CN102895851A - 一种VOCs双解处理方法及系统 - Google Patents

一种VOCs双解处理方法及系统 Download PDF

Info

Publication number
CN102895851A
CN102895851A CN2012104315942A CN201210431594A CN102895851A CN 102895851 A CN102895851 A CN 102895851A CN 2012104315942 A CN2012104315942 A CN 2012104315942A CN 201210431594 A CN201210431594 A CN 201210431594A CN 102895851 A CN102895851 A CN 102895851A
Authority
CN
China
Prior art keywords
vocs
medicament
process section
section step
electrolysis process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104315942A
Other languages
English (en)
Inventor
杭鹏志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI WANQIANG TECHNOLOGY DEVELOPMENT CO LTD
Original Assignee
SHANGHAI WANQIANG TECHNOLOGY DEVELOPMENT CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI WANQIANG TECHNOLOGY DEVELOPMENT CO LTD filed Critical SHANGHAI WANQIANG TECHNOLOGY DEVELOPMENT CO LTD
Priority to CN2012104315942A priority Critical patent/CN102895851A/zh
Publication of CN102895851A publication Critical patent/CN102895851A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种VOCs双解处理方法,该方法包括电解工艺段步骤及分子裂解工艺段步骤,在所述电解工艺段步骤中,连续导入含VOCs气体并同时连续喷淋水,从而分离可溶性VOCs和不溶性VOCs,其中可溶性VOCs形成饱和溶液,并通过在电解槽中形成的正负电荷在正负电极周围吸附连续形成絮凝物;对从所述电解工艺段步骤中分离出的不溶性VOCs及逸出的可溶性VOCs,进行所述分子裂解工艺段步骤,在该分子裂解工艺段步骤中,高压窄脉冲放电作用于VOCs分子,将大部分VOCs分子中的化学键断键裂解为CO2和H2O,部分VOCs转化为有机酸或无机酸。实现了VOCs的高效、低成本、清洁化去除。

Description

一种VOCs双解处理方法及系统
技术领域
本发明涉及环境保护中的废气治理技术领域,尤其涉及一种对挥发性有机气体VOCs进行双解处理的方法及系统。
背景技术
VOCs(挥发性有机化合物),主要指碳氢化合物及其衍生物。根据化学组成结构的不同,可分为直链化合物、脂环化合物、芳香族化合物和杂环类化合物。VOCs以空气为传播媒介,属于大气污染物,包括工业废气和恶臭气体,主要来源于工业废弃物处理、危险废弃物处理、污水处理、城市生活垃圾、渗滤液、石油化工、造纸、制药、屠宰、塑料和视屏加工等行业。
VOCs是具有异味的有毒有害废气,它的排放严重干扰着居民的日常生活,恶化生存环境,可通过呼吸系统和皮肤对人体产生毒害作用,已经成为居民投诉的焦点。目前,国内许多省市都已开展“清洁空气行动”,寻求一种切实可行又经济实惠的技术来控制VOCs已经迫在眉睫。
目前治理VOCs的主要方法有:物理法、化学法、生物法、低温等离子体法。
物理法不改变VOCs的化学性质,只是用一种物质将其气味掩盖或稀释、或将其由气态转移到固态或液态中,常用的治理方法有掩蔽法、稀释法和活性炭吸附法。化学法是通过化学反应改变VOCs的化学结构,使其转变为无刺激性或低刺激性的物质,常用的方法有燃烧法、催化氧化法和酸碱液洗涤法。物理、化学方法的缺点在于所用设备多且工艺复杂,投入成本大,容易产生二次污染,后续处理过程复杂、能耗高、运行成本大等问题;生物法是利用微生物的新陈代谢作用,将VOCs分解为CO2、H2O等无机物达到去除净化的目的,目前常用的生物处理工艺有生物滤池。但是,在实际应用中生物滤池也暴露出一些技术缺陷,如对难溶的芳烃类、杂环类化合物去除效率差、滤池压降较大、且需不断投入营养物质、操作复杂、占地面积大、投入及运行成本较大,使其应用受到一定的限制。等离子体被称作除固态、液态和气态之外的第4种物质存在形态。它是由气体分子受热或外加电场及辐射等能量激发而分解、电离形成的电子、离子、原子(基态或激发态)、分子(激发态或基态)及自由基等组成的导电性流体。等离子体处于激发、电离的高能状态,其电子的负电荷和离子的正电荷总数数值相等,宏观上对外不显电性,呈中性,故称等离子体。低温等离子体技术具有工艺简单、处理流程短、投资少、占地小、去除率高、运行费用低、适用范围广等优势。但是目前常规的低温等离子体因为受电源模块、反应器结构及材料方面的制约,对一些稳定的VOCs去除效率高(苯、甲苯等)、处理后的尾气中含有大量的臭氧,造成二次污染、由于技术缺陷无法推广和扩大应用面。
发明内容
本发明为了解决现有技术中存在的技术缺陷,提供了一种VOCs双解处理方法和系统,有效提高了VOCs的去除率,实现了VOCs的高效、低成本、清洁化去除。
为了解决上述技术问题,本发明采用如下的技术方案:
根据本发明的方法,利用电解及分子裂解双解技术,高效去除化工、制药、香精、油漆等行业产生的大风量、低浓度VOCs。
本发明提供了一种VOCs双解处理方法,该方法包括电解工艺段步骤及分子裂解工艺段步骤,在所述电解工艺段步骤中,连续导入含VOCs气体并同时连续喷淋水,从而分离可溶性VOCs和不溶性VOCs,其中可溶性VOCs形成饱和溶液,并通过在电解槽中形成的正负电荷在正负电极周围吸附连续形成絮凝物;对从所述电解工艺段步骤中分离出的不溶性VOCs及逸出的可溶性VOCs,进行所述分子裂解工艺段步骤,在该分子裂解工艺段步骤中,高压窄脉冲放电作用于VOCs分子,将大部分VOCs分子中的化学键断键裂解为CO2和H2O,部分VOCs转化为有机酸或无机酸。
根据本发明方法的另一个方面,所述电解工艺段步骤的导入风量为8000~12000m3/h。
根据本发明方法的另一个方面,在分子裂解工艺段的放电反应器中,通过高压窄脉冲的直流电压,以脉冲频率为PPS(脉冲次数/秒)100-900放电瞬间产生大于5MW的脉冲功率、高能电子、高温空泡、OH、O、O3等强氧化活性物质作用于VOCs,将其中大部分通过分子断键裂解为CO2和H2O,少部分VOCs通过化学反应生成有机酸或无机酸,
根据本发明方法的又一个方面,在分子裂解工艺段反应器的适当位置添加NaOH或者NaHCO3,使得有机酸或无机酸与之反应生成金属盐。根据导入该分子裂解工艺段步骤中VOCs浓度决定添加NaOH或者NaHCO3的位置,以使得不消耗放电能量、且不影响VOCs断键、深度氧化,当VOCs浓度高时,通过底部药剂分添加口(011-3)添加药剂,当VOCs浓度中等时,通过中部药剂分添加口(011-2)添加药剂,当VOCs浓度低时,通过上部药剂分添加口(011-1)添加药剂。
根据本发明方法的再一个方面,在分子裂解工艺段的反应器中添加的NaOH或者NaHCO3,可以为溶液或小颗粒粉尘。
分子裂解技术去除VOCs的机理有以下几种方式:
1、高能电子直接与VOCs分子进行碰撞,从而使VOCs分子电离,解离和激发。
2、高温空泡、OH、O等强氧化活性物质与VOCs之间发生的各种化学反应,从而形成便于易溶于水的物质与环境无害的最终产物CO2和H2O,同时杜绝了VOCs分解时产生的CO等有毒有害物质。
3、通过在分子裂解反应器一系列的化学反应,可将部分VOCs转化为R-COOH(有机酸)或HXROX(无机酸)。适当位置添加NaOH或NaHCO3,可生成易溶于水的NaXROX(钠盐)。
VOCs+OH+e→R-COOH/HXROX
VOCs+OH+e→H2O+CO2
VOCs+O2+e→R-COOH/HXROX
VOCs+O2+e→H2O+CO2
4、通过在分子裂解反应器的适当位置添加NaOH或NaHCO3,可生成易溶于水的金属盐。
VOCs+O2+NaOH→NaXROX+H2O+CO2
VOCs+O2+NaHCO3→NaXROX+H2O+CO2
以下反应式以CH3OH(甲醛)、C2H5OH(乙醇)、C6H2CH3(NO2)3(三硝基甲苯)为例对反应机理予以说明。
2CH3OH+3O2+e→4H2O+2CO2
2CH3OH+O2+e→2HCHO(甲酸)+H2O
CH3OH+O2+NaOH+e→CHNaO2(甲酸钠)+2H2O
CH3OH+O2+NaHCO3+e→CHNaO2(甲酸钠)+2H2O+CO2
C2H5OH+3O2+e→3H2O+2CO2
C2H5OH+O2+e→CH3COOH(乙酸)+H2O
C2H5OH+O2+NaHCO3+e→CH3COONa(乙酸钠)+2H2O+CO2
C2H5OH+O2++e→CH3COONa(乙酸钠)+2H2O
C6H2CH3(NO2)3+6O2+e→H2O+7CO2+3HNO3
C6H2CH3(NO2)3+9O2+3NaOH+e→4H2O+7CO2+3NaNO3
2C6H2CH3(NO2)3+15O2+6NaHCO3+e→8H2O+20CO2+6NaNO3
本发明提供了一种用于根据上述方法的VOCs双解处理系统,该系统包括:电解工艺段、分子裂解工艺段,其中,所述电解工艺段包括电解槽003,该电解槽003具有VOCs导入口001、喷淋口002、供不溶性VOCs导出的出口103和出水口107,在所述电解槽003中设置有正电极004和负电极005,在所述电解槽003底部设置有一出口供絮状物排出的出口106;
所述分子裂解工艺段由反应器006、放电电源模块007、控制单元008、第一溶解槽009及第二溶解槽010组成;其中反应器006进一步具有药剂添加口109,所添加的药剂最终进入反应器006的位置可通过上部药剂分添加口011-1、中部药剂分添加口011-2、底部药剂分添加口011-3的开关状态来控制;所述第一溶解槽009及第二溶解槽010分别具有换水口110和111;所述第一溶解槽009及第二溶解槽010之间有供不溶性VOCs通过的通孔112。
本发明进一步优选技术方案在于:还包括循环泵016与电解工艺段呈流体连接,能交替控制溶液是否饱和,所述控制装置与循环泵呈通信连接。
与以往的VOCs去除工艺相比,本发明提供一条具有重要意义的节能减排、高效清洁的一种VOCs双解处理系统。
本发明VOCs双解处理方法及系统具有以下几个优点:
1、可根据VOCs的溶解性,对VOCs分类处理;
2、VOCs处理效率高,达90%以上;
3、系统无添加物,不会造成二次污染;
4、自动化程度高,无需专人看管;
5、耗电量小,处理成本低;
6、VOCs处理量大;
7、结构紧凑,占地面积小,非常适合工业化应用。
附图说明
下面结合附图和具体实施方式本发明进行详细说明:
图1是本发明一种VOCs双解处理系统的工艺流程图;
图2是本发明一种VOCs双解处理系统的电解工艺段结构图;
图3是本发明一种VOCs双解处理系统的分子裂解工艺段结构图。
具体实施方式
如图1-3所示,本发明的双解处理方法及系统,包括电解工艺段和分子裂解工艺段。
电解工艺段
如图2所示,电解工艺段包括电解槽003,该电解槽003具有VOCs导入口001、喷淋口002、供不溶性VOCs导出的出口103和出水口107,在所述电解槽003中设置有正电极004和负电极005,在所述电解槽003底部设置有一出口供絮状物排出的出口106。含VOCs废气通过入口001导入电解装置,同时循环水进口101沿黑色箭头导入并通过喷淋头002连续导入电解装置。经过作用后将不溶性VOCs与少量可溶性VOCs从出口103导出,进入分子裂解装置中。在电解工艺段,可溶VOCs形成的饱和溶液通过电解槽003的电解作用,在正电极004和/或负电极005周围连续形成絮凝物,絮凝物沿箭头104沉降至容器部105,絮凝物在容器105的底部出口106沿箭头排出,循环水在容器部105的出水口107排出,并通过循环泵016泵至循环水进口101。该工艺段可去除70%左右的可溶VOCs,同时可分离可溶性和不溶性VOCs。
分子裂解工艺段
如图3所示,分子裂解工艺段由反应器006、放电电源模块007、控制单元008、第一溶解槽009及第二010溶解槽组成,其中反应器006上部具有进气口108,可以导入从电解装置导出的不溶性VOCs与少量可溶性VOCs,进一步具有药剂添加口109,所添加的药剂最终进入反应器006的位置可通过上部添加口011-1、中部药剂分添加口011-2、底部药剂分添加口011-3的开关来控制,例如,根据导入VOCs的浓度设定打开一组添加口,其余两组添加口关闭。第一溶解槽009及第二溶解槽010分别具有换水口110和111。第一溶解槽009及第二溶解槽010之间有供不溶性VOCs通过的通孔112。当第一溶解槽009饱和无法溶解生成物时,第二个溶解槽010可以备用或者与第一个溶解槽009交替使用。
放电电源模块007将接入的常规交流电源(220V/380V)经各种复合模块输出为高压窄脉冲的直流电压,脉冲频率为900次/秒的放电模块;反应器006即是采用高压窄脉冲,PPS900瞬间产生大于5MW的脉冲功率、高能电子、高温空泡、OH、O、O3等强氧化活性物质作用于VOCs分子,将其中大部分裂解为CO2和H2O,部分VOCs氧化为有机酸或无机酸,同时通过在药剂添加口109添加NaOH或者NaHCO3,将VOCs转化为金属盐NaOH或者NaHCO3。根据导入该工艺段中VOCs浓度决定是否开启或关闭添加口011-1(2、3),以保证不影响VOCs断键、深度氧化。如浓度中等需要在反应器中部裂解完成,则需将中部药剂分添加口011-2打开,其余添加口关闭;如VOCs浓度过高,需将底部药剂分添加口011-3打开,其余添加口关闭;如VOCs浓度低时,需将上部药剂分添加口011-3打开,其余添加口关闭。
如上所述,本发明即是将可溶性VOCs及难溶不溶采用分段及组合处理的工艺,实现VOCs的高效、清洁、无害化处理。
下面对本发明进行具体举例说明:
实施例1:
在电解工艺段连续导入风量为8000m3/h的含VOCs气体,经检测其中CH3OH(甲醛)100ppm、C2H5OH(乙醇)100ppm、C6H2CH3(NO2)3(三硝基甲苯)200ppm及其它混合气体200ppm,并连续导入喷淋循环水。在电解工艺段后检测CH3OH(甲醛)30ppm、C2H5OH(乙醇)35ppm、C6H2CH3(NO2)3(三硝基甲苯)195ppm,其它气体65ppm。
实施例2:
在分子裂解工艺段连续导入风量为8000m3/h的含VOCs气体,经检测其中CH3OH(甲醛)100ppm、C2H5OH(乙醇)100ppm、C6H2CH3(NO2)3(三硝基甲苯)200ppm及其它混合气体200ppm,经由分子裂解装置在反应器中以高压窄脉冲,PPS900的脉冲频率放电,作用于导入的VOCs分子,在分子裂解工艺段后检测C7H8(甲苯)28ppm、CH3OH(甲醛)29ppm、C2H5OH(乙醇)29ppm、C6H2CH3(NO2)3(三硝基甲苯)28ppm,其它气体59ppm。经检测溶解槽中溶质为甲酸、乙酸、硝酸。
实施例3:
在电解工艺段连续导入风量为10000m3/h的含VOCs气体,经检测其中CH3OH(甲醛)100ppm、C2H5OH(乙醇)100ppm、C6H2CH3(NO2)3(三硝基甲苯)200ppm及其它混合气体200ppm,并连续导入喷淋循环水。在电解工艺段后检测C7H8甲苯95ppm、CH3OH(甲醛)30ppm、C2H5OH(乙醇)35ppm、C6H2CH3(NO2)3(三硝基甲苯)195ppm,其它气体65ppm。
接下来将检测的气体导入至分子裂解工艺段,经由高压窄脉冲,PPS900的脉冲频率放电,同时在反应器底部加入NaOH或NaHCO3,在分子裂解工艺段后检测CH3OH(甲醛)7ppm、C2H5OH(乙醇)10ppm、C6H2CH3(NO2)3(三硝基甲苯)13ppm,其它气体15ppm,同时检测到溶解槽中溶质分别为甲酸钠、乙酸钠、硝酸钠。
实施例4:
在电解工艺段连续导入风量为11000m3/h的含VOCs气体,经检测其中CH3OH(甲醛)100ppm、C2H5OH(乙醇)100ppm、C6H2CH3(NO2)3(三硝基甲苯)200ppm及其它混合气体200ppm,并连续导入喷淋循环水。在电解工艺段后检测C7H8甲苯95ppm、CH3OH(甲醛)30ppm、C2H5OH(乙醇)35ppm、C6H2CH3(NO2)3(三硝基甲苯)195ppm,其它气体65ppm。
接下来将检测的气体导入至分子裂解工艺段,经由高压窄脉冲,PPS900的脉冲频率放电,同时在反应器上部加入NaOH或NaHCO3,在分子裂解工艺段后检测CH3OH(甲醛)25ppm、C2H5OH(乙醇)24ppm、C6H2CH3(NO2)3(三硝基甲苯)23ppm,其它气体51ppm,同时检测到溶解槽中溶质有乙醇、甲酸钠、乙酸钠、硝酸钠,VOCs双解去除效果明显。
实施例5:
在电解工艺段连续导入风量为12000m3/h的含VOCs气体,经检测其中CH3OH(甲醛)100ppm、C2H5OH(乙醇)100ppm、C6H2CH3(NO2)3(三硝基甲苯)200ppm及其它混合气体200ppm,并连续导入喷淋循环水。在电解工艺段后检测C7H8甲苯95ppm、CH3OH(甲醛)30ppm、C2H5OH(乙醇)35ppm、C6H2CH3(NO2)3(三硝基甲苯)195ppm,其它气体65ppm。
接下来将检测的气体导入至分子裂解工艺段,经由高压窄脉冲,PPS900的脉冲频率放电,同时在反应器中部加入NaOH或NaHCO3,在分子裂解工艺段后检测CH3OH(甲醛)18ppm、C2H5OH(乙醇)16ppm、C6H2CH3(NO2)3(三硝基甲苯)21ppm,其它气体30ppm,同时检测到溶解槽中有极少量的乙醇、甲酸钠、乙酸钠、硝酸钠。
实施例6:
在电解工艺段连续导入风量为10000m3/h的含VOCs气体,经检测其中C2H5OH(乙醇)100ppm、C3H6O(丙酮)50ppm、CH3OH(甲醇)100ppm及其它混合气体100ppm,并连续导入喷淋循环水。在电解工艺段后检测C2H5OH(乙醇)31ppm、C3H6O(丙酮)16ppm、CH3OH(甲醇)35ppm,其它气体34ppm。
实施例7:
在分子裂解工艺段连续导入风量为10000m3/h的含VOCs气体,经检测其中C2H5OH(乙醇)100ppm、C3H6O(丙酮)50ppm、CH3OH(甲醇)100ppm及其它混合气体100ppm,经由高压窄脉冲,PPS100的脉冲频率放电。在电解工艺段后检测C2H5OH(乙醇)28ppm、C3H6O(丙酮)15ppm、CH3OH(甲醇)33ppm,其它气体31ppm,经检测溶质分别为乙酸、丙酸和甲酸。
实施例8:
在电解工艺段连续导入风量为10000m3/h的含VOCs气体,经检测其中C2H5OH(乙醇)100ppm、C3H6O(丙酮)50ppm、CH3OH(甲醇)100ppm及其它混合气体100ppm,并连续导入喷淋循环水。在电解工艺段后检测C2H5OH(乙醇)31ppm、C3H6O(丙酮)16ppm、CH3OH(甲醇)35ppm,其它气体34ppm。
接下来将检测的气体导入至分子裂解工艺段,经由高压窄脉冲,PPS500的脉冲频率放电,在分子裂解工艺段后检测C2H5OH(乙醇)12ppm、C3H6O(丙酮)7ppm、CH3OH(甲醇)12ppm,其它气体21ppm。经检测溶解槽溶质分别为乙酸、丙酸、甲酸。
实施例9:
在电解工艺段连续导入风量为10000m3/h的含VOCs气体,经检测其中C2H5OH(乙醇)100ppm、C3H6O(丙酮)50ppm、CH3OH(甲醇)100ppm及其它混合气体100ppm,并连续导入喷淋循环水。在电解工艺段后检测C2H5OH(乙醇)31ppm、C3H6O(丙酮)16ppm、CH3OH(甲醇)35ppm,其它气体34ppm。
接下来将检测的气体导入至分子裂解工艺段,经由高压窄脉冲,PPS700的脉冲频率放电,同时在反应器底部加入NaOH或NaHCO3,在分子裂解工艺段后检测C2H5OH(乙醇)11ppm、C3H6O(丙酮)7ppm、CH3OH(甲醇)8ppm,其它气体17ppm。同时检测到溶解槽中溶质分别为甲酸钠、乙酸钠、丙酸钠。
实施例10:
在电解工艺段连续导入风量为10000m3/h的含VOCs气体,经检测其中C2H5OH(乙醇)100ppm、C3H6O(丙酮)50ppm、CH3OH(甲醇)100ppm及其它混合气体100ppm,并连续导入喷淋循环水。在电解工艺段后检测C2H5OH(乙醇)31ppm、C3H6O(丙酮)16ppm、CH3OH(甲醇)35ppm,其它气体34ppm。
接下来将检测的气体导入至分子裂解工艺段,经由高压窄脉冲,PPS900的脉冲频率放电,同时在反应器上部加入NaOH或NaHCO3,在分子裂解工艺段后检测C2H5OH(乙醇)20pm、C3H6O(丙酮)13ppm、CH3OH(甲醇)29ppm,其它气体27ppm。同时检测到溶解槽中溶质分别为乙醇、丙酮、甲醇、甲酸钠、乙酸钠、丙酸钠。
实施例11:
在电解工艺段连续导入风量为10000m3/h的含VOCs气体,经检测其中C2H5OH(乙醇)100ppm、C3H6O(丙酮)50ppm、CH3OH(甲醇)100ppm及其它混合气体100ppm,并连续导入喷淋循环水。在电解工艺段后检测C2H5OH(乙醇)31ppm、C3H6O(丙酮)16ppm、CH3OH(甲醇)35ppm,其它气体34ppm。
接下来将检测的气体导入至分子裂解工艺段,经由高压窄脉冲,PPS1100的脉冲频率放电,同时在反应器中部加入NaOH或NaHCO3,在分子裂解工艺段后检测C2H5OH(乙醇)16pm、C3H6O(丙酮)11ppm、CH3OH(甲醇)24ppm,其它气体19ppm。同时检测到溶解槽中溶质分别为乙醇、丙酮、甲醇、甲酸钠、乙酸钠、丙酸钠。
由以上实施例可以看到,本发明中电解工艺段主要针对可溶性VOCs具有显著的除去功效,同时兼具分离可溶性和不溶性VOCs的作用,但是无法去除不溶性VOCs;而分子裂解工艺段对VOCs具有普遍的去除作用,如两个工艺段结合使用,效果极佳,优于现有任何VOCs去除方法。
在上述实施例中,可以看到,在相同风量,VOCs较高浓度下,药剂的添加口位置不同,最终VOCs的浓度也不同,药剂添加口在上部,因药剂消耗过多的放电能量,导致VOCs去除较少,且生成较少的金属盐;药剂添加口在中部,稍微优于药剂添加口在上部的工况,如药剂添加口在底部,添加的NaOH或NaHCO3不会消耗放电能量,VOCs去除及组盐效果最佳。在相同风量,VOCs中等浓度下,药剂添加口在中部,效果最好。
但是,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围内。

Claims (10)

1.一种VOCs双解处理方法,其特征在于,该方法包括电解工艺段步骤及分子裂解工艺段步骤,在所述电解工艺段步骤中,连续导入含VOCs气体并同时连续喷淋水,从而分离可溶性VOCs和不溶性VOCs,其中可溶性VOCs形成饱和溶液,并通过在解池中形成的正负电荷在正负电极周围吸附连续形成絮凝物;对从所述电解工艺段步骤中分离出的不溶性VOCs及逸出的可溶性VOCs,进行所述分子裂解工艺段步骤,在该分子裂解工艺段步骤中,高压窄脉冲放电作用于VOCs分子,将大部分VOCs分子中的化学键断键裂解为CO2和H2O,部分VOCs转化为有机酸或无机酸。
2.根据权利要求1所述的方法,其特征在于,所述电解工艺段步骤的导风量为8000~12000m3/h。
3.根据权利要求1所述的方法,其特征在于,在所述电解工艺段步骤中,脉冲频率为PPS100~1100。
4.根据权利要求1所述的方法,其特征在于,在所述分子裂解工艺段步骤中,添加药剂NaOH或者NaHCO3,使得所述有机酸或无机酸转化为金属盐。
5.根据权利要求4所述的方法,其特征在于,根据导入该分子裂解工艺段步骤中VOCs浓度决定添加NaOH或者NaHCO3的位置,以使得不消耗放电能量、且不影响VOCs断键、深度氧化,当VOCs浓度高时,通过上部药剂分添加口(011-3)添加药剂,当VOCs浓度中等时,通过中部药剂分添加口(011-2)添加药剂,当VOCs浓度低时,通过底部药剂分添加口(011-1)添加药剂。
6.根据权利要求4至6中任一项所述的方法,其特征在于,所述药剂NaOH或NaHCO3可为溶液或者小颗粒粉尘的形式。
7.用于权利要求1-6中任一项所述方法的系统,该系统包括:电解工艺段、分子裂解工艺段,其中,所述电解工艺段包括电解槽(003),该电解槽(003)具有VOCs导入口(001)、喷淋口(002)、供不溶性VOCs导出的出口(103)和出水口(107),在所述电解槽(003)中设置有正电极(004)和负电极(005),在所述电解槽(003)底部设置有一出口供絮状物排出的出口(106);
所述分子裂解工艺段由反应器(006)、放电电源模块(007)、控制单元(008)、第一溶解槽(009);其中反应器(006)进一步具有药剂添加口(109),所添加的药剂最终进入反应器(006)的位置可通过上部药剂分添加口(011-1)、中部药剂分添加口(011-2)、底部药剂分添加口(011-3)的开关状态来控制;所述第一溶解槽(009)设置于反应器(006)底部并具有换水口(110)。
8.根据权利要求7所述的系统,其特征在于:所述分子裂解工艺段还包括有第二溶解槽(010),所述第二溶解槽(010)与所述第一溶解槽(009)之间具有有供不溶性VOCs通过的通孔(112),所述第二溶解槽还具有换水口(111)。
9.根据权利要求7所述的系统,其特征在于,所述出水口(107)和水喷淋口(002)之间连接有循环泵(016)。
10.根据权利要求8所述的系统,其特征在于,所述控制单元(008与循环泵(016)呈通信连接。
CN2012104315942A 2012-11-01 2012-11-01 一种VOCs双解处理方法及系统 Pending CN102895851A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012104315942A CN102895851A (zh) 2012-11-01 2012-11-01 一种VOCs双解处理方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012104315942A CN102895851A (zh) 2012-11-01 2012-11-01 一种VOCs双解处理方法及系统

Publications (1)

Publication Number Publication Date
CN102895851A true CN102895851A (zh) 2013-01-30

Family

ID=47568518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104315942A Pending CN102895851A (zh) 2012-11-01 2012-11-01 一种VOCs双解处理方法及系统

Country Status (1)

Country Link
CN (1) CN102895851A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706226A (zh) * 2013-12-31 2014-04-09 中国科学院高能物理研究所 烟气污染物处理装置
CN104174286A (zh) * 2013-05-27 2014-12-03 上海元清环保科技有限公司 一种废气电解处理方法及设备
CN108421382A (zh) * 2018-05-10 2018-08-21 江南大学 一种用于电氧化处理气相VOCs的设备及其应用
CN108654364A (zh) * 2018-06-06 2018-10-16 青岛阿蒂特兰环保科技有限公司 清除空气中挥发性有机物的方法及其产物土壤修复剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101856585A (zh) * 2010-06-29 2010-10-13 黄立维 一种从气流中去除有害气体的装置
CN202087224U (zh) * 2011-04-28 2011-12-28 上海盛大环保科技有限公司 除尘、除湿、降温、除恶臭、降解VOCs多效净化机
CN102614762A (zh) * 2012-04-23 2012-08-01 上海万强科技开发有限公司 等离子废气处理系统
CN202860377U (zh) * 2012-11-01 2013-04-10 上海万强科技开发有限公司 一种VOCs双解处理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101856585A (zh) * 2010-06-29 2010-10-13 黄立维 一种从气流中去除有害气体的装置
CN202087224U (zh) * 2011-04-28 2011-12-28 上海盛大环保科技有限公司 除尘、除湿、降温、除恶臭、降解VOCs多效净化机
CN102614762A (zh) * 2012-04-23 2012-08-01 上海万强科技开发有限公司 等离子废气处理系统
CN202860377U (zh) * 2012-11-01 2013-04-10 上海万强科技开发有限公司 一种VOCs双解处理系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174286A (zh) * 2013-05-27 2014-12-03 上海元清环保科技有限公司 一种废气电解处理方法及设备
CN104174286B (zh) * 2013-05-27 2018-08-17 上海元清环保科技有限公司 一种废气电解处理方法及设备
CN103706226A (zh) * 2013-12-31 2014-04-09 中国科学院高能物理研究所 烟气污染物处理装置
CN108421382A (zh) * 2018-05-10 2018-08-21 江南大学 一种用于电氧化处理气相VOCs的设备及其应用
CN108654364A (zh) * 2018-06-06 2018-10-16 青岛阿蒂特兰环保科技有限公司 清除空气中挥发性有机物的方法及其产物土壤修复剂

Similar Documents

Publication Publication Date Title
CN203425700U (zh) 一种废气净化器
CN107042039A (zh) 一种介质阻挡放电低温等离子体协同催化处理有机废气的装置及处理方法
CN108543418A (zh) 一种可多级组合的插槽式净化废气的装置
CN203458963U (zh) 工业废气净化装置
CN205627430U (zh) 一种喷漆厂专用的高效环保尾气处理装置
CN102895851A (zh) 一种VOCs双解处理方法及系统
CN104043321A (zh) 漆包线烘烤废气净化系统
CN107252627A (zh) 一种VOCs处理工艺及设备
CN108854475A (zh) 一种高效的废气净化器
CN103742984A (zh) 磁电微水幕空气净化方法及装置
CN111450660A (zh) 一种垃圾渗滤液臭气净化装置及其工艺
CN108421638A (zh) 催化联合电晕和介质阻挡放电空气净化调控系统
CN109157979B (zh) 一种水吸收式有机挥发性气体处理装置及处理方法
CN205252897U (zh) Uv光解及低温等离子一体化设备
CN206823546U (zh) 一种等离子体催化净化气体处理装置
CN202860377U (zh) 一种VOCs双解处理系统
CN102614762B (zh) 等离子废气处理系统
CN102424449A (zh) 一种利用低温等离子体去除水中六价铬的方法
CN115722052B (zh) 脱除工业废气中挥发性有机化合物的装置和方法
CN107899349A (zh) 一种工业废气净化器
CN204550297U (zh) 电化学联合光催化法处理有机废水系统
CN206810061U (zh) 一种VOCs处理设备
CN204388244U (zh) 一种光解净化器
CN207680341U (zh) 多元复合光催化氧化一体化净化装置
CN206444425U (zh) Uv光解净化器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130130