CN102901971A - Parity vector method-based double-satellite failure recognition method - Google Patents

Parity vector method-based double-satellite failure recognition method Download PDF

Info

Publication number
CN102901971A
CN102901971A CN2012103655241A CN201210365524A CN102901971A CN 102901971 A CN102901971 A CN 102901971A CN 2012103655241 A CN2012103655241 A CN 2012103655241A CN 201210365524 A CN201210365524 A CN 201210365524A CN 102901971 A CN102901971 A CN 102901971A
Authority
CN
China
Prior art keywords
fault
satellite
satellites
detect
parity vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103655241A
Other languages
Chinese (zh)
Other versions
CN102901971B (en
Inventor
曾超
滕云龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201210365524.1A priority Critical patent/CN102901971B/en
Publication of CN102901971A publication Critical patent/CN102901971A/en
Application granted granted Critical
Publication of CN102901971B publication Critical patent/CN102901971B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The invention relates to global satellite navigation system receiver autonomous integrity monitoring technology and discloses a parity vector method-based double-satellite failure recognition method, aiming at the problems of false positives and false negatives caused by fault deviation offsetting when the parity vector method is used for recognizing two fault satellites. According to the technical scheme, the parity vector method is used for recognizing one fault satellite; with the fault satellite as the basis, four fault-free satellites are found out, and the information of the fault-free satellites is used for roughly locating, so that the fault satellites can be recognized; the recognized fault satellites are removed, and then the position resolution is carried out again, so that the locating accuracy is improved; therefore, the problems of false positives or false negatives caused by fault deviation offsetting can be avoided. The method solves the problem of the fault deviation offsetting caused by parity vector residual error and realizes the detection and the recognition for a plurality of fault satellites. After the method is used for detecting and recognizing satellite failure, the locating accuracy is improved. The method is mainly used for monitoring the autonomous integrity of a global satellite navigation system receiver.

Description

Double star fault recognition method based on the parity vector method
Technical field
The present invention relates to satellite navigation and location technology, be particularly related to GPS (Global Position System) (Global Navigation Satellite System, GNSS) receiver autonomous integrity monitoring (Receiver Autonomous Integrity Monitoring, RAIM) method.
Background technology
The GNSS receiver must be taken the pseudorange deviation into account to the impact of navigational solution when obtaining navigational solution.The principal element that causes the pseudorange deviation has that larger satellite clock floats, the fault of the incorrect and satellite ingredient of navigation message data, is referred to as satellite failure here.Because system can't guarantee the reaction time to satellite failure, the fast monitored of satellite failure is only carried out at user side so, thereby the receiver autonomous integrity monitoring method occurred.
The satellite mistake that RAIM utilizes redundant distance measuring signal to detect to cause larger deviations.Usually RAIM comprises two functions: fault detect (Fault Detection) and Fault Identification (Fault Identification).Comparatively RAIM method commonly used comprises: Agonists by Distance Comparison Method, least square method and parity vector method.But these methods all are based under the supposed premise of a fault satellites.Along with the overhead satellites number constantly increases, the probability that two or multi-satellite break down simultaneously can not be left in the basket again.
Traditional fault satellites recognition methods can not be directly used in many fault satellites identifications, and not perfect about the recognition methods of many fault satellites.For example, the parity vector method is used for the deviation counteracting of can breaking down when two fault satellites are identified, and brings thus the situation of failing to judge and judging by accident.
The principle of a fault satellites of parity vector method identification is as follows:
The basic observation equation of receiver positioning calculation is:
y=Hx+e (1)
In the formula (1), y is the residual vector of Pseudo-range Observations, and H is observing matrix, and x is receiver location residual error and receiver clock error to be calculated, and e is the measuring error of Pseudo-range Observations.
When the non-fault satellite exists, think that measuring error e obeys variance and is
Figure BDA00002200714700011
Normal distribution; When having fault satellites to exist, deviation appears in the pseudorange of fault satellites, and at this moment, e is Normal Distribution no longer.
When application parity vector method is carried out the fault satellites detection with identification, at first observing matrix H is decomposed into the long-pending of an orthogonal matrix Q and a upper triangular matrix R, even:
H=QR (2)
Transposed matrix Q with matrix Q TPiecemeal:
Q T = Q x Q p - - - ( 3 )
In the formula (3), Q p∈ R (n-4) * nBe the odd even space matrix, wherein n is number of satellite, Q xBe Q TFront four lines, then:
p=Q py=Q pe (4)
In the formula (4), p is parity vector.Pseudorange residual sum of squares (RSS) SSE can construct with parity vector p:
SSE=p Tp (5)
When not having fault satellites,
Figure BDA00002200714700022
Obeying degree of freedom is the centralization card side distribution of (n-4), namely
Figure BDA00002200714700023
When having fault satellites, The card side that obeys decentralization distributes, namely
Figure BDA00002200714700025
λ is the decentralization parameter.Therefore, can construct the fault detect judgement amount
Figure BDA00002200714700026
σ ^ n = SSE n - 4 - - - ( 6 )
As overall false-alarm probability α 0Can calculate fault detect thresholding σ after given T, nFor:
σ T , n = σ 0 T n n - 4 T n = icdf ( χ 2 ( 1 - α 0 , n - 4 ) ) - - - ( 7 )
In the formula (7), icdf is (1-α) fractile that computer card side distributes.
Figure BDA00002200714700029
The time think have fault satellites to exist, and then identification fault satellites, otherwise, think the non-fault satellite, the receiver information of current calculating is accurately.The fault detect judgement amount here
Figure BDA000022007147000210
With fault detect thresholding σ T, n, be used to carrying out fault detect.
From formula (4) as can be known parity vector p be through Q by observational error e pProjection gets, and can carry out fault satellites identification with the geometric properties between them.Structure Fault Identification judgement amount:
r i = | | p Q p , i | | | | Q p , i | | - - - ( 8 )
When all satellites during without the pseudorange deviation,
Figure BDA000022007147000212
Therefore the false-alarm probability α that works as single satellite 1Give regularly, can calculate the Fault Identification thresholding:
T r , n = σ 0 erf - 1 ( α 1 2 n ) - - - ( 9 )
In the formula (9), erf (x) is Gauss error function, erf -1(x) be its inverse function.Work as r iGreater than T rThe time, can judge that i satellite is fault satellites, there is deviation in its pseudorange.After i satellite rejecting, utilize all the other satellites again to position and resolve to improve bearing accuracy.The Fault Identification judgement amount r of formula (8) and formula (9) iWith Fault Identification thresholding T R, n, be used to carrying out Fault Identification.
Summary of the invention
Technical matters to be solved by this invention, the deviation that can break down when being used for two fault satellites identification for the parity vector method is exactly offset, and brings thus the shortcoming of failing to judge and judging by accident, and a kind of double star fault recognition method based on the parity vector method is provided.
The present invention solve the technical problem, and the technical scheme of employing is that the double star fault recognition method based on the parity vector method comprises step:
(1), from an existing n satellite, reject satellite i, n is receiver visible satellite quantity in the global position system, n 〉=7;
(2), to remaining (n-1) satellite according to the fault detect judgement amount With fault detect thresholding σ T, (n-1)Carry out fault detect, if
Figure BDA00002200714700032
Then think to remain non-fault satellite existence in the satellite, detect and finish; Otherwise, carry out fault satellites identification with the parity vector method, according to Fault Identification judgement amount r iMaximal value r j=max (r 1, r 2..., r n), satellite j is rejected;
(3), to remaining (n-2) satellite according to the fault detect judgement amount
Figure BDA00002200714700033
With fault detect thresholding σ T, (n-2)Carry out fault detect, if
Figure BDA00002200714700034
Then confirm satellite i non-fault, make the non-fault number of satellite add one, enter step (4); Otherwise, the combinations of satellites (i that record is rejected k, j k) and calculate position and the clock correction x of receiver with least square method k, forward step (5) to;
(4), judge whether the non-fault number of satellite of current gained reaches 4, if reach 4 rough position and clock correction that then calculate receiver
Figure BDA00002200714700035
And from residue (n-4) satellite, identify fault satellites, and again resolve receiver location and clock correction, detect and finish; Otherwise, enter step (5);
(5), make i=i+1, if i>n, then the non-fault number of satellite is less than 4, at this moment, from the combinations of satellites of rejecting with pseudorange residual error statistic λ kMinimum value λ Min=min (λ 1, λ 2..., λ m) corresponding combinations of satellites is as fault satellites, and calculate the receiver location corresponding with this combinations of satellites and clock correction as positioning result, detect and finish; Otherwise return step (1).
Concrete, the fault detect judgement amount
Figure BDA00002200714700036
Obtained by following formula:
σ ^ n - 1 = SSE ( n - 1 ) - 4
Wherein, SSE is the pseudorange residual sum of squares (RSS);
Fault detect thresholding σ T, (n-1)Obtained by following formula:
σ T , ( n - 1 ) = σ 0 T n - 1 ( n - 1 ) - 4 T n - 1 = icdf ( χ 2 ( 1 - α , ( n - 1 ) - 4 ) )
Wherein, icdf is (1-α) fractile that computer card side distributes;
Fault Identification judgement amount r iObtained by following formula:
r i = | | p Q p . i | | | | Q p . i | | .
Concrete, detect judgement amount
Figure BDA00002200714700042
Obtained by following formula:
σ ^ n - 2 = SSE ( n - 2 ) - 4
Wherein, SSE is the pseudorange residual sum of squares (RSS);
Fault detect thresholding σ T, (n-2)Obtained by following formula:
σ T , ( n - 2 ) = σ 0 T n - 2 ( n - 2 ) - 4 T n - 2 = icdf ( χ 2 ( 1 - α , ( n - 2 ) - 4 ) )
Wherein, icdf is (1-α) fractile that computer card side distributes.
Concrete, rough position and clock correction
Figure BDA00002200714700045
Obtained by following formula:
x ^ = ( H 0 T H 0 ) - 1 H 0 T y 0
Wherein, H 0Be 4 observing matrixes that the non-fault satellite consists of of current gained, Be H 0Transposed matrix, y 0Pseudo-range Observations vector for 4 non-fault satellites of current gained.
Concrete, receiver location and clock correction x kObtained by following formula:
x k = ( H k T H k ) - 1 H k T y k k=1,2,…,N
Wherein, H kFor having rejected two satellite (i k, j k) after the observing matrix that consists of of remaining (n-2) satellite, y kFor having rejected two satellite (i k, j k) after the Pseudo-range Observations vector of remaining (n-2) satellite;
Pseudorange residual error statistic λ kObtained by following formula:
λ k = Σ h = 1 h ≠ i , j n ( ρ h - b k - ( x h - x k ) 2 + ( y h - y k ) 2 + ( z h - z k ) 2 ) 2 .
The invention has the beneficial effects as follows, solved the fault deviation cancellation problem of parity vector residual error, realized the detection identification of many fault satellites.Detect the identification satellite fault by the present invention, can improve bearing accuracy.
Description of drawings
Fig. 1 is process flow diagram of the present invention.
Embodiment
Below in conjunction with drawings and Examples, describe technical scheme of the present invention in detail.
The present invention is take fault satellites of parity vector method identification as the basis, find out 4 non-fault satellites, then carry out coarse localization with the information of non-fault satellite, and identify thus fault satellites, to re-start again location compute with the raising bearing accuracy after its rejecting, thereby avoid the failing to judge or the erroneous judgement problem of bringing by the counteracting of fault deviation.
Of the present inventionly mainly contain two gordian techniquies, the one, the identification of non-fault satellite take fault satellites of parity vector method identification as the basis, is found out 4 non-fault satellites in order to coarse localization from an existing n satellite; The 2nd, gone out rough position and the clock correction of receiver by the information calculations of 4 non-fault satellites
Figure BDA00002200714700051
Wherein
Figure BDA00002200714700052
The rough coordinates of receiver,
Figure BDA00002200714700053
Receiver clock correction.And by
Figure BDA00002200714700054
Calculate the pseudorange residual delta of all the other (n-4) satellites i, and determine detection threshold according to the false-alarm probability of fault satellites identification, identify fault satellites.
The below elaborates with regard to two gordian techniquies:
1, non-fault satellite recognition principle
If there are two fault satellites to exist, then in n satellite, rejected one by one two satellites with the parity vector method after, if according to the fault detect judgement amount of remaining (n-2) satellite calculating gained still greater than the fault detect thresholding, that is:
Figure BDA00002200714700055
First satellite of then rejecting must be the non-fault satellite, do not have deviation in the pseudorange.The principle of identification non-fault satellite can be divided into following two kinds of situations and discuss:
(1) if calculates the fault detect judgement amount of gained still less than the fault detect thresholding, that is: according to remaining (n-2) satellite
Figure BDA00002200714700056
The time, in remaining (n-2) satellite, may there be fault satellites or has two fault satellites, but under the effect that the fault deviation is offset, so that
Figure BDA00002200714700057
Can't judge in this case whether fault satellites of first satellite of rejecting.
(2) if calculate the fault detect judgement amount of gained still greater than the fault detect thresholding, that is: according to remaining (n-2) satellite
Figure BDA00002200714700058
The time, in remaining (n-2) satellite, may there be a fault satellites; Also at this moment fault deviation counteracting is not obvious, has two fault satellites.No matter be which kind of situation, first satellite of rejecting all must be the non-fault satellite, otherwise, in remaining (n-1) satellite, only have a fault satellites to exist, adopt the parity vector method another fault satellites can be identified this moment, thereby
Figure BDA00002200714700059
If it should be noted that note:
Figure BDA000022007147000510
Be event A; First satellite of rejecting is that the non-fault satellite is event B.
Then discuss for following three propositions:
Proposition 1: if B is A then.This is a wrong proposition, when second satellite of rejecting during also for satellite without reason, has two fault satellites in remaining (n-2) satellite, and the deviation counteracting then if break down this moment Therefore, even if first satellite is the non-fault satellite,
Figure BDA00002200714700062
Also might be less than σ T (n-2)
Proposition 2: if
Figure BDA00002200714700063
Then
Figure BDA00002200714700064
Therefore this proposition also is wrong for proposition 1 converse negative proposition, it also just explanation can not because of
Figure BDA00002200714700065
Just judge that two satellites of rejecting are fault satellites.
Proposition 3: if
Figure BDA00002200714700066
Then
Figure BDA00002200714700067
First satellite of even rejecting be fault satellites then
Figure BDA00002200714700068
This proposition is set up, and when first satellite of rejecting is fault satellites, only has a fault satellites in remaining (n-1) satellite, use the parity vector method this satellite can be identified, so the non-fault satellite exists in remaining (n-2) satellite, therefore &sigma; ^ n - 2 < &sigma; T , ( n - 2 ) .
The method that the present invention identifies the non-fault satellite is mutually converse negative proposition with proposition 3, thereby the correctness of identification non-fault satellite method has been described.
2, fault satellites recognition principle
Can detect 4 non-fault satellites by top method, the information of 4 non-fault satellites just can calculate by the method for least square rough position and the receiver clock correction of receiver thus
Figure BDA000022007147000610
Work as acquisition After can the compute pseudo-ranges residual delta i:
&Delta; i = | &rho; i - b ^ - ( x i - x ^ ) 2 + ( y i - y ^ ) 2 + ( z i - z ^ ) 2 - - - ( 10 )
When there is not the pseudorange deviation in satellite i, the pseudorange observational error
Figure BDA000022007147000613
Otherwise, e iBe not 0 Gaussian distribution with obeying average.Therefore, as single satellite false-alarm probability α 1To regularly having:
P ( &Delta; i > T &Delta; ) = &Integral; T &Delta; + &infin; 1 2 &pi; &sigma; 0 exp ( - &Delta; i 2 2 &sigma; 2 ) d &Delta; i = 1 - &alpha; 1 2 - - - ( 11 )
Through type (11) can calculate fault satellites identification thresholding T ΔΔ iWith T ΔAll identify for fault satellites.
Work as Δ i>T ΔThe time can judge that satellite i is fault satellites, can realize thus the identification of two fault satellites.
In addition, when fault satellites during more than, since the cause that the fault deviation is offset, the Fault Identification judgement amount r of parity vector method i(i=1,2 ..., maximal value r n) j=max (r 1, r 2..., r n), r MaxCorresponding satellite j may not be the fault satellite.And from reducing the angle of calculated amount, when realizing, the rejecting of first satellite can be adopted the method for rejecting one by one, when second fault satellites of identification, re-uses the parity vector method.
From non-fault satellite recognition principle as can be known, the present invention is mainly by the fault detect judgement amount behind two satellites of rejecting
Figure BDA00002200714700071
First satellite that decides rejecting be fault satellites whether.Calculating The time, need to satisfy n-2 〉=5, therefore, only have when number of satellite and just can carry out the double star fault detect during more than or equal to 7 (n 〉=7).Yet less and fault deviation is offset when serious when number of satellite, even if all satellites are all searched one time, the non-fault number of satellite that obtains may be still less than 4.Can not calculate the coarse information of receiver this moment, thereby can't carry out fault satellites identification.
The non-fault number of satellite is right less than 4 o'clock needs The time all satellites of rejecting combination (i k, j k) test.Corresponding every kind of fault satellites combination can be calculated one group receiver coordinate and clock correction x with residue (n-2) satellite by least square method k=(x k, y k, z k, b k) k=1,2 ..., m, m is
Figure BDA00002200714700074
Corresponding all combinations of satellites numbers.
Equally according to x kCan calculate the pseudorange residual error statistic λ of residue (n-2) satellite k, as decision statistics:
&lambda; k = &Sigma; h = 1 h &NotEqual; i , j n ( &rho; h - b k - ( x h - x k ) 2 + ( y h - y k ) 2 + ( z h - z k ) 2 ) 2 - - - ( 12 )
If λ l=min (λ 1, λ 2..., λ m), (i then l, j l) for the fault satellites combination, position with the residue satellite again after the rejecting and resolve, obtain the receiver exact position.
Embodiment
Fig. 1 has provided flow process of the present invention.Its concrete grammar is as follows:
(1), from an existing n satellite, reject satellite i, i is 1 when initial;
(2), remaining (n-1) satellite is carried out fault detect, the fault detect judgement amount
Figure BDA00002200714700076
&sigma; ^ n - 1 = SSE ( n - 1 ) - 4 - - - ( 13 )
Calculate the fault detect thresholding σ of (n-1) satellite T, (n-1):
&sigma; T , ( n - 1 ) = &sigma; 0 T n - 1 ( n - 1 ) - 4 T n - 1 = icdf ( &chi; 2 ( 1 - &alpha; , ( n - 1 ) - 4 ) ) - - - ( 14 )
If Then think to remain non-fault satellite existence in the satellite, detect and finish; Otherwise, carry out fault satellites identification with the parity vector method, calculate Fault Identification judgement amount r i:
r i = | | p Q p . i | | | | Q p . i | | - - - ( 15 )
Try to achieve r i(i=1,2 ..., maximal value r n) j=max (r 1, r 2..., r n), will enter step (3) after the satellite j rejecting;
(3), remaining (n-2) satellite is carried out fault detect, the fault detect judgement amount of calculating (n-2) satellite:
&sigma; ^ n - 2 = SSE ( n - 2 ) - 4 - - - ( 16 )
Wherein, SSE is the pseudorange residual sum of squares (RSS);
Barrier detection threshold σ T, (n-2)Obtained by following formula:
&sigma; T , ( n - 2 ) = &sigma; 0 T n - 2 ( n - 2 ) - 4 T n - 2 = icdf ( &chi; 2 ( 1 - &alpha; , ( n - 2 ) - 4 ) ) - - - ( 17 )
Wherein, icdf is (1-α) fractile that computer card side distributes.
If
Figure BDA00002200714700083
Then confirm satellite i non-fault, make the non-fault number of satellite add one, enter step (4); Otherwise, the combinations of satellites (i that record is rejected k, j k) and calculate position and the clock correction x of receiver with least square method k,
Figure BDA00002200714700084
K=1,2 ..., N, wherein, H kFor having rejected two satellite (i k, j k) after the observing matrix that consists of of remaining (n-2) satellite, y kFor having rejected two satellite (i k, j k) after the Pseudo-range Observations vector of remaining (n-2) satellite.Forward step (5) to;
(4), judge whether the non-fault number of satellite of current gained reaches 4, if reach 4 rough position and clock correction that then calculate receiver
x ^ = ( H 0 T H 0 ) - 1 H 0 T y 0 - - - ( 18 )
In the formula (18), H 0Be 4 observing matrixes that the non-fault satellite consists of of current gained, Be H 0Transposed matrix, y 0Pseudo-range Observations vector for 4 non-fault satellites of current gained.
Obtain After, can come the compute pseudo-ranges residual delta according to formula (10) and formula (11) iWith fault satellites identification thresholding T Δ, and from remaining (n-4) satellite, identify fault satellites, and again resolve receiver location and clock correction information, detect and finish; Otherwise enter step (5);
(5), make i=i+1, if i>n, then the non-fault number of satellite is less than 4, at this moment, according to x kObtain pseudorange residual error statistic λ k, from the combinations of satellites of rejecting with pseudorange residual error statistic λ kMinimum value λ Min=min (λ 1, λ 2..., λ m) corresponding combinations of satellites is as fault satellites, and calculate the receiver location corresponding with this combinations of satellites and clock correction as positioning result, detect and finish; Otherwise return step (1).

Claims (5)

1. based on the double star fault recognition method of parity vector method, comprise step:
(1), from an existing n satellite, reject satellite i, n is receiver visible satellite quantity in the global position system, n 〉=7;
(2), to remaining (n-1) satellite according to the fault detect judgement amount
Figure FDA00002200714600011
With fault detect thresholding σ T, (n-1)Carry out fault detect, if
Figure FDA00002200714600012
Then think to remain non-fault satellite existence in the satellite, detect and finish; Otherwise, carry out fault satellites identification with the parity vector method, according to Fault Identification judgement amount r iMaximal value r j=max (r 1, r 2, r n), satellite j is rejected;
(3), to remaining (n-2) satellite according to the fault detect judgement amount
Figure FDA00002200714600013
With fault detect thresholding σ T, (n-2)Carry out fault detect, if
Figure FDA00002200714600014
Then confirm satellite i non-fault, make the non-fault number of satellite add one, enter step (4); Otherwise, the combinations of satellites (i that record is rejected k, j k) and calculate position and the clock correction x of receiver with least square method k, forward step (5) to;
(4), judge whether the non-fault number of satellite of current gained reaches 4, if reach 4 rough position and clock correction that then calculate receiver
Figure FDA00002200714600015
And from residue (n-4) satellite, identify fault satellites, and again resolve receiver location and clock correction, detect and finish; Otherwise, enter step (5);
(5), make i=i+1, if i>n, then the non-fault number of satellite is less than 4, at this moment, from the combinations of satellites of rejecting with pseudorange residual error statistic λ kMinimum value λ Min=min (λ 1, λ 2..., λ m) corresponding combinations of satellites is as fault satellites, and calculate the receiver location corresponding with this combinations of satellites and clock correction as positioning result, detect and finish; Otherwise return step (1).
2. the double star fault recognition method based on the parity vector method according to claim 1 is characterized in that the fault detect judgement amount
Figure FDA00002200714600016
Obtained by following formula:
&sigma; ^ n - 1 = SSE ( n - 1 ) - 4
Wherein, SSE is the pseudorange residual sum of squares (RSS);
Fault detect thresholding σ T, (n-1)Obtained by following formula:
&sigma; T , ( n - 1 ) = &sigma; 0 T n - 1 ( n - 1 ) - 4 T n - 1 = icdf ( &chi; 2 ( 1 - &alpha; , ( n - 1 ) - 4 ) )
Wherein, icdf is (1-α) fractile that computer card side distributes;
Fault Identification judgement amount r iObtained by following formula:
r i = | | p Q p . i | | | | Q p . i | | .
3. the double star fault recognition method based on the parity vector method according to claim 1 is characterized in that, detects judgement amount
Figure FDA00002200714600021
Obtained by following formula:
&sigma; ^ n - 2 = SSE ( n - 2 ) - 4
Wherein, SSE is the pseudorange residual sum of squares (RSS);
Fault detect thresholding σ T, (n-2)Obtained by following formula:
&sigma; T , ( n - 2 ) = &sigma; 0 T n - 2 ( n - 2 ) - 4 T n - 2 = icdf ( &chi; 2 ( 1 - &alpha; , ( n - 2 ) - 4 ) )
Wherein, icdf is (1-α) fractile that computer card side distributes.
4. the double star fault recognition method based on the parity vector method according to claim 1 is characterized in that rough position and clock correction Obtained by following formula:
x ^ = ( H 0 T H 0 ) - 1 H 0 T y 0
Wherein, H 0Be 4 observing matrixes that the non-fault satellite consists of of current gained,
Figure FDA00002200714600026
Be H 0Transposed matrix, y 0Pseudo-range Observations vector for 4 non-fault satellites of current gained.
5. the double star fault recognition method based on the parity vector method according to claim 1 is characterized in that, receiver location and clock correction x kObtained by following formula:
x k = ( H k T H k ) - 1 H k T y k k=1,2,…,N
Wherein, H kFor having rejected two satellite (i k, j k) after the observing matrix that consists of of remaining (n-2) satellite, y kFor having rejected two satellite (i k, j k) after the Pseudo-range Observations vector of remaining (n-2) satellite;
Pseudorange residual error statistic λ kObtained by following formula:
&lambda; k = &Sigma; h = 1 h &NotEqual; i , j n ( &rho; h - b k - ( x h - x k ) 2 + ( y h - y k ) 2 + ( z h - z k ) 2 ) 2 .
CN201210365524.1A 2012-09-27 2012-09-27 Parity vector method-based double-satellite failure recognition method Expired - Fee Related CN102901971B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210365524.1A CN102901971B (en) 2012-09-27 2012-09-27 Parity vector method-based double-satellite failure recognition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210365524.1A CN102901971B (en) 2012-09-27 2012-09-27 Parity vector method-based double-satellite failure recognition method

Publications (2)

Publication Number Publication Date
CN102901971A true CN102901971A (en) 2013-01-30
CN102901971B CN102901971B (en) 2014-05-14

Family

ID=47574311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210365524.1A Expired - Fee Related CN102901971B (en) 2012-09-27 2012-09-27 Parity vector method-based double-satellite failure recognition method

Country Status (1)

Country Link
CN (1) CN102901971B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454650A (en) * 2013-08-20 2013-12-18 北京航空航天大学 Method for monitoring satellite integrity with vision as auxiliary
CN104749587A (en) * 2013-12-31 2015-07-01 清华大学 Receiver pseudo-range fault monitoring method and receiver
CN106646526A (en) * 2017-02-09 2017-05-10 南京航空航天大学 Independent integrity detection method of receiver capable of simultaneously detecting and identifying multiple faults
CN107783154A (en) * 2017-09-22 2018-03-09 北京时代民芯科技有限公司 A kind of receiver-autonomous integrity fault detect and method for removing
CN108507590A (en) * 2018-03-20 2018-09-07 千寻位置网络(浙江)有限公司 Constant speed appraisal procedure and system, car-mounted terminal
CN109709583A (en) * 2018-11-16 2019-05-03 南京航空航天大学 A kind of combined failure self-adapting detecting method of Multiple Cycle iteration sliding window accumulation
CN110596736A (en) * 2019-10-15 2019-12-20 中国电子科技集团公司第五十四研究所 GNSS observation abnormal value detection and isolation method
CN110907953A (en) * 2019-10-18 2020-03-24 湖北三江航天险峰电子信息有限公司 Satellite fault identification method and device and software receiver
CN111123304A (en) * 2019-11-28 2020-05-08 北京航空航天大学 Visual navigation integrity monitoring and calculating method
CN113341438A (en) * 2021-06-02 2021-09-03 成都天奥信息科技有限公司 Multi-satellite fault identification method and system based on gross error inverse solution
CN113777630A (en) * 2021-02-10 2021-12-10 北京航空航天大学 Fault monitoring method and system for single receiver of ground-based augmentation system
CN115390099A (en) * 2022-10-28 2022-11-25 北京航空航天大学 Maximum value joint chi-square fault elimination method based on odd-even vector projection
CN115561782A (en) * 2022-11-18 2023-01-03 北京航空航天大学 Satellite fault detection method in integrated navigation based on odd-even vector projection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996041A (en) * 2006-12-20 2007-07-11 北京航空航天大学 Method for monitoring GNSS receiver autonomous integrity based on multi-satellite failure recognition
CN101520503A (en) * 2009-03-19 2009-09-02 北京航空航天大学 Method for detecting fault satellite of satellite navigation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996041A (en) * 2006-12-20 2007-07-11 北京航空航天大学 Method for monitoring GNSS receiver autonomous integrity based on multi-satellite failure recognition
CN101520503A (en) * 2009-03-19 2009-09-02 北京航空航天大学 Method for detecting fault satellite of satellite navigation system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
杨静 等: "卫星故障诊断的最优奇偶向量法", 《航空学报》, vol. 23, no. 2, 31 March 2002 (2002-03-31), pages 183 - 186 *
郭承军 等: "用于检测双星故障的RA IM算法分析与研究", 《计算机应用研究》, vol. 28, no. 3, 31 March 2011 (2011-03-31) *
陈灿辉 等: "GNSS 中基于双星故障的RAIM 中的数学关系", 《遥测遥控》, vol. 32, no. 2, 31 March 2011 (2011-03-31), pages 33 - 38 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454650B (en) * 2013-08-20 2015-06-24 北京航空航天大学 Method for monitoring satellite integrity with vision as auxiliary
CN103454650A (en) * 2013-08-20 2013-12-18 北京航空航天大学 Method for monitoring satellite integrity with vision as auxiliary
CN104749587A (en) * 2013-12-31 2015-07-01 清华大学 Receiver pseudo-range fault monitoring method and receiver
CN104749587B (en) * 2013-12-31 2017-03-29 清华大学 Receiver pseudorange fault monitoring method and receiver
CN106646526A (en) * 2017-02-09 2017-05-10 南京航空航天大学 Independent integrity detection method of receiver capable of simultaneously detecting and identifying multiple faults
CN106646526B (en) * 2017-02-09 2019-05-31 南京航空航天大学 A kind of receiver-autonomous integrity detection method that can detect identification various faults simultaneously
CN107783154A (en) * 2017-09-22 2018-03-09 北京时代民芯科技有限公司 A kind of receiver-autonomous integrity fault detect and method for removing
CN107783154B (en) * 2017-09-22 2019-07-23 北京时代民芯科技有限公司 A kind of receiver-autonomous integrity fault detection and method for removing
CN108507590A (en) * 2018-03-20 2018-09-07 千寻位置网络(浙江)有限公司 Constant speed appraisal procedure and system, car-mounted terminal
CN108507590B (en) * 2018-03-20 2023-03-07 千寻位置网络(浙江)有限公司 Constant speed evaluation method and system and vehicle-mounted terminal
CN109709583B (en) * 2018-11-16 2022-08-05 南京航空航天大学 Composite fault self-adaptive detection method for multiple-loop iteration sliding window accumulation
CN109709583A (en) * 2018-11-16 2019-05-03 南京航空航天大学 A kind of combined failure self-adapting detecting method of Multiple Cycle iteration sliding window accumulation
CN110596736A (en) * 2019-10-15 2019-12-20 中国电子科技集团公司第五十四研究所 GNSS observation abnormal value detection and isolation method
CN110596736B (en) * 2019-10-15 2021-04-02 中国电子科技集团公司第五十四研究所 GNSS observation abnormal value detection and isolation method
CN110907953B (en) * 2019-10-18 2022-04-29 湖北三江航天险峰电子信息有限公司 Satellite fault identification method and device and software receiver
CN110907953A (en) * 2019-10-18 2020-03-24 湖北三江航天险峰电子信息有限公司 Satellite fault identification method and device and software receiver
CN111123304B (en) * 2019-11-28 2021-12-24 北京航空航天大学 Visual navigation integrity monitoring and calculating method
CN111123304A (en) * 2019-11-28 2020-05-08 北京航空航天大学 Visual navigation integrity monitoring and calculating method
CN113777630A (en) * 2021-02-10 2021-12-10 北京航空航天大学 Fault monitoring method and system for single receiver of ground-based augmentation system
CN113341438A (en) * 2021-06-02 2021-09-03 成都天奥信息科技有限公司 Multi-satellite fault identification method and system based on gross error inverse solution
CN115390099A (en) * 2022-10-28 2022-11-25 北京航空航天大学 Maximum value joint chi-square fault elimination method based on odd-even vector projection
CN115561782A (en) * 2022-11-18 2023-01-03 北京航空航天大学 Satellite fault detection method in integrated navigation based on odd-even vector projection
CN115561782B (en) * 2022-11-18 2023-02-28 北京航空航天大学 Satellite fault detection method in integrated navigation based on odd-even vector projection

Also Published As

Publication number Publication date
CN102901971B (en) 2014-05-14

Similar Documents

Publication Publication Date Title
CN102901971B (en) Parity vector method-based double-satellite failure recognition method
US20110118979A1 (en) Automotive location data integrity
CN102654407B (en) Multiple-fault detecting device and detecting method for tightly-integrated inertial satellite navigation system
CN100582811C (en) Method for monitoring GNSS receiver autonomous integrity based on multi-satellite failure recognition
CA3014110C (en) System and method to provide an asil qualifier for gnss position and related values
CN101281248B (en) Multi-fault recognizing method applied to combined satellite navigation system
CN102135621B (en) Fault recognition method for multi-constellation integrated navigation system
CN101799524B (en) Method for autonomously monitoring receiver integrity of global navigation satellite system
CN105738925A (en) Method for monitoring satellite receiver autonomous integrity special for train positioning
CN105487088B (en) RAIM algorithms based on Kalman filtering in a kind of satellite navigation system
CN104267410B (en) Method and device for excluding multiple faults in airborne integrity monitoring
CN104199051B (en) Method for detecting and identifying satellite navigation RAIM (Receiver Autonomous Integrity Monitoring) multi-satellite faults
CN106707304A (en) Satellite navigation receiver fault satellite detection method
CN107783154B (en) A kind of receiver-autonomous integrity fault detection and method for removing
CN103983986B (en) A kind of anti-deception formula of modified RAIM interference method based on particle filter
CN105549033A (en) Integrity processing method based on least square residual error edge detection
CN112204346A (en) Method for determining the position of a vehicle
CN111830491B (en) Method and device for monitoring reflector in navigation system and electronic equipment
CN108089210A (en) A kind of Inertia information aids in RAIM detection methods
CN115265594B (en) Multi-source PNT information elastic fusion navigation multi-level autonomous integrity monitoring method and system
CN104267415B (en) Fault recognition method based on Bayesian decision and device
CN109307876A (en) A kind of autonomous integrity monitoring method suitable for GNSS vector tracking
CN110941000A (en) Method for monitoring integrity of precise single-point positioning
CN108507590B (en) Constant speed evaluation method and system and vehicle-mounted terminal
CN105511481A (en) Satellite borne orbit determination optimization method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140514

Termination date: 20150927

EXPY Termination of patent right or utility model