CN102909037A - Preparation method of porous cobalt selenide photocatalyst - Google Patents
Preparation method of porous cobalt selenide photocatalyst Download PDFInfo
- Publication number
- CN102909037A CN102909037A CN2012104108849A CN201210410884A CN102909037A CN 102909037 A CN102909037 A CN 102909037A CN 2012104108849 A CN2012104108849 A CN 2012104108849A CN 201210410884 A CN201210410884 A CN 201210410884A CN 102909037 A CN102909037 A CN 102909037A
- Authority
- CN
- China
- Prior art keywords
- concentration
- water
- cobalt selenide
- photocatalyst
- keep
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- QVYIMIJFGKEJDW-UHFFFAOYSA-N cobalt(ii) selenide Chemical compound [Se]=[Co] QVYIMIJFGKEJDW-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 6
- 238000002360 preparation method Methods 0.000 title claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 21
- 239000002244 precipitate Substances 0.000 claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims abstract description 10
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims abstract description 8
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 239000000047 product Substances 0.000 claims abstract description 8
- BVTBRVFYZUCAKH-UHFFFAOYSA-L disodium selenite Chemical compound [Na+].[Na+].[O-][Se]([O-])=O BVTBRVFYZUCAKH-UHFFFAOYSA-L 0.000 claims abstract description 7
- 229960001471 sodium selenite Drugs 0.000 claims abstract description 7
- 239000011781 sodium selenite Substances 0.000 claims abstract description 7
- 235000015921 sodium selenite Nutrition 0.000 claims abstract description 7
- 239000000243 solution Substances 0.000 claims description 26
- 239000003054 catalyst Substances 0.000 claims description 21
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 11
- 239000003344 environmental pollutant Substances 0.000 abstract description 4
- 231100000719 pollutant Toxicity 0.000 abstract description 4
- 239000002351 wastewater Substances 0.000 abstract description 4
- 230000015556 catabolic process Effects 0.000 abstract description 3
- 238000006731 degradation reaction Methods 0.000 abstract description 3
- 239000011148 porous material Substances 0.000 abstract description 3
- 238000005406 washing Methods 0.000 abstract description 3
- 238000006555 catalytic reaction Methods 0.000 abstract description 2
- 238000001179 sorption measurement Methods 0.000 abstract description 2
- 239000002699 waste material Substances 0.000 abstract description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 4
- 229960001545 hydrotalcite Drugs 0.000 description 4
- 229910001701 hydrotalcite Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004042 decolorization Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 229960000907 methylthioninium chloride Drugs 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910020639 Co-Al Inorganic materials 0.000 description 1
- 229910020675 Co—Al Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910019440 Mg(OH) Inorganic materials 0.000 description 1
- NSONMYPUAOKQHQ-UHFFFAOYSA-N [Co]=O.[Se] Chemical compound [Co]=O.[Se] NSONMYPUAOKQHQ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- CQPFMGBJSMSXLP-UHFFFAOYSA-M acid orange 7 Chemical compound [Na+].OC1=CC=C2C=CC=CC2=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 CQPFMGBJSMSXLP-UHFFFAOYSA-M 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 229910052599 brucite Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003933 environmental pollution control Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- QHASIAZYSXZCGO-UHFFFAOYSA-N selanylidenenickel Chemical compound [Se]=[Ni] QHASIAZYSXZCGO-UHFFFAOYSA-N 0.000 description 1
- 229940082569 selenite Drugs 0.000 description 1
- -1 selenite ions Chemical class 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
本发明公开一种催化降解废水或废弃污染物的多孔型硒化钴光催化剂的制备方法,将CoCl2和AlCl3分别溶解到水中配置成浓度均为1~2mol/L的两种溶液,将两种溶液混合后保持Co和Al的摩尔比为2~4,在恒温70~80℃水浴中滴入NaOH,保持pH值为12~13,反应2~3h,老化,沉淀分离,用去离子水洗;将得到的固体加入到浓度为1~2mol/L的亚硒酸钠溶液中,固液比1:20~1:50,获得的固体洗涤后在400~500℃下煅烧;将每1g煅烧得到的产物加入到20~40mL浓度为20%~40%水合肼溶液中,得到具有很好的孔洞结构和较大的比表面积,有利于吸附和催化的多孔型硒化钴光催化剂。The invention discloses a method for preparing a porous cobalt selenide photocatalyst that catalyzes the degradation of waste water or waste pollutants. CoCl 2 and AlCl 3 are respectively dissolved in water to form two solutions with a concentration of 1-2 mol/L. After the two solutions are mixed, keep the molar ratio of Co and Al at 2~4, add NaOH dropwise in a water bath at a constant temperature of 70~80°C, keep the pH value at 12~13, react for 2~3h, age, precipitate and separate, use deionized Washing with water; add the obtained solid to the sodium selenite solution with a concentration of 1~2mol/L, the solid-to-liquid ratio is 1:20~1:50, and the obtained solid is calcined at 400~500°C after washing; The calcined product was added to 20-40mL hydrazine hydrate solution with a concentration of 20%-40% to obtain a porous cobalt selenide photocatalyst with a good pore structure and a large specific surface area, which is conducive to adsorption and catalysis.
Description
技术领域 technical field
本发明涉及环境污染控制新材料的开发领域,尤其涉及一种催化降解废水或废弃污染物的多孔型硒化钴光催化剂的制备方法。 The invention relates to the field of development of new materials for environmental pollution control, in particular to a method for preparing a porous cobalt selenide photocatalyst that catalyzes the degradation of waste water or waste pollutants.
背景技术 Background technique
1972 年,Fujishma 和Honda 在等发现了用纳米二氧化钛作为光阳极进行紫外光光照可以分解H2O为H2和O2,这标志着多相光催化从基础研究到应用研究新时代的开始。自此,伴随着世界范围内能源危机的爆发和环境恶化问题等的出现,多相光催化研究日益引起人们的关注。它的目标是利用自然界最为丰富的能源——太阳光能来应用于能源转化与利用。 In 1972, Fujishma and Honda discovered that using nano-titanium dioxide as a photoanode for ultraviolet light irradiation can decompose H 2 O into H 2 and O 2 , which marked the beginning of a new era of heterogeneous photocatalysis from basic research to applied research. Since then, with the outbreak of energy crisis worldwide and the emergence of environmental degradation issues, research on heterogeneous photocatalysis has attracted people's attention. Its goal is to use the most abundant energy in nature - solar energy for energy conversion and utilization.
但是由于TiO2 的禁带宽(Eg=3.2 eV)导致其不能有效利用太阳光中的可见光部分,并且TiO2 光生电子-空穴对的复合概率较高,降低了其量子效率,以至于至今没有大规模工业应用。 However, due to the forbidden band of TiO 2 (Eg=3.2 eV), it cannot effectively use the visible light part of sunlight, and the recombination probability of TiO 2 photogenerated electron-hole pairs is relatively high, which reduces its quantum efficiency, so far no large-scale industrial applications.
钴类催化剂应用较广,特别是在催化氧化一些难降解的污染物方面,有较好的应用前景,比如:在室温下催化氧化甲醛、催化氧化环己烷等有机物。利用液相合成方法得到了一种非整数比硒化钴(Co0.85Se)纳米片,制备过程无需使用有机模板和表面活性剂,片的厚度不到10纳米;研究表明,合成得到的产品可有效吸附有机染料亚甲基蓝,可用于吸附污水中的有机染料(《中国化学会第28届学术年会第4分会场摘要集》2012年)。但该材料颗粒太小,固液分离困难,需要负载到载体上才能充分发挥其催化效力;通过一步低温水热合成方法,在导电玻璃上原位生长了硒化钴和硒化镍纳米晶,无需任何后处理,直接应用于染料敏化太阳电池,获得了优良的电池性能,特别是硒化钴具有比金属铂更高的电催化性能(JACS, DOI: 10.1021/ja303034w)。目前硒化钴类的催化剂由于需要载体才能有较大的比表面积,因此开发自成孔,具有较大比表面积的催化剂,对该类催化剂的推广应用具有积极意义。 Cobalt-based catalysts are widely used, especially in the catalytic oxidation of some refractory pollutants, such as: catalytic oxidation of formaldehyde, catalytic oxidation of cyclohexane and other organic substances at room temperature. A non-integer ratio cobalt selenide (Co0.85Se) nanosheet was obtained by liquid-phase synthesis method. The preparation process does not require the use of organic templates and surfactants, and the thickness of the sheet is less than 10 nanometers. Studies have shown that the synthesized product can be Effectively adsorb the organic dye methylene blue, and can be used to adsorb organic dyes in sewage ("Abstracts of the 4th Session of the 28th Annual Academic Conference of the Chinese Chemical Society" 2012). However, the particles of this material are too small, and solid-liquid separation is difficult, and it needs to be loaded on a carrier to fully exert its catalytic effect; through a one-step low-temperature hydrothermal synthesis method, cobalt selenide and nickel selenide nanocrystals were grown in situ on conductive glass, It is directly applied to dye-sensitized solar cells without any post-treatment, and excellent battery performance is obtained, especially cobalt selenide has higher electrocatalytic performance than metal platinum (JACS, DOI: 10.1021/ja303034w). At present, cobalt selenide catalysts need a carrier to have a large specific surface area, so the development of a self-forming pore catalyst with a large specific surface area is of positive significance for the promotion and application of this type of catalyst.
水滑石类化合物(LDHs)是由层间阴离子及带正电荷层板堆积而成的化合物。水滑石化学结构通式为:[M2+ 1-xM3+x (OH)2]x+ [(An- )x/n·mH2O],其中M2+和M3+分别为位于主体层板上的二价和三价金属阳离子,如Mg2+、Ni2+、Zn2+、Mn2+、Cu2+、Co2+、Pd2+、Fe2+等二价阳离子和Al3+、Cr3+、Co3+、Fe3+等三价阳离子均可以形成水滑石;An–为层间阴离子,可以包括无机阴离子,有机阴离子,配合物阴离子、同多和杂多阴离子;x为M3+/(M2++M3+)的摩尔比值,大约是4:1到2:1;m为层间水分子的个数。其结构类似于水镁石Mg(OH)2,由八面体共用棱边而形成主体层板。位于层板上的二价金属阳离子M2+可以在一定的比例范围内被离子半价相近的三价金属阳离子M3+同晶取代,使得层板带正电荷,层间存在可以交换的的阴离子与层板上的正电荷平衡,使得LDHs的整体结构呈电中性。层间的阴离子可被交换,经过一系列改性,水滑石材料可以得到许多种性能各异的物质。 Hydrotalcite-like compounds (LDHs) are compounds formed by the accumulation of interlayer anions and positively charged laminates. The general chemical structure formula of hydrotalcite is: [M 2+ 1-x M 3+ x (OH) 2 ] x+ [(A n- ) x/n mH 2 O], where M 2+ and M 3+ are respectively Divalent and trivalent metal cations located on the main layer, such as Mg 2+ , Ni 2+ , Zn 2+ , Mn 2+ , Cu 2+ , Co 2+ , Pd 2+ , Fe 2+ and other divalent cations and Al 3+ , Cr 3+ , Co 3+ , Fe 3+ and other trivalent cations can all form hydrotalcite; An– is an interlayer anion, which can include inorganic anions, organic anions, complex anions, isopoly and heteropoly Anion; x is the molar ratio of M 3+ /(M 2+ +M 3+ ), about 4:1 to 2:1; m is the number of interlayer water molecules. Its structure is similar to that of brucite Mg(OH) 2 , and the main laminates are formed by octahedrons sharing edges. The divalent metal cation M 2+ located on the laminate can be isomorphically replaced by the trivalent metal cation M 3+ with a similar half price within a certain proportion, so that the laminate is positively charged and there are exchangeable anions between the layers Balanced with the positive charge on the laminate, the overall structure of LDHs is electrically neutral. The anions between the layers can be exchanged, and after a series of modifications, the hydrotalcite material can obtain many kinds of substances with different properties.
发明内容 Contents of the invention
本发明的目的是为克服现有技术中载体价格高、负载工艺负责的不足,提供一种多孔型硒化钴光催化剂的制备方法。 The purpose of the invention is to provide a method for preparing a porous cobalt selenide photocatalyst in order to overcome the disadvantages of high carrier price and responsible loading process in the prior art.
本发明采用的技术方案是依次包括如下步骤:1)将CoCl2和AlCl3分别溶解到水中,配置为浓度均为1~2 mol/L的两种溶液,将两种溶液混合,保持混合溶液中的Co和Al的摩尔比为2~4,在恒温70~80℃水浴中滴入NaOH,保持pH值为12~13,反应2~3 h,老化12~24 h,沉淀分离,用去离子水洗2~3遍;2)将步骤1)得到的固体加入到浓度为1~2 mol/L的亚硒酸钠溶液中,固液比为1:20~1:50,搅拌 4~5 h,沉淀分离,获得的固体用去离子水洗涤2~3遍后,在400~500℃的温度下煅烧;3)将每1 g煅烧得到的产物加入到20~40 mL浓度为20%~40%的水合肼溶液中,得到多孔型硒化钴催化剂。 The technical scheme adopted by the present invention includes the following steps in turn: 1) Dissolving CoCl 2 and AlCl 3 into water respectively, configuring two solutions with a concentration of 1-2 mol/L, mixing the two solutions, and keeping the mixed solution The molar ratio of Co and Al in the solution is 2~4, drop NaOH in a constant temperature 70~80°C water bath, keep the pH value at 12~13, react for 2~3 h, age for 12~24 h, precipitate and separate, use Wash 2~3 times with ion water; 2) Add the solid obtained in step 1) into the sodium selenite solution with a concentration of 1~2 mol/L, the solid-liquid ratio is 1:20~1:50, and stir for 4~5 h, precipitation and separation, the obtained solid was washed 2~3 times with deionized water, and then calcined at a temperature of 400~500°C; 3) Add every 1 g of the calcined product to 20~40 mL with a concentration of 20%~ In 40% hydrazine hydrate solution, a porous cobalt selenide catalyst was obtained.
本发明的优点是: The advantages of the present invention are:
(1)通过共沉淀反应,形成钴夹杂着铝的比表面积较大的片层结构,再在层间交换入亚硒酸离子,再通过高温煅烧形成支撑结构,使片层与片层之间分开并固定,不会分离或闭合,使该材料具有很好的孔洞结构和较大的比表面积,有利于吸附和催化。 (1) Through the co-precipitation reaction, a sheet structure with a large specific surface area of cobalt mixed with aluminum is formed, and then selenite ions are exchanged between the layers, and then a support structure is formed by high-temperature calcination, so that the layer between the sheets Separated and fixed, it will not be separated or closed, so that the material has a good pore structure and a large specific surface area, which is conducive to adsorption and catalysis.
(2)在煅烧后,形成氧化物,最后将该氧化物利用水合肼还原,得到掺杂有铝支撑的硒化钴。 (2) After calcination, an oxide is formed, and finally the oxide is reduced by hydrazine hydrate to obtain cobalt selenide doped with aluminum support.
(3)该催化剂中掺杂有部分铝,在催化剂中形成骨架作用,并且在催化剂和骨架之间有较强的作用力,能防止催化剂脱落或团聚而降低催化面积和影响催化作用。 (3) The catalyst is doped with some aluminum to form a skeleton in the catalyst, and there is a strong force between the catalyst and the skeleton, which can prevent the catalyst from falling off or agglomerating to reduce the catalytic area and affect the catalytic effect.
具体实施方式 Detailed ways
将CoCl2和AlCl3分别溶解到水中,配置为浓度均为1~2 mol/L的溶液,将两种溶液混合,保持Co和Al的摩尔比为2~4,在恒温70~80℃水浴中滴入一定量的NaOH,保持pH值为12~13,反应2~3 h,老化12~24 h,在该过程中形成具有层状结构的沉淀,沉淀分离,去离子水洗2~3遍,在该过程中制备得到Co-Al型类水滑石。将该类水滑石加入到浓度为1~2 mol/L的亚硒酸钠溶液中,固液比为1:20~1:50,搅拌 4~5 h,沉淀分离,获得的固体在用去离子水洗涤2~3遍之后,在400~500℃的温度下煅烧;将每1 g煅烧得到的产物加入到20~40 mL浓度为20%~40%的水合肼溶液中,利用水合肼的还原作用,将硒钴氧化物还原成硒化钴,得到多孔型硒化钴催化剂。 Dissolve CoCl 2 and AlCl 3 in water respectively, and prepare solutions with a concentration of 1~2 mol/L, mix the two solutions, keep the molar ratio of Co and Al at 2~4, and place them in a water bath at a constant temperature of 70~80°C Drop a certain amount of NaOH into the solution, keep the pH value at 12~13, react for 2~3 hours, and age for 12~24 hours. During this process, a precipitate with a layered structure is formed, the precipitate is separated, and the deionized water is washed 2~3 times. , Co-Al type hydrotalcites were prepared in this process. Add this type of hydrotalcite into sodium selenite solution with a concentration of 1~2 mol/L, the solid-liquid ratio is 1:20~1:50, stir for 4~5 h, precipitate and separate, and the obtained solid is used After washing with ion water for 2 to 3 times, calcined at a temperature of 400 to 500 °C; each 1 g of calcined product was added to 20 to 40 mL of hydrazine hydrate solution with a concentration of 20% to 40%. Reduction, the selenium cobalt oxide is reduced to cobalt selenide to obtain a porous cobalt selenide catalyst.
以下进一步提供本发明的3个实施例: Further provide 3 embodiments of the present invention below:
实施例1Example 1
将CoCl2和AlCl3分别溶解到水中,配置为浓度为1 mol/L的溶液,将两种溶液混合,保持Co和Al的摩尔比为2,在恒温70℃水浴中滴入一定量的NaOH,保持pH值为12,反应2 h,老化12 h,在该过程中形成具有层状结构的沉淀,沉淀分离,去离子水洗2遍;将沉淀得到的固体加入到浓度为1 mol/L的亚硒酸钠溶液中,固液比为1:50,搅拌 4h,沉淀分离,获得的固体在用去离子水洗涤2遍之后,在400℃的温度下煅烧;将1 g煅烧得到的产品加入到20 mL浓度为40%的水合肼溶液中,得到多孔型硒化钴催化剂。 Dissolve CoCl 2 and AlCl 3 in water respectively, and prepare a solution with a concentration of 1 mol/L, mix the two solutions, keep the molar ratio of Co and Al at 2, and drop a certain amount of NaOH in a constant temperature 70°C water bath , keep the pH value at 12, react for 2 h, and age for 12 h. During this process, a precipitate with a layered structure is formed, the precipitate is separated, and washed twice with deionized water; In the sodium selenite solution, the solid-to-liquid ratio was 1:50, stirred for 4 hours, precipitated and separated, and the obtained solid was washed twice with deionized water, and then calcined at a temperature of 400°C; 1 g of the calcined product was added to into 20 mL of 40% hydrazine hydrate solution to obtain a porous cobalt selenide catalyst.
采用L形管(内径10 mm)连续流动反应评价装置,称量100 mg 合成得到的催化剂放置管中,在L形管子的竖直部分玻璃罐内同轴设有石英管,管内有功率为6W的紫外灯,调节空气的流速为40 mL/min,空气流动带动甲醛气体进入U形管反应器中,每小时流过每升催化剂的气体体积(即空速)为55000 h-1。在25℃条件下,该催化剂可使85%的浓度为100 ppm的甲醛气体完全氧化为二氧化碳和水。 Using an L-shaped tube (inner diameter of 10 mm) continuous flow reaction evaluation device, weighing 100 mg of the synthesized catalyst is placed in the tube, and a quartz tube is coaxially installed in the vertical part of the L-shaped tube in a glass jar, and the power in the tube is 6W The ultraviolet lamp is used, and the flow rate of the air is adjusted to 40 mL/min. The air flow drives the formaldehyde gas into the U-shaped tube reactor, and the volume of gas flowing through each liter of catalyst per hour (that is, the space velocity) is 55000 h -1 . At 25°C, the catalyst can completely oxidize 85% of formaldehyde gas with a concentration of 100 ppm to carbon dioxide and water.
实施例2Example 2
将CoCl2和AlCl3分别溶解到水中,配置为浓度为2 mol/L的溶液,将两种溶液混合,保持Co和Al的摩尔比为4,在恒温80℃水浴中滴入一定量的NaOH,保持pH值为13,反应3 h,老化24 h,在该过程中形成具有层状结构的沉淀,沉淀分离,去离子水洗3遍;将沉淀得到的固体加入到浓度为2 mol/L的亚硒酸钠溶液中,固液比为1:20,搅拌 5 h,沉淀分离,获得的固体在用去离子水洗涤3遍之后,在500℃的温度下煅烧;将1 g煅烧得到的产品加入到40 mL浓度为20%的水合肼溶液中,得到多孔型硒化钴催化剂。 Dissolve CoCl 2 and AlCl 3 in water respectively to make a solution with a concentration of 2 mol/L, mix the two solutions, keep the molar ratio of Co and Al at 4, and drop a certain amount of NaOH in a water bath with a constant temperature of 80°C , keep the pH value at 13, react for 3 h, and age for 24 h. During this process, a precipitate with a layered structure is formed. The precipitate is separated and washed with deionized water for 3 times; In sodium selenite solution, the solid-to-liquid ratio was 1:20, stirred for 5 h, precipitated and separated, and the obtained solid was washed three times with deionized water, and then calcined at a temperature of 500°C; 1 g of the calcined product Added to 40 mL of 20% hydrazine hydrate solution to obtain a porous cobalt selenide catalyst.
将得到的催化剂0.5g加入到500 mL 浓度为50mg/L 的Orange II废水中,在500w金卤灯照射下,反应3 h,脱色率为95%,说明该催化剂在可见光下也可以催化反应氧化去除污染物。 Add 0.5 g of the obtained catalyst to 500 mL of Orange II wastewater with a concentration of 50 mg/L, react for 3 hours under the irradiation of a 500w metal halide lamp, and the decolorization rate is 95%, indicating that the catalyst can also catalyze the oxidation reaction under visible light Removes pollutants.
实施例3Example 3
将CoCl2和AlCl3分别溶解到水中,配置为浓度为2 mol/L的溶液,将两种溶液混合,保持Co和Al的摩尔比为3,在恒温75℃水浴中滴入一定量的NaOH,保持pH值为13,反应3 h,老化18 h,在该过程中形成具有层状结构的沉淀,沉淀分离,去离子水洗3遍;将沉淀得到的固体加入到浓度为1.5 mol/L的亚硒酸钠溶液中,固液比为1:30,搅拌 4 h,沉淀分离,获得的固体在用去离子水洗涤3遍之后,在450℃的温度下煅烧;将1 g煅烧得到的产品加入到30 mL浓度为30%的水合肼溶液中,得到多孔型硒化钴催化剂。 Dissolve CoCl 2 and AlCl 3 in water respectively, and prepare a solution with a concentration of 2 mol/L, mix the two solutions, keep the molar ratio of Co and Al at 3, and drop a certain amount of NaOH in a constant temperature 75°C water bath , keep the pH value at 13, react for 3 h, and age for 18 h. During this process, a precipitate with a layered structure is formed. The precipitate is separated and washed with deionized water for 3 times; In the sodium selenite solution, the solid-to-liquid ratio was 1:30, stirred for 4 h, precipitated and separated, and the obtained solid was washed with deionized water for 3 times, then calcined at a temperature of 450°C; 1 g of the calcined product Add it into 30 mL of 30% hydrazine hydrate solution to obtain a porous cobalt selenide catalyst.
将得到的催化剂0.5g加入到500 mL 浓度为50mg/L 的亚甲基蓝废水中,在500w金卤灯照射下,反应3 h,脱色率为90%,说明该催化剂在可见光下可以催化反应氧化去除污染物。 Add 0.5 g of the obtained catalyst to 500 mL of methylene blue wastewater with a concentration of 50 mg/L, react for 3 hours under the irradiation of a 500w metal halide lamp, and the decolorization rate is 90%, which shows that the catalyst can catalyze the reaction oxidation to remove pollution under visible light things.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210410884.9A CN102909037B (en) | 2012-10-25 | 2012-10-25 | Preparation method of porous cobalt selenide photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210410884.9A CN102909037B (en) | 2012-10-25 | 2012-10-25 | Preparation method of porous cobalt selenide photocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102909037A true CN102909037A (en) | 2013-02-06 |
CN102909037B CN102909037B (en) | 2014-04-30 |
Family
ID=47607752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210410884.9A Expired - Fee Related CN102909037B (en) | 2012-10-25 | 2012-10-25 | Preparation method of porous cobalt selenide photocatalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102909037B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103466566A (en) * | 2013-08-30 | 2013-12-25 | 天津大学 | Method for synthesizing cobalt diselenide nanocrystal in polyalcohol-base solution |
CN104383943A (en) * | 2014-09-16 | 2015-03-04 | 安徽大学 | Preparation method for catalyst efficiently catalyzing hydrogenation reduction of 4-nitrophenol |
CN115069301A (en) * | 2022-05-27 | 2022-09-20 | 恒天嘉华非织造有限公司 | Composite material for printing and dyeing textile wastewater treatment and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1384047A (en) * | 2002-06-07 | 2002-12-11 | 清华大学 | Synthesis of several metal selenides and tellurides as semiconductor material |
CN101961657A (en) * | 2010-09-06 | 2011-02-02 | 天津工业大学 | Se-doped InOOH photocatalyst with visible light response and preparation method thereof |
CN102079513A (en) * | 2011-02-25 | 2011-06-01 | 安徽大学 | Preparation method of non-integer ratio graphene selenium cobalt nano sheet |
CN102225340A (en) * | 2011-04-08 | 2011-10-26 | 安徽大学 | A kind of synthetic method of room temperature efficient decomposition hydrazine catalyst |
CN102728301A (en) * | 2012-06-30 | 2012-10-17 | 安徽大学 | Preparation method and application of ferroferric-oxide-supported cobalt selenide magnetic nano composite material |
-
2012
- 2012-10-25 CN CN201210410884.9A patent/CN102909037B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1384047A (en) * | 2002-06-07 | 2002-12-11 | 清华大学 | Synthesis of several metal selenides and tellurides as semiconductor material |
CN101961657A (en) * | 2010-09-06 | 2011-02-02 | 天津工业大学 | Se-doped InOOH photocatalyst with visible light response and preparation method thereof |
CN102079513A (en) * | 2011-02-25 | 2011-06-01 | 安徽大学 | Preparation method of non-integer ratio graphene selenium cobalt nano sheet |
CN102225340A (en) * | 2011-04-08 | 2011-10-26 | 安徽大学 | A kind of synthetic method of room temperature efficient decomposition hydrazine catalyst |
CN102728301A (en) * | 2012-06-30 | 2012-10-17 | 安徽大学 | Preparation method and application of ferroferric-oxide-supported cobalt selenide magnetic nano composite material |
Non-Patent Citations (2)
Title |
---|
FRITHJOF BØHM 等: "X-Ray and Magnetic Study of the System Cobalt Selenium", 《ACTA CHEMICA SCANDINAVICA》 * |
KAZUHIRO TAKAHASHI 等: "Kinetics and Mechanism of the High Temperature Selenidization of Cobalt", 《BULLETIN OF THE CHEMICAL SOIETY OF JAPAN》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103466566A (en) * | 2013-08-30 | 2013-12-25 | 天津大学 | Method for synthesizing cobalt diselenide nanocrystal in polyalcohol-base solution |
CN104383943A (en) * | 2014-09-16 | 2015-03-04 | 安徽大学 | Preparation method for catalyst efficiently catalyzing hydrogenation reduction of 4-nitrophenol |
CN104383943B (en) * | 2014-09-16 | 2017-03-15 | 安徽大学 | A kind of preparation method of efficient catalytic p-nitrophenol hydro-reduction catalyst |
CN115069301A (en) * | 2022-05-27 | 2022-09-20 | 恒天嘉华非织造有限公司 | Composite material for printing and dyeing textile wastewater treatment and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102909037B (en) | 2014-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Recent advances in bismuth-based photocatalysts: Environment and energy applications | |
Shit et al. | Integrated nano-architectured photocatalysts for photochemical CO 2 reduction | |
Li et al. | The enhanced photo-catalytic CO2 reduction performance of g-C3N4 with high selectivity by coupling CoNiSx | |
Aghdam et al. | Precipitation dispersion of various ratios of BiOI/BiOCl nanocomposite over g-C3N4 for promoted visible light nanophotocatalyst used in removal of acid orange 7 from water | |
Chen et al. | Carbon nitride for photocatalytic water splitting to produce hydrogen and hydrogen peroxide | |
CN104525266B (en) | Preparation method of metal-organic framework material photocatalyst and application | |
CN104646037A (en) | BiOXs pholocatalyst, grapheme-compounded BiOXs pholocatalyst and preparation method thereof | |
CN102698784B (en) | Visible light response catalyst and preparation method thereof | |
CN103191725B (en) | BiVO4/Bi2WO6 compound semiconductor material and its hydrothermal preparation method and its application | |
CN104624193B (en) | A kind of preparation method of silicon dioxide supported magnetic cobalt oxide catalyst | |
CN101947454A (en) | Transitional metal-doped zinc oxide mesoporous material with visible light catalytic activity and preparation method thereof | |
CN106064101A (en) | A kind of iron-based MOFs catalysis material and preparation and application thereof | |
CN101757908A (en) | Method for preparing Bi2WO6 with high efficiency and visible light photocatalytic activity by adjusting pH | |
Ma et al. | Heterogeneous junction Ni-MOF@ BiOBr composites: Photocatalytic degradation of methylene blue and ciprofloxacin | |
CN103263910A (en) | Bismuth vanadate-graphene composite photocatalyst, and preparation and application thereof | |
CN102172529B (en) | Houghite photocatalyst based on visible light response and preparation method thereof | |
CN104475129A (en) | Low-temperature preparation method of copper sulfide/titanium oxide hetero-junction photocatalyst | |
CN104014291A (en) | Fluorescent rotary plate reactor utilizing Ag/BiOBr visible light catalytic film | |
CN102941092B (en) | Mesoporous alumina supported cobalt oxide catalyst preparation method | |
CN103111335B (en) | Ionic crystal type visible-light-induced photocatalyst based on Dawson type poly-tungstate and preparation method thereof | |
CN106391066A (en) | Composite light catalyst for quickly and efficiently degrading rhodamine B and preparation method of composite light catalyst | |
CN106362742A (en) | Ag/ZnO nano-composite, preparation method thereof and application of composite | |
CN102909037B (en) | Preparation method of porous cobalt selenide photocatalyst | |
Hu et al. | The core-shell structure of C/BiOBr@ Co-MOF for efficient degradation of organic dyes under visible light | |
Chang et al. | Ultra-stable type-II heterojunctions Bi4O5I2/FeVO4 of reinforced photocatalytic NOx removal abilities in visible light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP02 | Change in the address of a patent holder |
Address after: 213016 Baiyun District, Changzhou, Jiangsu Patentee after: Changzhou University Address before: Gehu Lake Road Wujin District 213164 Jiangsu city of Changzhou province No. 1 Patentee before: Changzhou University |
|
TR01 | Transfer of patent right |
Effective date of registration: 20201116 Address after: No. 159, Chengjiang Middle Road, Yinshi, Wuxi City, Jiangsu Province Patentee after: Jiangyin Intellectual Property Operation Co.,Ltd. Address before: 213016 Baiyun Road, bell tower area, Changzhou, Jiangsu Patentee before: CHANGZHOU University |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140430 |
|
CF01 | Termination of patent right due to non-payment of annual fee |