CN102912424A - Method for improving uniformity of axial resistivity of czochralski silicon and obtained monocrystalline silicon - Google Patents

Method for improving uniformity of axial resistivity of czochralski silicon and obtained monocrystalline silicon Download PDF

Info

Publication number
CN102912424A
CN102912424A CN2012103829879A CN201210382987A CN102912424A CN 102912424 A CN102912424 A CN 102912424A CN 2012103829879 A CN2012103829879 A CN 2012103829879A CN 201210382987 A CN201210382987 A CN 201210382987A CN 102912424 A CN102912424 A CN 102912424A
Authority
CN
China
Prior art keywords
silicon
czochralski
gas
improving
uniformity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103829879A
Other languages
Chinese (zh)
Other versions
CN102912424B (en
Inventor
杨德仁
陈鹏
余学功
吴轶超
陈仙子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201210382987.9A priority Critical patent/CN102912424B/en
Publication of CN102912424A publication Critical patent/CN102912424A/en
Application granted granted Critical
Publication of CN102912424B publication Critical patent/CN102912424B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种提高直拉单晶硅轴向电阻率均匀性的方法,包括如下步骤:(1)将多晶硅原料以及固体掺杂剂在氩气气氛下熔融,得到稳定的熔硅;(2)在稳定的熔硅中引入籽晶,晶体生长经缩颈、放肩过程,进入等径生长阶段;(3)在等径生长阶段,通入和所述固体掺杂剂导电类型相反的掺杂气体,直至直拉单晶硅生长完成。本发明提高直拉单晶硅轴向电阻率均匀性的方法中掺杂气体的种类和用量方便控制,可以得到各种所需的杂质浓度分布;直拉硅单晶的利用率得到提高;显著改善了直拉单晶硅的电阻率均匀性。

Figure 201210382987

The invention discloses a method for improving the axial resistivity uniformity of Czochralski monocrystalline silicon, which comprises the following steps: (1) melting polycrystalline silicon raw materials and solid dopant under an argon atmosphere to obtain stable molten silicon; 2) Introduce the seed crystal in the stable molten silicon, and the crystal growth enters the equal-diameter growth stage through the process of necking and shouldering; (3) in the equal-diameter growth stage, the conductive type of the solid dopant is opposite to that of the solid dopant. Doping gas until the growth of Czochralski single crystal silicon is completed. In the method for improving the axial resistivity uniformity of Czochralski single crystal silicon in the present invention, the type and dosage of doping gas are conveniently controlled, and various required impurity concentration distributions can be obtained; the utilization rate of Czochralski single crystal silicon is improved; significantly The resistivity uniformity of Czochralski monocrystalline silicon is improved.

Figure 201210382987

Description

提高直拉单晶硅轴向电阻率均匀性的方法及得到的单晶硅Method for Improving the Uniformity of Axial Resistivity of Czochralski Single Crystal Silicon and the Obtained Single Crystal Silicon

技术领域 technical field

本发明涉及半导体材料领域,具体涉及一种通过气相掺杂方法提高提高直拉单晶硅轴向电阻率均匀性的方法及得到的单晶硅。The invention relates to the field of semiconductor materials, in particular to a method for improving the axial resistivity uniformity of Czochralski single crystal silicon through a gas phase doping method and the obtained single crystal silicon.

背景技术 Background technique

在可预见的未来,光伏发电是最重要的可再生能源技术。据欧洲光伏工业协会(EPIA)预测,2030年光伏发电将满足全球近10%的电力需求。In the foreseeable future, photovoltaic power generation is the most important renewable energy technology. According to the forecast of the European Photovoltaic Industry Association (EPIA), photovoltaic power generation will meet nearly 10% of the world's electricity demand in 2030.

目前的太阳电池主要是基于掺硼的单晶硅材料制造的,但这种电池因为单晶硅中同时含有硼和氧,在使用过程中会形成硼氧复合体,致使太阳电池的光电转换效率下降10%以上,太阳电池的性能显著降低。为解决该问题,研究人员发明了掺镓的单晶硅太阳电池。Current solar cells are mainly manufactured based on boron-doped single crystal silicon materials, but because single crystal silicon contains boron and oxygen at the same time, boron-oxygen complexes will be formed during use, resulting in lower photoelectric conversion efficiency of solar cells. With a drop of more than 10%, the performance of the solar cell is significantly reduced. To solve this problem, researchers invented gallium-doped monocrystalline silicon solar cells.

掺镓的单晶硅太阳电池虽然无光衰减现象,但其存在很大的缺陷,由于镓在硅中的分凝系数极低(约0.008),这就导致了掺镓直拉单晶硅生长过程中,轴向电阻率相差很大,直拉单晶硅中最后生长的单晶硅的电阻率达不到要求,使得掺镓直拉单晶硅的实际利用率只有80%左右。Although gallium-doped monocrystalline silicon solar cells have no light attenuation phenomenon, they have great defects. Due to the extremely low segregation coefficient of gallium in silicon (about 0.008), this leads to the growth of gallium-doped Czochralski monocrystalline silicon. During the process, the axial resistivity varies greatly, and the resistivity of the last grown monocrystalline silicon in the Czochralski monocrystalline silicon cannot meet the requirements, so that the actual utilization rate of gallium-doped Czochralski monocrystalline silicon is only about 80%.

此外,掺镓直拉单晶硅的电阻率分布较宽,导致太阳电池的效率分布也宽,严重影响了太阳电池组件功率输出的一致性。In addition, the resistivity distribution of gallium-doped Czochralski monocrystalline silicon is wide, resulting in a wide distribution of solar cell efficiency, which seriously affects the consistency of power output of solar cell modules.

这些缺陷导致掺镓太阳电池成本高昂,在工业界大规模应用遇到困难。到目前为止,国内外尚未公布一种有效的手段能得到轴向电阻率均匀分布的掺镓直拉单晶硅。These defects lead to high cost of gallium-doped solar cells and difficulties in large-scale application in the industry. So far, no effective method has been announced at home and abroad to obtain gallium-doped Czochralski single crystal silicon with uniform distribution of axial resistivity.

在微电子领域,重掺锑直拉单晶硅也是一种重要材料,由其制成的n/n+外延片具有过渡区窄、结梯度陡、高温下锑的扩散系数小等优点,使掺锑单晶硅成为一种重要的衬底。In the field of microelectronics, antimony-doped Czochralski single crystal silicon is also an important material. The n/n+ epitaxial wafer made of it has the advantages of narrow transition zone, steep junction gradient, and small diffusion coefficient of antimony at high temperature. Antimony single crystal silicon becomes an important substrate.

但是与掺镓单晶硅类似的是,锑在硅中平衡分凝系数也非常小(约0.023),同样导致掺锑直拉单晶硅的轴向电阻率均匀性很差。However, similar to gallium-doped single crystal silicon, the equilibrium segregation coefficient of antimony in silicon is also very small (about 0.023), which also leads to poor axial resistivity uniformity of antimony-doped Czochralski single crystal silicon.

发明内容 Contents of the invention

本发明提供了一种提高直拉单晶硅轴向电阻率均匀性的方法,通过气相掺杂的方法,大大提高了直拉单晶硅轴向电阻率的均匀性,简单实用,具有良好的工业应用前景。The invention provides a method for improving the uniformity of the axial resistivity of Czochralski single crystal silicon. Through the gas phase doping method, the uniformity of axial resistivity of Czochralski single crystal silicon is greatly improved, which is simple and practical, and has good Industrial application prospects.

一种提高直拉单晶硅轴向电阻率均匀性的方法,包括如下步骤:A method for improving the axial resistivity uniformity of Czochralski single crystal silicon, comprising the steps of:

(1)将多晶硅原料以及固体掺杂剂在氩气气氛下熔融,得到稳定的熔硅;(1) Melting the polysilicon raw material and solid dopant under an argon atmosphere to obtain stable molten silicon;

(2)在稳定的熔硅中引入籽晶,晶体生长经缩颈、放肩过程,进入等径生长阶段;(2) The seed crystal is introduced into the stable molten silicon, and the crystal growth enters the equal-diameter growth stage through the necking and shouldering process;

(3)在等径生长阶段,通入和所述固体掺杂剂导电类型相反的掺杂气体,直至直拉单晶硅生长完成。(3) In the equal-diameter growth stage, a doping gas having a conductivity type opposite to that of the solid dopant is introduced until the growth of the Czochralski single crystal silicon is completed.

在直拉硅单晶正常的等径生长过程中,持续均匀地通入掺杂气体实现气相掺杂,掺杂气体引入的气相杂质在硅单晶中的分布服从如下等式:During the normal equal-diameter growth process of Czochralski silicon single crystal, doping gas is continuously and uniformly introduced to realize gas phase doping, and the distribution of gas phase impurities introduced by doping gas in silicon single crystal obeys the following equation:

CC sthe s == akak VV (( 11 ++ kk )) [[ (( 11 -- gg )) kk -- 11 -- 11 ]] -- -- -- (( 11 ))

其中,in,

Cs为硅单晶中的杂质的掺杂浓度;C s is the doping concentration of impurities in the silicon single crystal;

a为掺杂气体的掺杂速率;a is the doping rate of the doping gas;

V为直拉单晶硅的生长速率;V is the growth rate of Czochralski monocrystalline silicon;

k为掺杂气体引入的杂质的分凝系数;k is the segregation coefficient of impurities introduced by the doping gas;

g为凝固分数。g is the coagulation fraction.

如果存在p型杂质和n型杂质共掺的情况下,硅晶体中载流子的分布服从如下等式(以p型的镓和n型的磷共掺为例):If there is co-doping of p-type impurities and n-type impurities, the distribution of carriers in the silicon crystal obeys the following equation (taking p-type gallium and n-type phosphorus co-doping as an example):

pp == CC 00 kk 11 (( 11 -- gg )) kk 11 -- 11 -- akak 22 VV (( 11 -- kk 22 )) [[ (( 11 -- gg )) kk 22 -- 11 -- 11 ]] -- -- -- (( 22 ))

其中,in,

p为硅晶体中载流子的浓度;p is the concentration of carriers in the silicon crystal;

C0为镓的初始熔体浓度;C 0 is the initial melt concentration of gallium;

k1为镓的分凝系数;k 1 is the segregation coefficient of gallium;

g为凝固分数;g is the solidification fraction;

a为掺杂气体的掺杂速率(单位时间内引入的杂质量,通过掺杂气体的流量控制);a is the doping rate of the doping gas (the amount of impurities introduced per unit time, controlled by the flow rate of the doping gas);

V为直拉单晶硅的生长速率;V is the growth rate of Czochralski monocrystalline silicon;

k2为磷的分凝系数;k 2 is the segregation coefficient of phosphorus;

Figure BDA00002234868200031
表示固体掺杂剂引入的杂质浓度;
Figure BDA00002234868200031
Indicates the impurity concentration introduced by the solid dopant;

表示掺杂气体引入的杂质浓度。 Indicates the impurity concentration introduced by the doping gas.

通过调节掺杂气体的浓度以及流量,可以得到最佳的气相掺杂量,使直拉硅单晶的轴向电阻率保持均匀分布。By adjusting the concentration and flow rate of the doping gas, the optimal gas phase doping amount can be obtained, so that the axial resistivity of the Czochralski silicon single crystal can be kept uniformly distributed.

其中最佳的气体掺杂量为:The optimum gas doping amount is:

aa VV optimoptim .. == CC 00 kk 11 (( 11 -- kk 11 )) (( 22 -- kk 11 )) kk 22 (( 22 -- kk 22 )) -- -- -- (( 33 ))

其中,in,

C0为固体掺杂剂的初始熔体浓度;C 0 is the initial melt concentration of solid dopant;

k1为固体掺杂剂的分凝系数;k 1 is the segregation coefficient of the solid dopant;

a为掺杂气体的掺杂速率;a is the doping rate of the doping gas;

V为直拉单晶硅的生长速率;V is the growth rate of Czochralski monocrystalline silicon;

k2为掺杂气体中杂质的分凝系数。k 2 is the segregation coefficient of impurities in the dopant gas.

根据该公式,在镓和磷的补偿晶体中,磷烷的适宜掺杂量为0.0268C0(C0为镓的初始熔体浓度),不宜超过0.0326C0,超过0.0404C0会出现少部分反型;对于锑和硼补偿晶体而言,硼烷的适宜掺杂量为0.0463C0(C0为锑的初始熔体浓度),不宜超过0.0569C0,超过0.0775C0会出现少部分反型。实际上最佳气体掺杂量可以在适宜值上下一个范围内变动。According to this formula, in the compensation crystal of gallium and phosphorus, the suitable doping amount of phosphine is 0.0268C 0 (C 0 is the initial melt concentration of gallium), and it should not exceed 0.0326C 0 , and a small part will appear if it exceeds 0.0404C 0 Inversion type; for antimony and boron compensation crystals, the appropriate doping amount of borane is 0.0463C 0 (C 0 is the initial melt concentration of antimony), and should not exceed 0.0569C 0 , and a small amount of antimony will appear if it exceeds 0.0775C 0 type. In practice, the optimal gas doping amount can vary within a range up and down from the appropriate value.

在直拉硅单晶制造过程中,将多晶硅原料置于石英坩埚中,根据目标电阻率投入相应量的固相掺杂剂,直拉单晶硅生长完成后,其晶体头部(晶体最先生长的部位)和尾部(晶体生长收尾的部位)的电阻率会有差异,造成轴向电阻率分布不均匀。During the manufacturing process of Czochralski silicon single crystal, the polycrystalline silicon raw material is placed in a quartz crucible, and a corresponding amount of solid-phase dopant is put in according to the target resistivity. The resistivity of the long part) and the tail (the part where the crystal growth ends) will be different, resulting in uneven axial resistivity distribution.

为了改善直拉硅单晶的轴向电阻率,在直拉硅单晶等径生长阶段,持续匀速地通入与固体掺杂剂导电类型相反的掺杂气体,等径生长结束后,停止通入掺杂气体,继续在氩气的保护下进行收尾以及冷却等过程,完成整个硅晶体的生长过程。所述掺杂气体的掺杂量为固体掺杂剂的初始熔体浓度的0.001~0.1倍。具体的值根据公式(3)计算得到。In order to improve the axial resistivity of the Czochralski silicon single crystal, during the equal-diameter growth stage of the Czochralski silicon single crystal, the dopant gas with the conductivity type opposite to that of the solid dopant is continuously fed at a uniform speed. Inject the dopant gas, continue the process of finishing and cooling under the protection of argon, and complete the growth process of the entire silicon crystal. The doping amount of the doping gas is 0.001-0.1 times of the initial melt concentration of the solid dopant. The specific value is calculated according to formula (3).

作为优选,所述固体掺杂剂为镓时,所述掺杂气体为磷烷,磷烷的掺杂量为镓的初始熔体浓度的0.025~0.03倍。Preferably, when the solid dopant is gallium, the dopant gas is phosphine, and the doping amount of phosphine is 0.025-0.03 times the initial melt concentration of gallium.

制造出的直拉硅单晶利用率接近100%(去掉晶体头部和尾部),相比没有掺杂气体的80%直拉硅单晶利用率具有显著提高,90%以上区域的电阻率控制在0.5~3Ω.cm范围内。The utilization rate of the produced Czochralski silicon single crystal is close to 100% (removing the crystal head and tail), which is significantly improved compared with the 80% Czochralski silicon single crystal without doping gas, and the resistivity of the area above 90% is controlled In the range of 0.5 ~ 3Ω.cm.

作为优选,所述固体掺杂剂为锑时,所述掺杂气体为乙硼烷,乙硼烷的掺杂量为锑的初始熔体浓度的0.045~0.055倍。Preferably, when the solid dopant is antimony, the doping gas is diborane, and the doping amount of diborane is 0.045-0.055 times the initial melt concentration of antimony.

制造出的直拉硅单晶80%以上区域的轴向电阻率变化控制在25%的范围内。The axial resistivity variation of more than 80% of the produced Czochralski silicon single crystal is controlled within the range of 25%.

作为优选,所述步骤(3)中的掺杂气体中混合有惰性气体。Preferably, an inert gas is mixed in the doping gas in the step (3).

惰性气体用于稀释掺杂气体,应选用不影响晶体生长的气体,例如通常情况下用作晶体生长保护气体的氩气,或者性质稳定的氮气。The inert gas is used to dilute the dopant gas, and the gas that does not affect the crystal growth should be selected, such as argon, which is usually used as a protective gas for crystal growth, or nitrogen with stable properties.

可以直接将混合完成的掺杂气体通入晶体生长室内,如图1所示,也可以通过分别设置惰性气体气源2和掺杂气体气源4,通过调节惰性气体气体流量计1、掺杂气体流量计3以及混合后的气体的流量计5,得到确定比例的混合气体后,通过高纯石英玻璃管道7,通入晶体生长室6内。The mixed dopant gas can be directly passed into the crystal growth chamber, as shown in Figure 1, or the inert gas source 2 and the dopant gas source 4 can be respectively set, and the inert gas flowmeter 1, doping gas can be adjusted. The gas flowmeter 3 and the flowmeter 5 of the mixed gas pass into the crystal growth chamber 6 through the high-purity quartz glass pipeline 7 after obtaining the mixed gas with a certain ratio.

作为优选,所述掺杂气体中惰性气体的体积百分数为1~99.9%。掺杂气体中惰性气体的体积百分比没有严格限制,惰性气体对掺杂气体进行稀释,避免了掺杂气体浓度过高,可能造成的直拉硅单晶中因局部掺杂气体浓度过大引起的反型。Preferably, the volume percentage of the inert gas in the doping gas is 1-99.9%. The volume percentage of the inert gas in the dopant gas is not strictly limited. The inert gas dilutes the dopant gas, avoiding the excessive concentration of the dopant gas, which may be caused by the excessive concentration of the local dopant gas in the Czochralski silicon single crystal. anti-type.

作为优选,所述掺杂气体通入生长室的流量为1~1000sccm(标况毫升每分钟)。Preferably, the flow rate of the dopant gas into the growth chamber is 1-1000 sccm (standard milliliter per minute).

掺杂气体的流量依据掺杂气体的种类、浓度以及晶体中固体掺杂剂的种类、浓度而定,需要保证掺杂气体的掺入速度与晶体的生长速度相适应,使导电类型相反的掺杂气体对固相掺杂剂进行补偿,得到轴向电阻率均匀的直拉硅单晶。The flow rate of the doping gas depends on the type and concentration of the doping gas and the type and concentration of the solid dopant in the crystal. It is necessary to ensure that the doping rate of the doping gas is compatible with the growth rate of the crystal, so that doping with the opposite conductivity type The impurity gas compensates the solid-phase dopant, and a Czochralski silicon single crystal with uniform axial resistivity is obtained.

利用本发明所述的提高直拉单晶硅轴向电阻率均匀性的方法制备得到的太阳电池用的镓磷补偿直拉单晶硅的90%以上区域的轴向电阻率为0.5~3Ωcm,微电子用的重掺锑硼补偿直拉单晶硅的80%以上区域的轴向电阻率变化小于25%。The axial resistivity of more than 90% of the region of gallium-phosphorus compensated Czochralski monocrystalline silicon for solar cells prepared by the method for improving the uniformity of axial resistivity of Czochralski single crystal silicon according to the present invention is 0.5-3Ωcm, The axial resistivity variation of more than 80% of Czochralski monocrystalline silicon compensated by heavily doped antimony boron for microelectronics is less than 25%.

本发明提供的直拉单晶硅制造方法,具有以下优点:The Czochralski monocrystalline silicon manufacturing method provided by the present invention has the following advantages:

(1)掺杂气体的种类和用量方便控制,可以得到各种所需的杂质浓度分布;(1) The type and amount of doping gas are convenient to control, and various required impurity concentration distributions can be obtained;

(2)提高了直拉硅单晶的利用率;(2) Improve the utilization rate of Czochralski silicon single crystal;

(3)显著改善晶体的电阻率均匀性。(3) Remarkably improve the resistivity uniformity of the crystal.

附图说明 Description of drawings

图1为实施本发明方法制造直拉硅单晶的装置示意图;Fig. 1 is the device schematic diagram that implements the method of the present invention to manufacture Czochralski silicon single crystal;

图2为实施例1制备得到的直拉硅单晶电阻率分布图;Fig. 2 is the resistivity distribution diagram of the Czochralski silicon single crystal prepared in embodiment 1;

图3为实施例2制备得到的直拉硅单晶电阻率分布图。FIG. 3 is a resistivity distribution diagram of the Czochralski silicon single crystal prepared in Example 2. FIG.

具体实施方式 Detailed ways

实施例1Example 1

在石英坩埚中加入60kg的高纯多晶硅原料,同时掺入2.982g的高纯镓(控制头部目标电阻率为1.8欧姆.厘米)。Add 60kg of high-purity polysilicon raw material into the quartz crucible, and at the same time add 2.982g of high-purity gallium (the target resistivity of the control head is 1.8 ohm.cm).

在氩气保护下,逐渐加热升温到1420℃以上使高纯多晶硅完全融化。按照常规晶体生长参数引晶、放肩,进入等径生长阶段,控制拉晶速率1.2mm/min,晶体直径为150mm。Under the protection of argon, the temperature is gradually raised to above 1420°C to completely melt the high-purity polysilicon. According to the conventional crystal growth parameters, the seeding and shouldering are carried out to enter the equal-diameter growth stage, and the crystal pulling rate is controlled to 1.2 mm/min, and the crystal diameter is 150 mm.

控制炉膛压力20Torr,氩气流量为70slpm(标准公升每分钟)。The furnace pressure is controlled to 20 Torr, and the argon gas flow rate is 70 slpm (standard liter per minute).

设定掺杂气体的参数:Set the parameters for the dopant gas:

1)采用氩气稀释的磷烷作为掺杂气体,磷烷与氩气的体积比1∶1000;1) Phosphine diluted with argon is used as the doping gas, and the volume ratio of phosphine to argon is 1:1000;

2)假设掺杂效率100%(掺杂气体引入的杂质可以全部进入直拉硅单晶内),设定掺杂气流量为21.14sccm。2) Assuming that the doping efficiency is 100% (the impurities introduced by the doping gas can all enter into the Czochralski silicon single crystal), the flow rate of the doping gas is set to 21.14 sccm.

等径生长结束后关闭掺杂气体,正常收尾,冷却。After the equal-diameter growth, close the doping gas, finish normally, and cool down.

在完成生长的直拉硅单晶不同部位取样,使用四探针电阻率仪测试电阻率分布,结果如图2所示。Samples were taken from different parts of the grown Czochralski silicon single crystal, and the resistivity distribution was tested using a four-probe resistivity meter. The results are shown in Figure 2.

如果按照太阳电池用硅片电阻率控制在0.5~3欧姆.厘米的要求,仅掺镓的硅单晶利用率为75%;但是对于镓和磷共掺杂单晶硅(即通入掺杂气体的单晶硅),其利用率可以增加到93%,这意味除去头部和尾部后,镓磷共掺杂的单晶硅能够得到全部利用。同时,仅掺镓硅单晶其电阻率分布非常不均匀。而对于镓和磷共掺杂的硅单晶,其大部分电阻率非常均匀,仅在尾部极小部分电阻率有所下降,而且得到的这些硅片都能够制备高效率,无光衰减的太阳电池。If the resistivity of silicon wafers for solar cells is controlled at 0.5-3 ohm.cm, the utilization rate of silicon single crystal doped with gallium is only 75%; Gas monocrystalline silicon), its utilization rate can be increased to 93%, which means that after removing the head and tail, gallium phosphorus co-doped single crystal silicon can be fully utilized. At the same time, the resistivity distribution of gallium-doped silicon single crystal is very uneven. For silicon single crystals co-doped with gallium and phosphorus, most of the resistivity is very uniform, and only a small part of the resistivity decreases at the end, and these obtained silicon wafers can be used to prepare high-efficiency solar cells without light attenuation. Battery.

实施例2Example 2

在石英坩埚中加入60kg的高纯多晶硅原料,同时掺入416.64g的高纯锑(控制头部目标电阻率为0.016欧姆.厘米)。Add 60 kg of high-purity polysilicon raw material into the quartz crucible, and at the same time add 416.64 g of high-purity antimony (the target resistivity of the control head is 0.016 ohm.cm).

在氩气保护下,逐渐加热升温到1420℃以上使多晶硅完全融化。按照常规晶体生长参数引晶、放肩,进入等径生长阶段,控制拉晶速率0.8mm/min,晶体直径为150mm。Under the protection of argon, the temperature is gradually raised to above 1420°C to completely melt the polysilicon. According to the conventional crystal growth parameters, the seeding and shouldering are carried out to enter the equal-diameter growth stage, the crystal pulling rate is controlled to 0.8mm/min, and the crystal diameter is 150mm.

控制炉膛压力20Torr,氩气流量为70slpm。The furnace pressure is controlled to 20 Torr, and the argon gas flow rate is 70 slpm.

设定掺杂气体的参数:Set the parameters for the dopant gas:

1)采用氩气稀释的乙硼烷,乙硼烷与氩气的体积比1∶100;1) Diborane diluted with argon, the volume ratio of diborane to argon is 1:100;

2)假设掺杂效率100%,设定掺杂气流量为97.58sccm。2) Assuming that the doping efficiency is 100%, the flow rate of the doping gas is set to 97.58 sccm.

等径生长结束后,关闭掺杂气体,正常收尾,冷却。After the equal-diameter growth is completed, the dopant gas is turned off, finished normally, and cooled.

在完成生长的单晶硅不同部位取样,使用四探针电阻率仪测试电阻率分布,结果如图3所示。Samples were taken from different parts of the grown single crystal silicon, and the resistivity distribution was tested using a four-probe resistivity meter. The results are shown in Figure 3.

如果按照微电子厂商对电阻率变化浮动25%的要求,对于仅掺锑的单晶硅,利用率仅为40%左右,而对于锑硼共掺的单晶硅(即通入了掺杂气体的单晶硅),利用率可以达到80%左右,增长了近1倍,显著的提高了单晶硅的利用率,并且显著改善了电阻率均匀性,有利用集成电路的质量控制。According to the requirements of microelectronics manufacturers for the change of resistivity to fluctuate by 25%, the utilization rate is only about 40% for monocrystalline silicon doped with antimony only, and for monocrystalline silicon co-doped with antimony and boron (that is, the dopant gas is introduced Single crystal silicon), the utilization rate can reach about 80%, nearly doubled, significantly improving the utilization rate of single crystal silicon, and significantly improving the uniformity of resistivity, and the quality control of integrated circuits.

Claims (9)

1. A method for improving the uniformity of the axial resistivity of Czochralski silicon comprises melting a polycrystalline silicon raw material and a solid dopant in an argon atmosphere to obtain stable molten silicon; introducing seed crystals into the stable molten silicon, and leading the crystal growth to enter an isodiametric growth stage through necking and shouldering processes; the method is characterized in that doping gas with the conductivity type opposite to that of the solid dopant is introduced in the equal-diameter growth stage until the growth of the czochralski silicon is finished.
2. The method of improving the axial resistivity uniformity of czochralski silicon as claimed in claim 1 wherein the doping gas is doped in an amount of 0.001 to 0.1 times the initial melt concentration of the solid dopant.
3. The method of claim 2 wherein when the solid dopant is gallium, the dopant gas is phosphane in an amount of 0.025 to 0.03 times the initial melt concentration of gallium.
4. The method for improving the axial resistivity uniformity of czochralski silicon as claimed in claim 2, wherein when the solid dopant is antimony, the doping gas is diborane, and the doping amount of the diborane is 0.045-0.055 times of the initial melt concentration of the antimony.
5. The method for improving the axial resistivity uniformity of czochralski silicon as claimed in any one of claims 1 to 4, wherein the doping gas in the step (3) is mixed with an inert gas.
6. The method of improving the axial resistivity uniformity of czochralski silicon as claimed in claim 5, wherein the volume percent of the inert gas in the dopant gas is 1 to 99.9%.
7. The method of improving the axial resistivity uniformity of czochralski silicon as claimed in claim 6 wherein the dopant gas is introduced into the growth chamber at a flow rate of 1 to 1000 sccm.
8. The Czochralski silicon produced by the method for improving the uniformity of the axial resistivity of Czochralski silicon as claimed in claim 3, wherein the axial resistivity of 90% or more of the regions is 0.5 to 3 Ω cm.
9. The Czochralski single crystal silicon produced by the method of improving the uniformity of the axial resistivity of the Czochralski single crystal silicon of claim 4, wherein greater than 80% of the regions have an axial resistivity variation of less than 25%.
CN201210382987.9A 2012-10-10 2012-10-10 Method for improving uniformity of axial resistivity of czochralski silicon and obtained monocrystalline silicon Active CN102912424B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210382987.9A CN102912424B (en) 2012-10-10 2012-10-10 Method for improving uniformity of axial resistivity of czochralski silicon and obtained monocrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210382987.9A CN102912424B (en) 2012-10-10 2012-10-10 Method for improving uniformity of axial resistivity of czochralski silicon and obtained monocrystalline silicon

Publications (2)

Publication Number Publication Date
CN102912424A true CN102912424A (en) 2013-02-06
CN102912424B CN102912424B (en) 2015-05-13

Family

ID=47610987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210382987.9A Active CN102912424B (en) 2012-10-10 2012-10-10 Method for improving uniformity of axial resistivity of czochralski silicon and obtained monocrystalline silicon

Country Status (1)

Country Link
CN (1) CN102912424B (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104790027A (en) * 2014-01-21 2015-07-22 英飞凌科技股份有限公司 Silicon ingot and method of manufacturing silicon ingot
CN105321987A (en) * 2014-06-30 2016-02-10 英飞凌科技股份有限公司 Semiconductor device containing chalcogen atoms and method of manufacturing
CN105586633A (en) * 2014-11-07 2016-05-18 英飞凌科技股份有限公司 Method Of Manufacturing A Silicon Ingot And Silicon Ingot
CN105887194A (en) * 2016-05-30 2016-08-24 上海超硅半导体有限公司 Growth method of type-n monocrystalline silicon
CN105951173A (en) * 2016-05-30 2016-09-21 上海超硅半导体有限公司 N type monocrystalline silicon crystal ingot and manufacturing method thereof
CN106222742A (en) * 2016-09-12 2016-12-14 江西赛维Ldk太阳能高科技有限公司 A kind of crystalline silicon and preparation method thereof
CN106222743A (en) * 2016-09-19 2016-12-14 江西赛维Ldk太阳能高科技有限公司 A kind of polycrystal silicon ingot and preparation method thereof and for preparing the ingot furnace of polycrystal silicon ingot
CN106400106A (en) * 2016-08-31 2017-02-15 内蒙古中环光伏材料有限公司 Method and device for improving uniformity of axial resistivity of czochralski monocrystalline silicon
CN108330538A (en) * 2018-04-13 2018-07-27 内蒙古中环光伏材料有限公司 Disk and method are matched in a kind of nitrogen control for pulling single crystal silicon process
CN109505005A (en) * 2018-12-26 2019-03-22 徐州鑫晶半导体科技有限公司 Prepare the method and single crystal growing furnace of N-shaped monocrystalline silicon
CN110158148A (en) * 2019-04-29 2019-08-23 江苏协鑫软控设备科技发展有限公司 Crystal silicon and its crystal growth technique
CN110528066A (en) * 2019-09-03 2019-12-03 宁夏隆基硅材料有限公司 A kind of doping method, monocrystalline device and single crystal growing furnace
CN112831828A (en) * 2021-01-07 2021-05-25 杭州晶宝新能源科技有限公司 Growth method of gallium-doped Czochralski monocrystalline silicon, gallium-doped monocrystalline silicon and application
CN110536980B (en) * 2017-02-28 2021-06-29 胜高股份有限公司 Method for manufacturing silicon single crystal ingot and silicon single crystal ingot
CN113355739A (en) * 2021-05-12 2021-09-07 晶澳太阳能有限公司 Monocrystalline silicon and method for producing same
CN114540950A (en) * 2022-01-10 2022-05-27 浙江大学 Method for growing n-type czochralski silicon by reducing furnace pressure
CN114622278A (en) * 2020-12-08 2022-06-14 内蒙古中环协鑫光伏材料有限公司 Silicon single crystal and preparation method thereof, silicon wafer, solar cell and module
CN115341266A (en) * 2021-05-13 2022-11-15 内蒙古中环协鑫光伏材料有限公司 Method for automatically controlling resistivity of monocrystalline silicon
CN115341267A (en) * 2021-05-13 2022-11-15 内蒙古中环协鑫光伏材料有限公司 Doping method for controlling resistivity of gallium-doped single crystal
CN115341271A (en) * 2021-05-13 2022-11-15 内蒙古中环协鑫光伏材料有限公司 A Method of Controlling the Axial Decay Rate of Single Crystal Resistivity
CN115613124A (en) * 2021-07-15 2023-01-17 内蒙古中环协鑫光伏材料有限公司 High-quality N-type single crystal pulling process and single crystal
CN116288658A (en) * 2023-05-22 2023-06-23 苏州晨晖智能设备有限公司 Single crystal furnace with intermittent doping at top and doping method thereof
WO2024175118A1 (en) * 2023-02-23 2024-08-29 隆基绿能科技股份有限公司 Monocrystalline silicon rod and silicon wafer prepared therefrom, and battery, battery string and solar module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654804A (en) * 2009-09-24 2010-02-24 浙江大学 Method for controlling specific resistance of gallium-doped Czochralski silicon in crystal growth process
CN102534752A (en) * 2012-03-08 2012-07-04 天津市环欧半导体材料技术有限公司 Czochralski zone melting gas doping method for preparing zone-melted silicon single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654804A (en) * 2009-09-24 2010-02-24 浙江大学 Method for controlling specific resistance of gallium-doped Czochralski silicon in crystal growth process
CN102534752A (en) * 2012-03-08 2012-07-04 天津市环欧半导体材料技术有限公司 Czochralski zone melting gas doping method for preparing zone-melted silicon single crystal

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104790027A (en) * 2014-01-21 2015-07-22 英飞凌科技股份有限公司 Silicon ingot and method of manufacturing silicon ingot
US10724148B2 (en) 2014-01-21 2020-07-28 Infineon Technologies Ag Silicon ingot and method of manufacturing a silicon ingot
CN105321987A (en) * 2014-06-30 2016-02-10 英飞凌科技股份有限公司 Semiconductor device containing chalcogen atoms and method of manufacturing
CN105321987B (en) * 2014-06-30 2018-08-14 英飞凌科技股份有限公司 Include the semiconductor devices and manufacturing method of sulfur family atom
CN105586633A (en) * 2014-11-07 2016-05-18 英飞凌科技股份有限公司 Method Of Manufacturing A Silicon Ingot And Silicon Ingot
US10337117B2 (en) 2014-11-07 2019-07-02 Infineon Technologies Ag Method of manufacturing a silicon ingot and silicon ingot
US11242616B2 (en) 2014-11-07 2022-02-08 Infineon Technologies Ag Silicon ingot
CN105887194A (en) * 2016-05-30 2016-08-24 上海超硅半导体有限公司 Growth method of type-n monocrystalline silicon
CN105951173A (en) * 2016-05-30 2016-09-21 上海超硅半导体有限公司 N type monocrystalline silicon crystal ingot and manufacturing method thereof
CN106400106A (en) * 2016-08-31 2017-02-15 内蒙古中环光伏材料有限公司 Method and device for improving uniformity of axial resistivity of czochralski monocrystalline silicon
CN106400106B (en) * 2016-08-31 2019-07-12 内蒙古中环光伏材料有限公司 A kind of method and device improving pulling of silicon single crystal axial direction resistivity evenness
CN106222742B (en) * 2016-09-12 2019-01-29 江西赛维Ldk太阳能高科技有限公司 A kind of crystalline silicon and preparation method thereof
CN106222742A (en) * 2016-09-12 2016-12-14 江西赛维Ldk太阳能高科技有限公司 A kind of crystalline silicon and preparation method thereof
CN106222743A (en) * 2016-09-19 2016-12-14 江西赛维Ldk太阳能高科技有限公司 A kind of polycrystal silicon ingot and preparation method thereof and for preparing the ingot furnace of polycrystal silicon ingot
CN110536980B (en) * 2017-02-28 2021-06-29 胜高股份有限公司 Method for manufacturing silicon single crystal ingot and silicon single crystal ingot
CN108330538A (en) * 2018-04-13 2018-07-27 内蒙古中环光伏材料有限公司 Disk and method are matched in a kind of nitrogen control for pulling single crystal silicon process
CN109505005A (en) * 2018-12-26 2019-03-22 徐州鑫晶半导体科技有限公司 Prepare the method and single crystal growing furnace of N-shaped monocrystalline silicon
CN110158148A (en) * 2019-04-29 2019-08-23 江苏协鑫软控设备科技发展有限公司 Crystal silicon and its crystal growth technique
CN110528066A (en) * 2019-09-03 2019-12-03 宁夏隆基硅材料有限公司 A kind of doping method, monocrystalline device and single crystal growing furnace
CN114622278B (en) * 2020-12-08 2024-04-05 内蒙古中环晶体材料有限公司 Silicon single crystal and preparation method thereof, silicon wafer, solar cell and assembly
CN114622278A (en) * 2020-12-08 2022-06-14 内蒙古中环协鑫光伏材料有限公司 Silicon single crystal and preparation method thereof, silicon wafer, solar cell and module
CN112831828A (en) * 2021-01-07 2021-05-25 杭州晶宝新能源科技有限公司 Growth method of gallium-doped Czochralski monocrystalline silicon, gallium-doped monocrystalline silicon and application
CN113355739A (en) * 2021-05-12 2021-09-07 晶澳太阳能有限公司 Monocrystalline silicon and method for producing same
CN113355739B (en) * 2021-05-12 2023-01-24 晶澳太阳能有限公司 Monocrystalline silicon and method for producing same
CN115341267A (en) * 2021-05-13 2022-11-15 内蒙古中环协鑫光伏材料有限公司 Doping method for controlling resistivity of gallium-doped single crystal
CN115341271A (en) * 2021-05-13 2022-11-15 内蒙古中环协鑫光伏材料有限公司 A Method of Controlling the Axial Decay Rate of Single Crystal Resistivity
CN115341266A (en) * 2021-05-13 2022-11-15 内蒙古中环协鑫光伏材料有限公司 Method for automatically controlling resistivity of monocrystalline silicon
CN115341267B (en) * 2021-05-13 2024-07-30 内蒙古中环晶体材料有限公司 Doping method for controlling resistivity of gallium-doped monocrystal
CN115613124A (en) * 2021-07-15 2023-01-17 内蒙古中环协鑫光伏材料有限公司 High-quality N-type single crystal pulling process and single crystal
CN114540950A (en) * 2022-01-10 2022-05-27 浙江大学 Method for growing n-type czochralski silicon by reducing furnace pressure
WO2024175118A1 (en) * 2023-02-23 2024-08-29 隆基绿能科技股份有限公司 Monocrystalline silicon rod and silicon wafer prepared therefrom, and battery, battery string and solar module
CN116288658A (en) * 2023-05-22 2023-06-23 苏州晨晖智能设备有限公司 Single crystal furnace with intermittent doping at top and doping method thereof
CN116288658B (en) * 2023-05-22 2023-10-24 苏州晨晖智能设备有限公司 Single crystal furnace with intermittent doping at top and doping method thereof

Also Published As

Publication number Publication date
CN102912424B (en) 2015-05-13

Similar Documents

Publication Publication Date Title
CN102912424B (en) Method for improving uniformity of axial resistivity of czochralski silicon and obtained monocrystalline silicon
CN102560641B (en) N-type casting policrystalline silicon with uniform doping resistivity and preparation method thereof
CN104124292B (en) Boron-gallium co-doped single crystal silicon wafer and its preparation method and solar cell
US20100065111A1 (en) Solar cells fabricated by using cvd epitaxial si films on metallurgical-grade si wafers
CN114540950B (en) Method for growing n-type Czochralski silicon by reducing furnace pressure
CN103367551B (en) A kind of diffusion technology of crystal silicon solar energy battery
CN101654804A (en) Method for controlling specific resistance of gallium-doped Czochralski silicon in crystal growth process
CN101560693A (en) Preparation method of solar-grade silicon crystal containing doping elements
WO2015172556A1 (en) Gallium-doped polycrystalline silicon ingot and preparation method therefor
CN102560646B (en) N-type casting monocrystalline silicon with uniform doping resistivity and preparation method thereof
CN106222742B (en) A kind of crystalline silicon and preparation method thereof
CN102560627B (en) N-type czochralski silicon with uniform doping resistivity and preparation method thereof
CN102925964B (en) The preparation method of a kind of P-type semiconductor, P-type dopant
CN101942701A (en) Heat treatment method of solar-grade silicon crystal
CN101597787A (en) Method for casting nitrogen-doped single crystal silicon with controllable nitrogen concentration under nitrogen
CN109616543A (en) Solar Cell Diffusion Process
CN102005506A (en) Germanium-doped crystalline silicon solar cell capable of suppressing light attenuation and preparation thereof
CN101220507A (en) A method for preparing silicon wafers for solar cells
CN112144117B (en) Hydrogen, phosphorus and nitrogen doped monocrystalline silicon, preparation method thereof and solar cell
CN102094236B (en) Czochralski method for growing long-lifetime P-type boron-doped silicon single crystal
US20230250549A1 (en) Method for preparing monocrystalline silicon and solar cell and photovoltaic module with monocrystalline silicon
CN115478321B (en) Czochralski growth method of doped monocrystalline silicon and doped monocrystalline silicon
CN103160918B (en) Quasi-monocrystalline silicon prepare stove and preparation method
CN1528956A (en) A method for growing Czochralski silicon single crystal with low defect density under magnetic field
CN203096227U (en) Preparation furnace of quasi monocrystalline silicon

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant