息给附近的无线数传模块接收器; 
4.船上的PC机通过与无线数传模块接收器的通讯,读取仪器舱当前所 在经纬度,并迅速找到仪器舱所在位置。 
(7)频闪灯 
当仪器舱上浮时,频闪灯在黑夜里能有效的指示仪器舱所在方位方便回收。 
频闪灯被置于高压舱球的上部利用水压开关进行控制,当舱上浮,水压减小,频闪灯工作,光源采用发光效率高,穿透性较好的高亮度发光二极管。可以连续工作12小时以上。 
二、脱钩机构: 
脱钩机构25为双层结构,包括不锈钢镙柱16、镙杆支撑板17、绕丝固定板21,其中,片状环绕丝固定板21和片状环镙杆支撑板17山下平行设置,以多数个不锈钢镙柱16将两者固接,其中两个位于直径上的镙柱16上端伸出固定板21的上表面相互连接,构成吊钩20;镙杆支撑板17内孔直径与塑料仪器舱26顶部外圆直径相适配。 
片状环绕丝固定板21上表面设有正极13、脱钩滑块18、绕丝钉19、负极22,正极13、负极22位于固定板21内孔直径方向的相对两侧,正极13上套接压丝垫片15后螺接锁紧螺母14,负极22上套接负极保护套23;在与正极13、负极22构成的直径方向相垂直的直径方向上两端,于固定板21周缘上设有向圆心的凹槽211,两凹槽211内各设有一脱钩滑块18,L状脱钩滑块18与凹槽211相适配,其向上突起的固定壁181中间有一固接口182,固接口182供拉紧钢丝27缠绕连接,其底座183上设有多 个绕丝钉19和一禁锢镙栓184;在固定板21上表面还设有多个绕丝钉19,绕丝钉19均匀分布,分布的位置与正极13、负极22的位置构成圆环形。 
一熔断钢丝24经正极13和顺序经所有的绕丝钉19绕成环,并以锁紧螺母14和绕丝钉19固紧定位,将脱钩滑块18固于固定板21上,熔断钢丝24与两负极22触接;两负极22即是两熔断点40。 
将塑料仪器舱26置于沉耦架28中,脱钩机构25置于塑料仪器舱26顶端,镙杆支撑板17内孔与塑料仪器舱26顶端相接,以多根拉紧钢丝27缠绕于脱钩滑块18的固接口182后,用多个锁紧螺栓30拉紧多根拉紧钢丝27,以固定塑料仪器舱26。 
在固定塑料仪器舱26后,卸掉脱钩滑块18上的禁锢镙栓184,再利用锁紧螺栓30来拉紧钢丝27调整仪器舱26的紧固程度;在仪器回收时利用海水特性,在两熔断点40处进行电腐蚀熔断钢丝24,脱钩滑块18被拉紧钢丝27拉脱开,舱舱26即利用海水浮力上浮,以便回收。 
(1)绕丝固定板21采用具有高机械强度、高刚性、韧性强的工程塑料尼龙加工而成,在水中不易变形,不易被腐蚀。 
(2)绕丝钉19是脱钩机构中较为关键的部分,所以我们采用316L特殊不锈钢制成,这种材料对于海水及各种腐蚀介质的抗腐蚀性能均优于普通不锈钢。 
(3)熔断钢丝24是整个脱钩机构的核心部件,我们选用的316耐腐蚀钢丝,由7束49股细钢丝经过特殊工艺加工而成,易曲而柔软。在弯曲时不象单股钢丝那样显得太硬,拉紧时会紧贴绕丝钉。 
脱钩机构25作为仪器舱回收过程的重要组成部件,机构的组装、调试工作都可在室内进行试验通过,才可安装使用。测试好的脱钩机构通过8组不锈钢镙钉固定在仪器舱26的上部,能够很方便地完成组装。机构中的零件加工工艺和选材均可以保证长时间工作在海水里,同时能够实现在接到指令后,钢丝在5分钟内即被熔断。直到仪器舱回收整个过程不超过10分钟。 
三、水下声学调制解调器: 
我们采用型号UWM1000的水下声学调制解调器,其由水下modom42和水面modom两部分组成。水下modom通过固定卡44和尼龙扎带43紧固在脱钩机构外侧,由水密电缆41与球内部的微处理机31连接。微处理机将传感器或测量设备监测到的海洋要素数据进行采集并转换成声脉冲信号,再由水声信号发射机通过水声换能器将数据发出。在水面水域工作的水面modom接收通过水下modom42发出的数据信号,进行放大和处理,最后将水下modom传输的数据处理后进行贮存,从而实现实时传输多功能海底地震仪的水下实时传输。 
在设计水下声学调制解调器的工作模式时我们设计了微功耗方案。在水声MODEM控制时采用了睡眠模式功率消耗:8mW;只是在固定时段使水声modem处于接收模式功率消耗:0.75瓦。在此时段若没有收到通讯请求就再次进入睡眠模式。 
UWM1000水下声学调制解调器的工作特点: 
1传输速度可达38,400bits/s 
2.RS-232数据速率:9600字节/秒 
3.净荷载数据速率:7000字节/秒 
4.水声链:17,800字节/秒 
5.字节误差比特率:<10-9
6.有效工作范围:350m 
7.最大工作深度:200m 
9.环境:接近垂直或水平 
10.发射模式功率消耗:1瓦(窄波束和宽波束)2瓦(全向天线-定向天线) 
11.接受接收模式功率消耗:0.75瓦 
12.睡眠模式功率消耗:8mW 
13.换能器波束宽:120°(宽波束)或210°(全向-定向)或70°(窄波束) 
14.工作频率:26.77-44.62kHz 
15.电压:12-24V 
16.总长:235.7mm 
17.外壳直径:87.2-126.2mm 
18.空气中重量:4.2kg 
19.水中重量:2.3kg 
20.RS-232输入数据缓冲器:900KB 
21.可选的更高数据速率:19,200波特 
实施传输多功能海底地震仪的水下声学调制器工作方法: 
1.将水下声学调制解调器的水下modem固定在仪器舱的外面; 
2.通过水密电缆与仪器舱内部微处理机31相连接,进行信号传递; 
3.当沉入到海底着地后,通过水面modem发出高频信号指令,水下modem接收到指令后,实时传输多功能海底地震仪传输功能开启,此时可以通过岸上的电脑,对水下实时传输多功能海底地震仪进行参数设置,和数据读取。 
四、沉耦架: 
沉耦架28,采用表面附着防锈漆的钢铁材料制成,在井字形上表面中部固设一固定圆盘281,固定圆盘281中心部有一圆环状突起282,该圆环状突起282的直径与塑料仪器舱26底部外圆相适配,固定圆盘281周缘处均匀分布着固接的多数个向上正交的支撑杆283,支撑杆283上端固接有顶环284,顶环284上均匀分布有锁紧螺栓30,顶环284的内孔直径大于塑料仪器舱26的球直径; 
锁紧螺栓30与拉紧钢丝27下端可拆卸的固接,通过耐腐蚀拉紧钢丝27与脱钩机构25紧密相连,其重量和体积适合于在下沉过程中控制下沉速度和下沉姿态,以及当实时传输多功能海底地震仪沉入海底时能够保持正确姿态并进入工作状态,并为地震仪在海底工作提供稳定可靠的基座,提高实时传输多功能海底地震仪记录数据的真实性。仪器舱上浮后,沉耦架丢弃在海水中。 
通过耐腐蚀拉紧钢丝27把仪器舱紧固在沉耦架28上,用锁紧螺栓30 将带塑料保护皮的耐腐蚀拉紧钢丝27拉紧,由8股紧固,分两组,每组4股拉紧一脱钩机构25的脱钩滑块18,降低了单股钢丝的受力程度,可以使仪器舱很稳定的固定在基座上。 
沉耦架28属于不回收部分,考虑到它的工作性质,我们选择标准角铁作为主要的加工原料,不但满足了其作为工作基座的刚性和硬度,且大大降低了加工成本。 
使用实时传输多功能海底地震仪进行数据采集的具体实施过程: 
1.选择好投放地点和方位,作业船行驶到指定地点; 
2.用拉紧钢缆把仪器舱与沉耦架固定好,通过蓝牙设置仪器舱的采集参数,并关闭蓝牙通讯; 
3.把实时传输多功能海底地震仪投放到海底; 
4.实时传输多功能海底地震仪着地后,立即用水下声学调制解调器系统进行准确定位; 
5.通过水下声学调制解调器,可以随时在其工作范围内,对实时传输多功能海底地震仪进行参数检测和数据提取等相关操作; 
6.当需要回收仪器舱时,在该仪器舱所在的位置附近海域通过水下声学调制解调器系统发出回收信号,仪器舱接到信号后,开始熔断钢丝,约5分钟仪器舱与沉耦架28脱离,自动上浮至水面; 
7.仪器舱浮出海面后通过无线33发送其所在的位置信息,根据该信息或目测方式确定仪器舱方位,进行打捞上船。然后提取所记录的数据供分析和研究。 
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并 不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。 

Claims (10)

1.一种实时传输多功能海底地震仪,包括仪器舱、水下声学调制解调器、脱钩机构、沉耦架;仪器舱包含玻璃仪器舱和塑料仪器舱,玻璃仪器舱固装于塑料仪器舱内,脱钩机构位于塑料仪器舱顶端,水下声学调制解调器的水下modom固装于脱钩机构的侧面,在脱钩机构与沉耦架之间以拉紧钢丝固接,将仪器舱固定于沉耦架中;其中,
仪器舱内部集成了七通道采集器系统、水声通讯模块以及三分量姿控宽带地震计和三分量高频检波器,所述七通道采集器系统、水声通讯模块以及三分量姿控宽带地震计和三分量高频检波器为集成一体化的地震计组合体,使玻璃仪器舱球内部成为一个整体;在玻璃仪器舱球外对七通道采集器系统、水声通讯模块以及三分量姿控宽带地震计和三分量高频检波器进行组装、调试,然后放进玻璃仪器舱球内,通过玻璃仪器舱球挤压O型圈来固定;
水下声学调制解调器,用于实现仪器舱与水面的接收设备的通信。
2.如权利要求1所述的实时传输多功能海底地震仪,其特征在于:实时传输多功能海底地震仪以7个通道采集地震数据,数字记录海底地震信息,采用无线蓝牙技术进行现场检测;玻璃仪器舱球内部为单球一体化结构。
3.如权利要求2所述的实时传输多功能海底地震仪,其特征在于:水下声学调制解调器是由水下modom和水上modom两部分组成;水下modom通过固定卡和尼龙扎带安装在脱钩机构的侧面,由一根水密线缆与玻璃舱内部微机通讯模块相连,实现了海底地震仪与水面的接收设备(微机)实时传输功能。
4.如权利要求1所述的实时传输多功能海底地震仪,其特征在于:在设计水下声学调制解调器的工作模式时采用微功耗方案,在水声MODEM控制时采用了睡眠模式功率消耗:8mW;只是在固定时段使水声modem处于接收模式功率消耗:0.75瓦,在此时段若没有收到通讯请求就再次进入睡眠模式。
5.如权利要求1所述的实时传输多功能海底地震仪,其特征在于:玻璃仪器舱包含常平装置、三分量姿控宽带地震计、采集器系统和海底地震仪电源,常平装置利用姿态传感器(7)和姿态调整电机(3)对三分量姿控宽带地震计(4)以及三分量高频检波器(9)进行姿态调整;在采集器系统的前放电路中在信号输入端加配一阶无源LC低通抗混叠滤波器,采集器系统采用温补晶振构成的振荡电路作为内部时钟;海底地震仪电源采用10AH锂电池。
6.如权利要求5所述的实时传输多功能海底地震仪,其特征在于:仪器舱还包括频闪灯;当仪器舱上浮时,频闪灯在黑夜里能有效的指示仪器舱所在方位且方便回收。
7.如权利要求6所述的实时传输多功能海底地震仪,其特征在于:频闪灯被置于仪器舱舱球的上部利用水压开关进行控制,当仪器舱上浮,水压减小,频闪灯工作,频闪灯的光源采用发光效率高,穿透性较好的高亮度发光二极管,可以连续工作12小时以上。
8.如权利要求1所述的实时传输多功能海底地震仪,其特征在于:脱钩机构(25)为双层结构,脱钩机构(25)包括不锈钢镙柱(16)、镙杆支撑板(17)、绕丝固定板(21),其中,片状环绕丝固定板(21)和片状环镙杆支撑板(17)上下平行设置,以多数个不锈钢镙柱(16)将两者固接,其中两个位于直径上的镙柱(16)上端伸出固定板(21)的上表面相互连接,构成吊钩(20);镙杆支撑板(17)内孔直径与塑料仪器舱(26)顶部外圆直径相适配。
9.如权利要求7所述的实时传输多功能海底地震仪,其特征在于:片状环绕丝固定板(21)上表面设有正极(13)、脱钩滑块(18)、绕丝钉(19)、负极(22),正极(13)、负极(22)位于固定板(21)内孔直径方向的相对两侧,正极(13)上套接压丝垫片(15)后螺接锁紧螺母(14),负极(22)上套接负极保护套(23);在与正极(13)、负极(22)构成的直径方向相垂直的直径方向上两端,于固定板(21)周缘上设有向圆心的凹槽(211),两凹槽(211)内各设有一脱钩滑块(18),L状脱钩滑块(18)与凹槽(211)相适配,其向上突起的固定壁(181)中间有一固接口(182),固接口(182)供拉紧钢丝(27)缠绕连接,其底座(183)上设有多个绕丝钉(19)和一禁锢镙栓(184);在固定板(21)上表面还设有多个绕丝钉(19),绕丝钉(19)均匀分布,分布的位置与正极(13)、负极(22)的位置构成圆环形。
10.使用上述权利要求中所述的实时传输多功能海底地震仪进行数据采集的方法,其包括步骤:
1)选择好投放地点和方位,作业船行驶到指定地点;
2)用拉紧钢缆把仪器舱与沉耦架固定好,通过蓝牙设置实时传输多功能海底地震仪的采集参数,并关闭蓝牙通讯;
3)把实时传输多功能海底地震仪投放到海底;
4)实时传输多功能海底地震仪着地后,立即用水下声学调制解调器系统进行准确定位;
5)通过水下声学调制解调器,可以随时在水下声学调制解调器工作范围内,对实时传输多功能海底地震仪进行参数检测和数据提取等相关操作;
6)当需要回收实时传输多功能海底地震仪时,在该实时传输多功能海底地震仪所在的位置附近海域通过水下声学调制解调器系统发出回收信号,实时传输多功能海底地震仪接到信号后,开始熔断钢丝,约5分钟仪器舱与沉耦架28脱离,自动上浮至水面;
7)仪器舱浮出海面后通过GPS天线(33)发送仪器舱所在的位置信息,根据该信息或目测方式确定仪器舱方位,进行打捞上船;然后提取所记录的数据供分析和研究。
CN2012103645894A 2012-09-27 2012-09-27 实时传输多功能海底地震仪 Pending CN102914798A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012103645894A CN102914798A (zh) 2012-09-27 2012-09-27 实时传输多功能海底地震仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012103645894A CN102914798A (zh) 2012-09-27 2012-09-27 实时传输多功能海底地震仪

Publications (1)

Publication Number Publication Date
CN102914798A true CN102914798A (zh) 2013-02-06

Family

ID=47613241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012103645894A Pending CN102914798A (zh) 2012-09-27 2012-09-27 实时传输多功能海底地震仪

Country Status (1)

Country Link
CN (1) CN102914798A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678430A (zh) * 2015-03-11 2015-06-03 中国地震局地震研究所 基于井上调控的井下多台地震计置平装置
CN105785470A (zh) * 2016-04-29 2016-07-20 中国科学院南海海洋研究所 一种单浮球海底热流长期观测系统
CN105785431A (zh) * 2016-02-25 2016-07-20 中国科学院地质与地球物理研究所 海底地震采集节点自适应控制投放系统
CN105911581A (zh) * 2016-04-05 2016-08-31 中国科学院南海海洋研究所 一种底基观测平台、海底相对测地装置及系统
CN106814389A (zh) * 2017-01-19 2017-06-09 中国科学院地质与地球物理研究所 一种具有实时数据传输的多功能海底地震仪及其使用方法
CN106997656A (zh) * 2017-02-27 2017-08-01 浙江大学 一种海底仪器用的水下数据传输平台
CN107328393A (zh) * 2017-06-23 2017-11-07 青岛罗博飞海洋技术有限公司 一种海底勘测装置用固定装置
CN107651118A (zh) * 2017-10-30 2018-02-02 中国科学院海洋研究所 一种深海潜标无线实时化水面浮标系统及其实现方法
CN109298452A (zh) * 2018-09-12 2019-02-01 国家海洋局第海洋研究所 一种卫星传输海底地震探测装置
CN114900601A (zh) * 2022-06-06 2022-08-12 之江实验室 一种深海光学图像采集系统
CN116400408A (zh) * 2023-06-09 2023-07-07 厦门大学 具有在线数据传输和水下定位功能的智能海底地震仪
CN116643316A (zh) * 2023-05-30 2023-08-25 中国科学院地质与地球物理研究所 一种多功能可自由组合海底地震探测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1548923A (zh) * 2003-05-16 2004-11-24 中国科学院南海海洋研究所 一种近海波浪的远程实时监测方法
CN101441274A (zh) * 2008-12-24 2009-05-27 中国科学院地质与地球物理研究所 天然气水合物勘探用海底地震仪
CN101639538A (zh) * 2008-07-30 2010-02-03 中国科学院地质与地球物理研究所 七通道多功能海底地震仪
CN102611662A (zh) * 2012-02-14 2012-07-25 河海大学常州校区 一种低成本低功耗的水声调制解调器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1548923A (zh) * 2003-05-16 2004-11-24 中国科学院南海海洋研究所 一种近海波浪的远程实时监测方法
CN101639538A (zh) * 2008-07-30 2010-02-03 中国科学院地质与地球物理研究所 七通道多功能海底地震仪
CN101441274A (zh) * 2008-12-24 2009-05-27 中国科学院地质与地球物理研究所 天然气水合物勘探用海底地震仪
CN102611662A (zh) * 2012-02-14 2012-07-25 河海大学常州校区 一种低成本低功耗的水声调制解调器

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678430A (zh) * 2015-03-11 2015-06-03 中国地震局地震研究所 基于井上调控的井下多台地震计置平装置
CN105785431B (zh) * 2016-02-25 2018-07-03 中国科学院地质与地球物理研究所 海底地震采集节点自适应控制投放系统
CN105785431A (zh) * 2016-02-25 2016-07-20 中国科学院地质与地球物理研究所 海底地震采集节点自适应控制投放系统
CN105911581A (zh) * 2016-04-05 2016-08-31 中国科学院南海海洋研究所 一种底基观测平台、海底相对测地装置及系统
CN105911581B (zh) * 2016-04-05 2019-10-18 中国科学院南海海洋研究所 一种底基观测平台、海底相对测地装置及系统
CN105785470A (zh) * 2016-04-29 2016-07-20 中国科学院南海海洋研究所 一种单浮球海底热流长期观测系统
CN106814389A (zh) * 2017-01-19 2017-06-09 中国科学院地质与地球物理研究所 一种具有实时数据传输的多功能海底地震仪及其使用方法
CN106997656A (zh) * 2017-02-27 2017-08-01 浙江大学 一种海底仪器用的水下数据传输平台
CN106997656B (zh) * 2017-02-27 2023-10-24 浙江大学 一种海底仪器用的水下数据传输平台
CN107328393A (zh) * 2017-06-23 2017-11-07 青岛罗博飞海洋技术有限公司 一种海底勘测装置用固定装置
CN107328393B (zh) * 2017-06-23 2023-08-01 青岛罗博飞海洋技术有限公司 一种海底勘测装置用固定装置
CN107651118A (zh) * 2017-10-30 2018-02-02 中国科学院海洋研究所 一种深海潜标无线实时化水面浮标系统及其实现方法
CN107651118B (zh) * 2017-10-30 2023-06-13 中国科学院海洋研究所 一种深海潜标无线实时化水面浮标系统及其实现方法
CN109298452A (zh) * 2018-09-12 2019-02-01 国家海洋局第海洋研究所 一种卫星传输海底地震探测装置
CN114900601A (zh) * 2022-06-06 2022-08-12 之江实验室 一种深海光学图像采集系统
CN116643316A (zh) * 2023-05-30 2023-08-25 中国科学院地质与地球物理研究所 一种多功能可自由组合海底地震探测装置
CN116643316B (zh) * 2023-05-30 2024-01-19 中国科学院地质与地球物理研究所 一种多功能可自由组合海底地震探测装置
CN116400408A (zh) * 2023-06-09 2023-07-07 厦门大学 具有在线数据传输和水下定位功能的智能海底地震仪
CN116400408B (zh) * 2023-06-09 2023-08-18 厦门大学 具有在线数据传输和水下定位功能的智能海底地震仪

Similar Documents

Publication Publication Date Title
CN101639538B (zh) 七通道多功能海底地震仪
CN101441274B (zh) 天然气水合物勘探用海底地震仪
CN102914798A (zh) 实时传输多功能海底地震仪
CN101963671B (zh) 宽带双舱球海底地震仪
CN107064996B (zh) 一种分体组合式宽带海底地震仪
CN102288989B (zh) 单舱球组合式宽频带海底地震仪
CN103033845B (zh) 单分量垂向组合式海底地震采集系统
CN102854538B (zh) 单舱球三分量海底磁力仪
CN102879829B (zh) 浅海用大极距海底电场仪
CN103364067B (zh) 一种深水无电缆连接的水声阵列系统及同步采集方法
CN1022196C (zh) 在整个矿中传送数据的方法
US20130028047A1 (en) Bottom module for seismic survey
CN102426389B (zh) 便携式小型海底地震仪
CN104155695B (zh) 潜水式浮标地震数据采集站
CN101831923B (zh) 具有水下无线传输系统的海上构筑物自动监测技术方法
CN110488346A (zh) 一种基于光纤水听器的海洋地震勘探垂直缆系统
CN106886048A (zh) 一种组合式海底地震采集节点及其使用方法
CN111024048B (zh) 一种深海声学发射潜标
CN106680877B (zh) 一种低功耗宽频带单舱球海底地震仪
RU111691U1 (ru) Донный модуль сейсмической станции
CN204330123U (zh) 一种高静水压标准水听器
CN210793533U (zh) 一种近海浮标
CN206270502U (zh) 地震勘探触发装置及地震勘探系统
CN108545147A (zh) 海气界面观测关键技术-数据实时化水面中继通讯浮子
CN205229473U (zh) 通用双球自沉浮式海底地震仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20160706

C20 Patent right or utility model deemed to be abandoned or is abandoned