CN102888572A - Zirconium-based metallic glass multi-phase composite material and preparation method thereof - Google Patents

Zirconium-based metallic glass multi-phase composite material and preparation method thereof Download PDF

Info

Publication number
CN102888572A
CN102888572A CN2012104016372A CN201210401637A CN102888572A CN 102888572 A CN102888572 A CN 102888572A CN 2012104016372 A CN2012104016372 A CN 2012104016372A CN 201210401637 A CN201210401637 A CN 201210401637A CN 102888572 A CN102888572 A CN 102888572A
Authority
CN
China
Prior art keywords
zirconium
metallic glass
composite material
based metallic
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104016372A
Other languages
Chinese (zh)
Other versions
CN102888572B (en
Inventor
陈�光
成家林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201210401637.2A priority Critical patent/CN102888572B/en
Publication of CN102888572A publication Critical patent/CN102888572A/en
Application granted granted Critical
Publication of CN102888572B publication Critical patent/CN102888572B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention discloses a zirconium-based metallic glass multi-phase composite material and a preparation method thereof. The atom percentage expression formula of the zirconium-based metallic glass multi-phase composite material is as follows: ZraTibCucNisBee, wherein 52<=a<=70, 17<=b<=22, 2<=c<=9, 2<=d<=7, 4<=e<=15, and a+b+c+d+e=100. The preparation method of the zirconium-based metallic glass multi-phase composite material comprises the following steps: selecting a block metallic glass alloy system; according to a phase selection principle, adjusting the components of alloy so that a second phase solid solution of zirconium is separated out at first in the solidification process of the alloy, and a high-hardness third phase is separated out in the subsequent cooling process of the second phase solid solution; melting the alloy components obtained from the first step to form mother alloy by using an electric arc melting method; and melting the mother alloy repeatedly, carrying out gravity casting in a copper-formed mold to obtain the metallic glass multi-phase composite material. According to the invention, the zirconium-based metallic glass multi-phase composite material is high in strength and realizes the good combination of strength and plasticity while the plasticity of the metallic glass is improved.

Description

Zirconium-based metallic glass heterogeneous composite material and preparation method thereof
Technical field
The invention belongs to the metal-base composites technology, particularly a kind of zirconium-based metallic glass heterogeneous composite material and preparation method thereof.
Background technology
Block metal glass (BMG) is although material has high breaking tenacity and hardness and high elastic strain limit, but because the viscous deformation of Single Phase Metal glass is to realize by the height localized shear deformation, the shear zone quantity that can start before the fracture is very limited, and the calamitous brittle rupture without macroscopical viscous deformation at room temperature can occur BMG.Therefore, the brittleness at room temperature problem has developed into the important bottleneck that the BMG material is used.
For improving the brittleness at room temperature of BMG material, U.S. Johnson research group first passage added the Nb alloy element in the Zr-Ti-Cu-Ni-Be alloy system in 2000, prepare the BMG matrix material of micron-scale β-Zr (Ti) solid solution phase plasticising, its stretching plastic strain reaches 3%.Subsequently, the people such as Chen Guang are by carrying out spheroidizing to dentrite β-Zr (Ti) phase sosoloid, the stretching plastic of BMG matrix material is brought up to (have large size metal glass composite material of stretching plastic and preparation method thereof, number of patent application is 201110099685.6) more than 6%.
Although it is remarkable to give birth to sosoloid plasticising BMG matrix material plasticization effect in the above-mentioned as cast condition, because the intensity of plasticity solid solution phase far below the metallic glass matrix, therefore causes composite material strength significantly to descend.
Summary of the invention
The object of the present invention is to provide a kind of new type zirconium-based metallic glass heterogeneous composite material.The constructional feature of this matrix material is take BMG as matrix, separates out and gives birth to the sosoloid second-phase in the as cast condition, and separate out the third phase of the high rigidity tiny, that disperse distributes in the sosoloid second-phase, thereby produce precipitation strength.This matrix material is given birth within keeping in the past as cast condition in the sosoloid plasticising BMG matrix material plasticization effect, significantly improves the intensity of matrix material.
The technical solution that realizes the object of the invention is: a kind of zirconium-based metallic glass heterogeneous composite material, the atomic percent expression formula of its alloying constituent is: Zr aTi bCu cNi dBe e, 52≤a≤70,17≤b≤22,2≤c≤9,2≤d≤7,4≤e≤15 wherein, a+b+c+d+e=100.The metal glass composite material of this composition has heterogeneous composite structure, is uniform-distribution with sosoloid second-phase β-Zr on its metallic glass matrix, and is settled out the third phase ω-Zr of the high rigidity tiny, that disperse distributes in the sosoloid second-phase.
A kind of method for preparing above-mentioned zirconium-based metallic glass heterogeneous composite material may further comprise the steps:
The first step: choose block metal glass, according to selecting mutually principle, adjust alloying constituent Zr aTi bCu cNi dBe e, 52≤a≤70,17≤b≤22 wherein, 2≤c≤9,2≤d≤7,4≤e≤15, a+b+c+d+e=100 make its sosoloid second-phase that can separate out first zirconium in process of setting, and the sosoloid second-phase is separated out the third phase of high rigidity in subsequent cooling process;
Second step: adopt the method for arc melting, alloy raw material is smelted into mother alloy;
The 3rd step: mother alloy refuse, copper mold gravitational casting obtain zirconium-based metallic glass heterogeneous composite material.
Each constituent element purity of alloy described in the first step is greater than 99.5%.
The compression plasticity maximum of the zirconium-based metallic glass heterogeneous composite material described in the 3rd step reaches 10%.
The present invention compared with prior art, its remarkable advantage: the present invention has developed a kind of new type zirconium-based metallic glass heterogeneous composite material first.This matrix material has unique constructional feature, and it is separated out at the block metal glass matrix and gives birth to the sosoloid second-phase in the as cast condition, and separates out the third phase of the high rigidity tiny, that disperse distributes in the sosoloid second-phase, thereby produces precipitation strength.Therefore, this matrix material is given birth within keeping general as cast condition in the sosoloid plasticising BMG matrix material plasticization effect, has increased substantially the intensity of matrix material.In addition, this matrix material is along with β-Zr phase and ω-Zr separating out mutually, and the residue alloy melt has very strong glass forming ability, can obtain the zirconium-based metallic glass heterogeneous composite material of maximum diameter 35mm.
Description of drawings
Fig. 1 is zirconium-based metallic glass heterogeneous composite material preparation flow figure of the present invention.
Fig. 2 is embodiment 1 zirconium-based metallic glass heterogeneous composite material microstructure and XRD figure spectrum (a is micro-organization chart, and b is the XRD figure spectrum).
Fig. 3 is the room temperature compression curve of embodiment 1 zirconium-based metallic glass heterogeneous composite material.
Embodiment
Below in conjunction with accompanying drawing the present invention is done and to describe in further detail
(1) design of alloy:
Selection has the Zr-Ti-Cu-Ni-Be alloy system of good glass forming ability (GFA), according to selecting mutually principle, binary alloy phase diagram, and the stability of phase is analyzed, thereby is determined alloying constituent, obtains required alloy component range, Zr aTi bCu cNi dBe e(atomic percent), 52≤a≤70,17≤b≤22,2≤c≤9,2≤d≤7,4≤e≤15 wherein, a+b+c+d+e=100.
(2) mother alloy melting:
Converse mass percent according to the atomic percent between the resulting different-alloy element of (1) Composition Design, adopt the high pure metal constituent element to configure required alloy.Under the protection of high-purity Ar gas, utilize melting Ti or Zr pure metal to remove residual oxygen in the chamber, adopt water jacketed copper crucible non-consumable arc melting equipment to found mother alloy.Mother alloy repeatedly carries out the mother alloy button ingot of induction stirring to obtain mixing when melting.
(3) forming materials:
After the mother alloy remelting, by the copper mold gravitational casting or blow and cast shape, its shape and size can be as required design the inner chamber of copper mold.
(4) structural characterization:
Utilize X-ray diffractometer (XRD), differential scanning calorimeter (DSC), opticmicroscope (OM) and scanning electron microscope (SEM) etc. that the alloy of preparation is carried out Microstructure characterization, and further it is carried out the mechanical property sign, to determine to have the alloying constituent of best comprehensive mechanical property.
The invention will be further described below in conjunction with specific embodiments and the drawings.
Embodiment 1
(1) raw-material selecting
The present invention prepares purity such as the table 1 of each metal constituent element that master alloy ingot selects, and alloying constituent is Zr 60Ti 20Cu 5.6Ni 4.4Be 10(atomic percent).
Table 1 preparation master alloy ingot is selected the purity (%) of metal constituent element
Alloying element Zr Ti Cu Ni Be
Purity/% 99.95 99.95 99.99 99.99 99.5
(2) preparation of master alloy ingot
Under, the high-purity argon gas protective condition air-breathing at Ti, found mother alloy with the non-consumable arc-melting furnace and buckle ingot, its specific procedure is as follows:
A, with the surperficial mechanical grinding of raw metal remove the surface oxide skin after, get the raw materials ready according to the composition proportion material that designs; The material that will prepare according to the weight about every ingot 80g is put into the water jacketed copper crucible of smelting furnace, covers bell and is evacuated to 2 * 10 -3Pa; Be filled with the high-purity argon gas (99.99%) of a certain amount of pressure in the stove, the argon pressure scope is 0.4 ~ 0.6MPa;
B, before founding master alloy ingot, will be for air-breathing Ti ingot melting 2 ~ 3 times;
C, multi-pass master alloy melting ingot: adopt the non-consumable tungsten electrode first with Zr, Ti, Cu, Ni, Be alloying element together melting 2 ~ 3 times, and apply function composite by electromagnetic stirring, the mother alloy button ingot that obtains mixing.The electric current that adopts during melting is 500 ~ 650A, and the voltage that induction stirring adopts is 1 ~ 3V.
(3) forming materials
The shaping system that places water jacketed copper crucible and water cooled copper mould to combine closely on mother alloy button ingot.System is evacuated to 4 ~ 5 * 10 -4Pa; After the electric-arc heating remelting, under rare gas element (99.999% the high-purity argon) protective atmosphere of 0.6MPa, rely on self gravitation to inject water cooled copper mould, prepare the bar-shaped sample of required diameter.
(4) structure and performance characterization
Fig. 2 is the 35mm diameter Zr that adopts above-mentioned processing condition preparation 60Ti 20Cu 5.6Ni 4.4Be 10The microtexture of alloy and XRD figure spectrum can be found out, the structure of this matrix material is: be uniform-distribution with the β of 10~30 μ m-Zr phase on the block metal glass matrix, and β-Zr mutually in the even dispersion tiny ω-Zr particle that distributing.
Fig. 3 is zirconium-based metallic glass heterogeneous composite material room temperature compressive stress strain curve, and experiment condition is: sample is 3 * 6mm column sample, and experimental temperature is room temperature (25 ℃), and compressive strain speed is 2 * 10 -4s -1Mechanical experimental results shows: prepared matrix material yield strength has reached 1450MPa, and compression plasticity has surpassed 10%.
Fact proved, gave birth to solid solution phase plasticising metal glass composite material in the past, zirconium-based metallic glass heterogeneous composite material significantly improves the intensity of material on the basis that has kept good plasticity, realized the good combination of intensity and plasticity.
Embodiment 2
Adopt the method identical with embodiment 1, alloying constituent is Zr 56.3Ti 18.7Cu 6.9Ni 5.6Be 12.5, having prepared the zirconium-based metallic glass heterogeneous composite material of 25mm diameter, yield strength has reached 1580MPa, and compression plasticity has reached 8%.
Embodiment 3
Adopt the method identical with embodiment 1, alloying constituent is Zr 52Ti 17Cu 9Ni 7Be 15, having prepared the zirconium-based metallic glass heterogeneous composite material of 30mm diameter, yield strength has surpassed 1650MPa, and compression plasticity has reached 6%.
Embodiment 4
Adopt the method identical with embodiment 1, alloying constituent is Zr 70Ti 22Cu 2Ni 2Be 4, having prepared the zirconium-based metallic glass heterogeneous composite material of 30mm diameter, yield strength has surpassed 1350MPa, and compression plasticity has reached 10%.

Claims (9)

1. a zirconium-based metallic glass heterogeneous composite material is characterized in that the atomic percent expression formula of the alloying constituent of described matrix material is: Zr aTi bCu cNi dBe e, 52≤a≤70,17≤b≤22,2≤c≤9,2≤d≤7,4≤e≤15 wherein, a+b+c+d+e=100.
2. zirconium-based metallic glass heterogeneous composite material according to claim 1, the matrix material that it is characterized in that described composition has heterogeneous composite structure, be uniform-distribution with sosoloid second-phase β-Zr on its metallic glass matrix, and be settled out the third phase ω-Zr of the high rigidity tiny, that disperse distributes in the sosoloid second-phase.
3. zirconium-based metallic glass heterogeneous composite material according to claim 1, the maximum diameter that it is characterized in that described matrix material is 35mm.
4. zirconium-based metallic glass heterogeneous composite material according to claim 1 is characterized in that the compression plasticity maximum of described matrix material reaches 10%.
5. method for preparing above-mentioned zirconium-based metallic glass heterogeneous composite material is characterized in that said method comprising the steps of:
The first step: choose block metal glass, according to selecting mutually principle, adjust alloying constituent Zr aTi bCu cNi dBe e, 52≤a≤70,17≤b≤22 wherein, 2≤c≤9,2≤d≤7,4≤e≤15, a+b+c+d+e=100 make its sosoloid second-phase β-Zr that can separate out first zirconium in process of setting, and the sosoloid second-phase is separated out the third phase ω-Zr of high rigidity in subsequent cooling process;
Second step: adopt the method for arc melting, alloy raw material is smelted into mother alloy;
The 3rd step: mother alloy refuse, copper mold gravitational casting obtain zirconium-based metallic glass heterogeneous composite material.
6. the method for preparing zirconium-based metallic glass heterogeneous composite material according to claim 5 is characterized in that each constituent element purity of the alloy described in the first step is greater than 99.5%.
7. the method for preparing zirconium-based metallic glass heterogeneous composite material according to claim 5, the electric current that adopts when it is characterized in that melting described in the second step is 500 ~ 650A, the voltage that induction stirring adopts is 1 ~ 3V.
8. the method for preparing zirconium-based metallic glass heterogeneous composite material according to claim 5 is characterized in that the maximum diameter of the zirconium-based metallic glass heterogeneous composite material described in the 3rd step is 35mm.
9. the method for preparing zirconium-based metallic glass heterogeneous composite material according to claim 5 is characterized in that the compression plasticity maximum of the zirconium-based metallic glass heterogeneous composite material described in the 3rd step reaches 10%.
CN201210401637.2A 2012-10-19 2012-10-19 Zirconium-based metallic glass multi-phase composite material and preparation method thereof Active CN102888572B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210401637.2A CN102888572B (en) 2012-10-19 2012-10-19 Zirconium-based metallic glass multi-phase composite material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210401637.2A CN102888572B (en) 2012-10-19 2012-10-19 Zirconium-based metallic glass multi-phase composite material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102888572A true CN102888572A (en) 2013-01-23
CN102888572B CN102888572B (en) 2014-01-08

Family

ID=47532250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210401637.2A Active CN102888572B (en) 2012-10-19 2012-10-19 Zirconium-based metallic glass multi-phase composite material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102888572B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948706A (en) * 2023-03-13 2023-04-11 松诺盟科技有限公司 Amorphous alloy high-pressure common rail pipe forging process, common rail pipe and high-pressure common rail system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762502A (en) * 1993-08-19 1995-03-07 Takeshi Masumoto Amorphous zirconium alloy having wide region of supercooled liquid
CN1122148A (en) * 1993-04-07 1996-05-08 加利福尼亚技术学院 Formation of beryllium containing metallic glasses
EP1183401A2 (en) * 1999-04-30 2002-03-06 California Institute Of Technology In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning
WO2004007786A2 (en) * 2002-07-17 2004-01-22 Liquidmetal Technologies Method of making dense composites of bulk-solidifying amorphous alloys and articles thereof
CN101089212A (en) * 2006-06-14 2007-12-19 南京理工大学 Method for branch crystal balling in large block metal glass composite
CN101440464A (en) * 2007-11-24 2009-05-27 比亚迪股份有限公司 Zirconium based amorphous alloy and manufacture method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122148A (en) * 1993-04-07 1996-05-08 加利福尼亚技术学院 Formation of beryllium containing metallic glasses
JPH0762502A (en) * 1993-08-19 1995-03-07 Takeshi Masumoto Amorphous zirconium alloy having wide region of supercooled liquid
EP1183401A2 (en) * 1999-04-30 2002-03-06 California Institute Of Technology In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning
WO2004007786A2 (en) * 2002-07-17 2004-01-22 Liquidmetal Technologies Method of making dense composites of bulk-solidifying amorphous alloys and articles thereof
CN101089212A (en) * 2006-06-14 2007-12-19 南京理工大学 Method for branch crystal balling in large block metal glass composite
CN101440464A (en) * 2007-11-24 2009-05-27 比亚迪股份有限公司 Zirconium based amorphous alloy and manufacture method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948706A (en) * 2023-03-13 2023-04-11 松诺盟科技有限公司 Amorphous alloy high-pressure common rail pipe forging process, common rail pipe and high-pressure common rail system
CN115948706B (en) * 2023-03-13 2023-05-12 松诺盟科技有限公司 Amorphous alloy high-pressure common rail pipe forging process, common rail pipe and high-pressure common rail system

Also Published As

Publication number Publication date
CN102888572B (en) 2014-01-08

Similar Documents

Publication Publication Date Title
CN103122431B (en) Preparation method for magnesium-lithium alloy with enhanced long-period structure phase
CN102925822B (en) Metal glass composite material with high-oxygen content and preparation method thereof
CN106148760A (en) For medical beta titanium alloy powder body material that 3D prints and preparation method thereof
CN104674103A (en) CrFeCoNiNbx high-entropy alloy and preparation method thereof
CN106893951B (en) Cu base bulk metallic glass composite material and preparation method
CN102899592B (en) Plastic zirconium-based metal glass and preparation method thereof
CN107971499A (en) The method for preparing spherical titanium aluminium-based alloyed powder end
CN106903294B (en) A kind of preparation method and low cost amorphous alloy part of low cost amorphous alloy part
CN101629252B (en) Plastic bulk metallic glass in situ composite material and method for preparing same
CN113502441A (en) In-situ authigenic phase-reinforced magnesium-based amorphous composite material and preparation method thereof
CN102912259B (en) Zirconium-based metal glass endogenic composite material and preparation method thereof
CN104264082B (en) A kind of nitrogen-doping Strengthening and Toughening metal glass composite material and preparation method thereof
CN100494437C (en) Method for branch crystal balling in large block metal glass composite
CN102888572B (en) Zirconium-based metallic glass multi-phase composite material and preparation method thereof
CN114807707B (en) High-strength wrought magnesium alloy and preparation method thereof
CN101942618B (en) Magnesium-based block metal glass composite material and preparation method thereof
CN102912260B (en) Endogenic intermetallic compound metal glass composite material and preparation method thereof
CN106011575B (en) A kind of Nb Ti Ta C alloy bars and preparation method thereof
CN102002649B (en) High-toughness magnesium based block body metal glass composite material and preparation method thereof
CN108265238B (en) Zirconium-based metallic glass endogenetic composite material and tissue thinning method thereof
CN108165780A (en) A kind of preparation method of Ni-Cr-Al-Fe systems high temperature alloy
CN111440964B (en) High-strength high-conductivity Cu-Fe alloy short-process preparation method
CN102861920B (en) Crystalline/amorphous composite powder and preparation method thereof
CN106636985B (en) A kind of metal glass composite material and preparation method thereof
CN106756646B (en) A kind of Strengthening and Toughening metal glass composite material and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant