CN102890035A - 一种冲击拉伸试验装置 - Google Patents

一种冲击拉伸试验装置 Download PDF

Info

Publication number
CN102890035A
CN102890035A CN2012101494508A CN201210149450A CN102890035A CN 102890035 A CN102890035 A CN 102890035A CN 2012101494508 A CN2012101494508 A CN 2012101494508A CN 201210149450 A CN201210149450 A CN 201210149450A CN 102890035 A CN102890035 A CN 102890035A
Authority
CN
China
Prior art keywords
air gun
generating unit
dynamic
collision block
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101494508A
Other languages
English (en)
Inventor
邹广平
唱忠良
李雨蕾
孙杭其
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN2012101494508A priority Critical patent/CN102890035A/zh
Publication of CN102890035A publication Critical patent/CN102890035A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明的目的在于提供一种冲击拉伸试验装置,包括支撑底座、混凝土底座、透射杆、入射杆、应变片、应变仪、动态信号存储仪、动力发生器、环形撞块、信号触发装置、时间间隔仪、脉冲发生装置、吸收装置,透射杆、入射杆、动力发生器均安装在支撑底座上,被测的试件安装在透射杆和入射杆之间,透射杆和入射杆上分别粘贴应变片,应变片通过导线连接应变仪,入射杆依次穿过动力发生器、信号触发装置、时间间隔仪后连接脉冲发生装置,脉冲发生装置安装在吸收装置里,吸收装置安装在混凝土底座上,信号触发装置连接动态信号存储仪,应变仪和动态信号存储仪相连,环形撞块安装在动力发生器里。本发明的结构简单、安装方便,价格优势明显。

Description

一种冲击拉伸试验装置
技术领域
本发明涉及的是测试材料动态拉伸力学性能的试验装置。
背景技术
爆炸、高速撞击、金属切削等是工程中较为常见的冲击载荷,这类载荷的特点是作用时间很短(一般为微秒或纳秒级),冲击强度高(足以引起材料的破坏)。材料在动态载荷作用下所表现出的力学性能与在静态或准静态时的力学性能将有很大的不同。所以研究材料在冲击载荷下的力学性能具有十分重要的工程意义和学术价值。为了模拟各种速率的冲击加载过程,试验装置设计就成其关键问题之一。有关材料的动态拉伸性能问题正在成为人们讨论、研究的热点,而该种试验装置还处在不成熟阶段,暂时还没有形成一个统一的标准。
目前的高应变率冲击拉伸装置大都按照分离式霍普金森拉杆(SplitHopkinson Tensile Bar,简称SHTB装置)原理来进行研制,这种装置的共同点是由拉伸杆系、使撞块加速的动力发生器和信号记录仪系统组成。其设计的关键在于动力发生器的设计,这也是各个装置最大的区别之处。
现今,已有的装置有“ARALL材料拉伸力学性能的试验研究(爆炸与冲击,1998年4月)”中介绍的间接杆杆型旋转圆盘冲击拉伸试验装置和“高速冲击拉伸试验装置的研制(机械科学与技术,2005年7月)”中介绍的气动式间接杆杆型冲击拉伸试验装置,它们的主要区别在于动力发生器的设计不同。即驱动撞块的方法不同。旋转圆盘冲击拉伸试验装置主要采用机械式,利用异步电动机,通过变速箱来带动旋转盘转动,当旋转盘到达一定的速度后,通过控制器来释放摆锤,打击撞块从而完成冲击拉伸实验,此装置的缺点是比较复杂,而且价格也比较昂贵,不利于推广。而气枪式冲击拉伸试验装置主要采用气动式驱动,采用高压气体作为动力源,通过高、低压气体的进气、排气来推动气室内部活塞的往复运动,从而实现高压气体的快速释放功能来推动撞块。此装置的缺点是对气室和气路的密封要求比较严格,所以在制造上比较困难。
发明内容
本发明的目的在于提供达到测试材料在高应变率下的动态拉伸力学性能的一种冲击拉伸试验装置。
本发明的目的是这样实现的:
本发明一种冲击拉伸试验装置,其特征是:包括支撑底座、混凝土底座、透射杆、入射杆、应变片、应变仪、动态信号存储仪、动力发生器、环形撞块、信号触发装置、时间间隔仪、脉冲发生装置、吸收装置,透射杆、入射杆、动力发生器均安装在支撑底座上,被测的试件安装在透射杆和入射杆之间,透射杆和入射杆上分别粘贴应变片,应变片通过导线连接应变仪,入射杆依次穿过动力发生器、信号触发装置、时间间隔仪后连接脉冲发生装置,脉冲发生装置安装在吸收装置里,吸收装置安装在混凝土底座上,信号触发装置连接动态信号存储仪,应变仪和动态信号存储仪相连,环形撞块安装在动力发生器里。
本发明还可以包括:
1、所述的动力发生器包括气枪、高压气瓶、气体转换器、内套管、外套管,气枪包括左气枪、右气枪,气体转换器安装在支撑底座上,左气枪、右气枪分别安装在气体转换器的两侧,内套管安装在外套管里、两者组成的结构安装在气体转换器里并与气体转换器密封,内套管和外套管组成安装环形撞块的滑道,内套管、外套管、气体转换器构成连通空腔,高压气瓶通过管连通左气枪和右气枪。
2、还包括气压控制台,高压气瓶连接气压控制台,气压控制台分别连接左气枪和右气枪,左气枪、右气枪对称安装在气体转换器两侧,内套管与外套管同轴。
3、所述的脉冲发生装置包括连接套、金属短杆、连接杆、挡块,金属短杆通过连接杆连接挡块,金属短杆还通过连接套连接入射杆,环形撞块可在连接套、金属短杆、连接杆上滑动并撞击挡块。
本发明的优势在于:
1、冲击拉伸装置的动力发生器采用了双气室并联结构,出气量大,可以完成高强度材料的冲击拉伸实验,整个实验装置的连接方便,采用密封圈即可完成高压气枪与转换器之间的气密性问题。相对于其他气动式冲击发生器,结构密封要求低很多,且连接方便。同时本发明的结构简单、安装方便,采用了目前已经技术成熟的气枪装置储存和释放高压气体,整个实验装置的造价相对于国内的其它冲击拉伸试验装置低很多。价格优势明显。
2、本发明可以方便的改变环形撞块的长度、金属短杆的外形尺寸以及气压来调整入射波脉冲的幅值和宽度。也可以方便的改变脉冲发生器的结构完成直接杆杆型冲击拉伸实验。
3、本发明安装了信号触发装置,当撞块通过时即可触发动态信号存储仪记录实验数据,实验数据记录的成功率较高。
附图说明
图1为本发明的结构示意图;
图2动力发生器结构示意图;
图3脉冲发生装置示意图;
图4试样连接示意图;
图5本装置测试得到的入射波、反射波和透射波的波形曲线(LY12铝合金);
图6本装置测试得到的应变率时间曲线(LY12铝合金);
图7本装置测试得到的应力应变曲线(LY12铝合金);
图8本装置测试得到的入射波、反射波和透射波的波形曲线(镍钛合金);
图9本装置测试得到的应变率时间曲线(镍钛合金);
图10本装置测试得到的应力应变曲线(镍钛合金)。
具体实施方式
下面结合附图举例对本发明做更详细地描述:
结合图1~10,本发明是由支撑底座11、透射杆1、试件2、入射杆3、动力发生器4、环形撞块5、信号触发装置7、时间间隔仪8、吸收装置10、应变片12、应变片13、超动态应变仪14、动态信号存储仪15、混凝土底座6、脉冲发生装置9组成。其特征在于透射杆1位于底座11上的左侧,透射杆1的右端与试件2的左端连接,应变片12粘贴于透射杆1的中部,通过导线与超动态应变仪14连接,试件2右端与入射杆3左端连接,入射杆3位于底座11右侧,且穿过动力发生器4中部,其右端与脉冲发生装置9相连接,应变片13粘贴于入射杆3的中部,通过导线与超动态应变仪14连接,动力发生器4位于底座11上的右侧,环形撞块5位于动力发生器4内部的环形滑道上,信号触发装置7位于动力发生器4的右侧与动态信号存储仪15通过导线连接,时间间隔仪8位于信号发生装置7和脉冲发生装置9之间,脉冲发生装置9与入射杆3的右端连接,并位于吸收装置10的内部,吸收装置10安装在底座6上。
动力发生器4是由左气枪4-1、右气枪4-2、内套管4-6、外套管4-5、气体转换器4-4、高压气瓶4-9、气压控制台4-7、耐压管4-8、耐压管4-10、耐压管4-11组成,所述的气体转换器4-4放置在支撑底座11上,左气枪4-1、右气枪4-2对称的安装在气体转换器4-4的左右两侧,内套管4-6穿过并安装与气体转换器4-4上部,位于气体转换器4-4的中心,并与气体转换器4-4的密封连接,入射杆3穿过内套管4-6的中心,外套管4-5安装于气体转换器4-4的下部中心,且与气体转换器4-4的下部密封连接,外套管4-5与内套管4-6同中心,并在内套管4-6的外部,环形撞块5位于外套管4-5和内套管4-6之间所组成的环形滑道内,并与外套管4-5和内套管4-6滑动配合。利用连通器原理,左气枪4-1的耐压管4-8和右气枪4-2的耐压管4-10相互连通并接于气压控制台4-7上,高压气源4-9通过耐压管4-11给气压控制台4-7提供高压气体,这样可通过气压控制台4-7同时控制左气枪4-1和右气枪4-2的充气和放气,左气枪4-1和右气枪4-2释放的高压气体通过气体转换器4-4内部的连通空腔4-3混合,由于连通空腔4-3是由气体转换器4-4和外套管4-5、内套管4-6以及环形撞块5组成的密闭空间,所以连通空腔4-3内部的高压气体只能沿着外套管4-5和内套管4-6所组成的环路释放,从而推动环形撞块5沿着外套管4-5和内套管4-6所组成的环形滑道高速前进,直到环形撞块5射出动力发生器4。
环形撞块5高速射出动力发生器4后,当环形撞块5经过信号触发装置7时,会引起信号触发装置7内部的电场发生变化,该电场的变化通过导线传到动态信号储存仪15中,并触发动态信号储存仪15开始记录超动态电阻应变仪所测量到的应变片12和应变片13的信号。由于采用物理信号触发,不会出现误触发现象,可以保证每次测试均可测量到冲击拉伸实验中的入射波、反射波和透射波数据。
环形撞块5通过信号触发装置7后即快速通过时间间隔仪8,时间间隔仪8可以记录下环形撞块5所通过其设定距离的时间,从而可以计算出撞块的飞行速度。
环形撞块5高速飞出动力发生器4后,撞击到挡块9-4上,挡块9-4通过螺母9-5固定在连接杆9-3上,连接杆9-3通过螺纹连接金属短杆9-2的左端,金属短杆9-2的右端通过连接套9-1连接到入射杆3的左端。当环形撞块5撞击挡块9-4时,就会通过连接短杆9-3快速拉伸金属短杆9-2,由于金属短杆9-2受到冲击载荷作用发生变形,从而产生拉伸脉冲,该脉冲通过连接套9-1作用在入射杆3上,从而使入射杆3中产生拉伸应力脉冲。
本装置可以通过改变撞块5的长度、释放气压的压力以及金属短杆9-2的材质、直径和长度来方便的调整冲击拉应力脉冲的宽度和幅值,从而可以方便的进行各种材料的冲击拉伸性能测试。
本发明包括支撑底座11,透射杆1,试件2,入射杆3,动力发生器4,环形撞块5,信号触发装置7,时间间隔仪8,脉冲发生装置9,吸收装置10,应变片12,应变片13,超动态应变仪14,动态信号存储仪15,混凝土底座6。支撑底座11起到固定和支撑各个组件的作用,气压控制台4-7可以控制高压气源4-9同时给左气枪4-1和右气枪4-2进行充气和放气,左气枪4-1和右气枪4-2释放的高压气体通过气体转换器4-4内部的连通空腔4-3混合后,推动环形撞块5沿着外套管4-5和内套管4-6所组成的圆环形滑道加速前进,当环形撞块5射出动力发生器4时速度达到最大,当撞块5经过信号触发装置7时,信号触发装置7便通过导线给动态信号存储仪15发送信号开始记录超动态应变仪的数据,当环形撞块5通过时间间隔仪8时,时间间隔仪8显示环形撞块5通过其所设定距离的时间,环形撞块5继续前进会撞击到挡块9-4上,当环形撞块5撞击挡块9-4时,就会通过连接短杆9-3快速拉伸金属短杆9-2,拉断后的金属短杆9-2、环形撞块5、挡块9-4、连接杆9-3和螺母9-5会飞入到吸收装置10中,它们撞击吸收装置10的能量最后被混凝土底座6吸收。由于金属短杆9-2受到冲击载荷作用,会产生拉伸脉冲,该脉冲通过连接套9-1作用在入射杆3上,从而使入射杆3中产生拉伸应力脉冲。拉伸应力波脉冲沿着入射杆3向左传播,经过应变片13时,应变片13会记录入射波脉冲波形并通过导线传给超动态应变仪14,超动态应变仪14将数据放大后通过导线传递给动态信号存储仪15记录入射波数据。入射杆3中的入射波继续传播会作用到试件2上,一部分入射波将作用在试件上并传播到透射杆中形成透射波,一部分入射波将在界面反射后在入射杆3中形成反射波。透射波在透射杆1中传播,经过应变片12时,应变片12会记录透射波波形并通过导线传入超动态应变仪14中,超动态应变仪14放大信号后传给动态信号存储仪15记录透射波数据。反射波向入射杆1的右端传播,经过应变片13时,将被应变片13记录并通过导线传递给超动态应变仪14,超动态应变仪14放大信号后传递给动态信号存储仪15记录数据。通过分析动态信号存储仪中记录的入射波数据、反射波数据和透射波数据即可以得到试件在高应变率下的力学参数。
下面通过测试实例来验证本装置的使用效果并加以说明。利用冲击拉伸试验装置测试LY12铝合金的动态拉伸性能。试验时气枪内的压强为0.6Mpa,撞块5的飞行速度为14.71m/s。图5是通过试验得到的动态信号存储仪15记录的入射波、反射波和透射波的波形曲线,图6是通过反射波计算得到的时间-应变率曲线,图7是动态应力-应变曲线。由测试结果可知该冲击载荷下试件的应变率为1300s-1,屈服极限约为450Mpa。
利用冲击拉伸试验装置测试镍钛记忆合金的动态拉伸性能。实验时气枪内的压强为0.5Mpa,撞块5的飞行速度为13.74m/s。图8是通过试验得到的动态信号存储仪15记录的入射波、反射波和透射波的波形曲线,图9是利用反射波计算得到的时间-应变率曲线,图10是是动态应力-应变曲线。由测试结果可知该冲击载荷下镍钛记忆合金的应变率为1700s-1,强度极限约为900Mpa,具有很明显的塑性阶段。

Claims (4)

1.一种冲击拉伸试验装置,其特征是:包括支撑底座、混凝土底座、透射杆、入射杆、应变片、应变仪、动态信号存储仪、动力发生器、环形撞块、信号触发装置、时间间隔仪、脉冲发生装置、吸收装置,透射杆、入射杆、动力发生器均安装在支撑底座上,被测的试件安装在透射杆和入射杆之间,透射杆和入射杆上分别粘贴应变片,应变片通过导线连接应变仪,入射杆依次穿过动力发生器、信号触发装置、时间间隔仪后连接脉冲发生装置,脉冲发生装置安装在吸收装置里,吸收装置安装在混凝土底座上,信号触发装置连接动态信号存储仪,应变仪和动态信号存储仪相连,环形撞块安装在动力发生器里。
2.根据权利要求1所述的一种冲击拉伸试验装置,其特征是:所述的动力发生器包括气枪、高压气瓶、气体转换器、内套管、外套管,气枪包括左气枪、右气枪,气体转换器安装在支撑底座上,左气枪、右气枪分别安装在气体转换器的两侧,内套管安装在外套管里、两者组成的结构安装在气体转换器里并与气体转换器密封,内套管和外套管组成安装环形撞块的滑道,内套管、外套管、气体转换器构成连通空腔,高压气瓶通过管连通左气枪和右气枪。
3.根据权利要求2所述的一种冲击拉伸试验装置,其特征是:还包括气压控制台,高压气瓶连接气压控制台,气压控制台分别连接左气枪和右气枪,左气枪、右气枪对称安装在气体转换器两侧,内套管与外套管同轴。
4.根据权利要求1-3任一所述的一种冲击拉伸试验装置,其特征是:所述的脉冲发生装置包括连接套、金属短杆、连接杆、挡块,金属短杆通过连接杆连接挡块,金属短杆还通过连接套连接入射杆,环形撞块可在连接套、金属短杆、连接杆上滑动并撞击挡块。
CN2012101494508A 2012-05-15 2012-05-15 一种冲击拉伸试验装置 Pending CN102890035A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101494508A CN102890035A (zh) 2012-05-15 2012-05-15 一种冲击拉伸试验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101494508A CN102890035A (zh) 2012-05-15 2012-05-15 一种冲击拉伸试验装置

Publications (1)

Publication Number Publication Date
CN102890035A true CN102890035A (zh) 2013-01-23

Family

ID=47533610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101494508A Pending CN102890035A (zh) 2012-05-15 2012-05-15 一种冲击拉伸试验装置

Country Status (1)

Country Link
CN (1) CN102890035A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181102A (zh) * 2014-08-08 2014-12-03 太原理工大学 一种冲击拉扭加载的实验装置及实验方法
CN104729918A (zh) * 2015-03-11 2015-06-24 赵江霞 动态拉/压与扭同步联合加载实验装置
CN105527153A (zh) * 2016-01-08 2016-04-27 西北工业大学 一种基于电磁力的霍普金森拉压杆应力波加载平台
CN107543751A (zh) * 2017-09-21 2018-01-05 宁波大学 一种材料大变形冲击拉伸实验方法
CN107725501A (zh) * 2017-11-01 2018-02-23 广州恒科技有限公司 一种杆状金属用气体式拉伸机
CN108333047A (zh) * 2018-02-07 2018-07-27 西北工业大学 一种i型裂纹试样的动态对称拉伸装置及其实验方法
CN110296898A (zh) * 2019-06-28 2019-10-01 天津大学 一种高温环境中动静组合加载的霍普金森拉杆装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109093A (en) * 1996-12-12 2000-08-29 European Community Split Hopkinson bar testing apparatus
CN2490568Y (zh) * 2001-08-07 2002-05-08 上海大学 一种高应变率冲击拉伸试验装置
CN102135480A (zh) * 2010-12-17 2011-07-27 北京理工大学 微型试件冲击加载与动态力学性能测量系统及方法
CN202720167U (zh) * 2012-05-15 2013-02-06 哈尔滨工程大学 一种冲击拉伸试验装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109093A (en) * 1996-12-12 2000-08-29 European Community Split Hopkinson bar testing apparatus
CN2490568Y (zh) * 2001-08-07 2002-05-08 上海大学 一种高应变率冲击拉伸试验装置
CN102135480A (zh) * 2010-12-17 2011-07-27 北京理工大学 微型试件冲击加载与动态力学性能测量系统及方法
CN202720167U (zh) * 2012-05-15 2013-02-06 哈尔滨工程大学 一种冲击拉伸试验装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
唱忠良: "双气室间接杆—杆型冲击拉伸试验装置的研制与试验研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》, 15 August 2008 (2008-08-15), pages 004 - 25 *
李林安等: "应变率历史对记忆合金在高应变率拉伸下力学行为影响的实验研究", 《实验力学》, vol. 13, no. 4, 31 December 1998 (1998-12-31), pages 457 - 462 *
胡时胜等: "一种用于材料高应变率试验的装置", 《振动与冲击》, no. 1, 31 December 1986 (1986-12-31), pages 40 - 47 *
范飞林等: "冲击载荷下混凝土动力本构模型试验研究", 《兵工学报 增刊》, vol. 31, 30 April 2010 (2010-04-30), pages 204 - 209 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181102A (zh) * 2014-08-08 2014-12-03 太原理工大学 一种冲击拉扭加载的实验装置及实验方法
CN104729918A (zh) * 2015-03-11 2015-06-24 赵江霞 动态拉/压与扭同步联合加载实验装置
CN104729918B (zh) * 2015-03-11 2017-05-24 赵江霞 动态拉/压与扭同步联合加载实验装置
CN105527153A (zh) * 2016-01-08 2016-04-27 西北工业大学 一种基于电磁力的霍普金森拉压杆应力波加载平台
CN105527153B (zh) * 2016-01-08 2019-02-26 西北工业大学 一种基于电磁力的霍普金森拉压杆应力波加载平台
CN107543751A (zh) * 2017-09-21 2018-01-05 宁波大学 一种材料大变形冲击拉伸实验方法
CN107543751B (zh) * 2017-09-21 2019-08-06 宁波大学 一种材料大变形冲击拉伸实验方法
CN107725501A (zh) * 2017-11-01 2018-02-23 广州恒科技有限公司 一种杆状金属用气体式拉伸机
CN108333047A (zh) * 2018-02-07 2018-07-27 西北工业大学 一种i型裂纹试样的动态对称拉伸装置及其实验方法
CN110296898A (zh) * 2019-06-28 2019-10-01 天津大学 一种高温环境中动静组合加载的霍普金森拉杆装置及方法

Similar Documents

Publication Publication Date Title
CN102890035A (zh) 一种冲击拉伸试验装置
CN109506874B (zh) 基于弹性应力波加载的冲击响应谱试验装置及试验方法
KR101727405B1 (ko) Shpb 충격시험 전용 삼축 압축셀 및 이를 이용한 동적 삼축 전단 시험기법
CN106093194B (zh) 爆炸下准脆性材料应力波衰减规律的测试装置及量征方法
CN109991148B (zh) 二氧化碳爆破冲击动态监测试验装置及其测试方法
CN103868993B (zh) 岩石三轴单样法多级屈服点的声学判别方法及装置
CN104089833B (zh) 一种气动式模仿子(炮)弹射击的材料冲击试验装置
CN103760044A (zh) 一种水泥基材料动态劈拉力学性能试验装置与方法
CN202720167U (zh) 一种冲击拉伸试验装置
CN111562178A (zh) 带有动能吸收的动态拉伸试验装置及试验方法
CN103868992B (zh) 具有单一可测面混凝土结构的无损检测方法
CN110320115A (zh) 用于岩体应力波传播测试的霍普金森岩石杆装置及方法
CN105571751B (zh) 基于超声导波线性阵列的无缝钢轨应力检测装置和方法
CN110715865A (zh) 脆性材料动态断裂的力学和电磁响应同步测试系统及方法
CN107543751A (zh) 一种材料大变形冲击拉伸实验方法
CN110082203A (zh) 测试材料拉伸/压缩高应变率力学性能的装置及测试方法
CN104020061B (zh) 气体炮测试材料动态效应装置及测试方法
CN113640118B (zh) 材料原位动态拉伸加载试验装置
You et al. Review of experimental techniques for impact property of adhesive bonds
CN104132792B (zh) 一种利用激光位移信号测试桥面柔度装置及其方法
JP2006194595A (ja) 引張り試験方法および装置
CN100594368C (zh) 一种材料高速拉伸试验装置及其试验方法
CN206523362U (zh) 一种霍普金森压杆实验装置
CN216524673U (zh) 一种轨道交通防护存储器强冲击试验装置
CN110146394A (zh) 材料特性冲击声学响应测试模拟系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130123