CN102874785B - Method for preparing aggregation induced emission (AIE) group functionalized laminar zirconium phosphate material by ion exchange method - Google Patents
Method for preparing aggregation induced emission (AIE) group functionalized laminar zirconium phosphate material by ion exchange method Download PDFInfo
- Publication number
- CN102874785B CN102874785B CN201210387362.1A CN201210387362A CN102874785B CN 102874785 B CN102874785 B CN 102874785B CN 201210387362 A CN201210387362 A CN 201210387362A CN 102874785 B CN102874785 B CN 102874785B
- Authority
- CN
- China
- Prior art keywords
- zirconium phosphate
- aie
- zrp
- ion exchange
- deionized water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 56
- 229910000166 zirconium phosphate Inorganic materials 0.000 title claims abstract description 37
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000005342 ion exchange Methods 0.000 title claims abstract description 14
- 238000004220 aggregation Methods 0.000 title claims abstract description 10
- 230000002776 aggregation Effects 0.000 title claims abstract description 10
- 150000001412 amines Chemical class 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 239000008367 deionised water Substances 0.000 claims description 33
- 229910021641 deionized water Inorganic materials 0.000 claims description 33
- 239000000725 suspension Substances 0.000 claims description 24
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 claims description 16
- 239000002243 precursor Substances 0.000 claims description 13
- 238000003756 stirring Methods 0.000 claims description 9
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 claims description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 6
- 238000002525 ultrasonication Methods 0.000 claims description 6
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 claims description 4
- 239000012265 solid product Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000007306 functionalization reaction Methods 0.000 claims description 2
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N mono-methylamine Natural products NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 2
- 238000005119 centrifugation Methods 0.000 claims 1
- AVPRDNCYNYWMNB-UHFFFAOYSA-N ethanamine;hydrate Chemical compound [OH-].CC[NH3+] AVPRDNCYNYWMNB-UHFFFAOYSA-N 0.000 claims 1
- 230000010355 oscillation Effects 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- 238000009830 intercalation Methods 0.000 abstract description 12
- 230000002687 intercalation Effects 0.000 abstract description 12
- 238000001514 detection method Methods 0.000 abstract description 6
- 239000003795 chemical substances by application Substances 0.000 abstract description 5
- 238000012377 drug delivery Methods 0.000 abstract description 5
- 125000002091 cationic group Chemical group 0.000 abstract description 4
- 239000002360 explosive Substances 0.000 abstract description 4
- 125000000129 anionic group Chemical group 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- CVRXLMUYFMERMJ-UHFFFAOYSA-N N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine Chemical compound C=1C=CC=NC=1CN(CC=1N=CC=CC=1)CCN(CC=1N=CC=CC=1)CC1=CC=CC=N1 CVRXLMUYFMERMJ-UHFFFAOYSA-N 0.000 description 31
- 239000007864 aqueous solution Substances 0.000 description 18
- 239000007787 solid Substances 0.000 description 14
- 239000011229 interlayer Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000004108 freeze drying Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明属于具有荧光性质的无机有机杂化材料制备技术领域,具体涉及一种制备聚集诱导发光(AIE)基团功能化的层状磷酸锆材料的离子交换方法。它是以具有层状结构的磷酸锆作为骨架基元,采用有机胺为预撑剂,通过离子交换插层的方式将含有水溶性AIE分子的阳离子基团插入到材料中,从而得到具有较强荧光的无机有机杂化材料。该方法适用于各类含有阳离子基团的AIE水溶性分子及具有阴离子骨架结构的层状磷酸锆材料。通过改变AIE分子或预撑剂的种类及加入量可以有效地控制磷酸锆的层间距及发光性质,使材料在药物传输,生物成像,爆炸物检测等领域具有较好的应用。
The invention belongs to the technical field of preparation of inorganic-organic hybrid materials with fluorescent properties, and in particular relates to an ion exchange method for preparing layered zirconium phosphate materials functionalized with aggregation-induced emission (AIE) groups. It uses zirconium phosphate with a layered structure as the skeleton element, uses organic amines as pre-propping agents, and inserts cationic groups containing water-soluble AIE molecules into the material through ion exchange intercalation, thereby obtaining a strong Fluorescent inorganic-organic hybrid materials. The method is applicable to all kinds of AIE water-soluble molecules containing cationic groups and layered zirconium phosphate materials with anionic skeleton structure. By changing the type and amount of AIE molecules or pre-propping agents, the layer spacing and luminescent properties of zirconium phosphate can be effectively controlled, making the material suitable for drug delivery, bioimaging, explosives detection and other fields.
Description
技术领域 technical field
本发明属于具有荧光性质的无机有机杂化材料制备技术领域,具体涉及一种采用离子交换方法制备聚集诱导发光基团(AIE)功能化的层状磷酸锆材料,使得到的材料既具有无机层板结构的优点同时又具有AIE分子的特殊荧光性质,从而在药物传输、生物成像、爆炸物检测等领域展现了较好的应用前景。The invention belongs to the technical field of preparation of inorganic-organic hybrid materials with fluorescent properties, in particular to a layered zirconium phosphate material functionalized with aggregation-induced luminescent groups (AIE) prepared by an ion exchange method, so that the obtained material has an inorganic layer The advantages of the plate structure and the special fluorescent properties of AIE molecules show good application prospects in the fields of drug delivery, bioimaging, and explosive detection.
技术背景 technical background
无机有机杂化材料作为一种新颖的复合材料已经被广泛应用于催化、分离、有机-无机主客体化学、功能材料等领域。其中有机荧光分子修饰的无机材料在细胞成像、药物传输、生物检测等方面展现了良好的性质。但是传统的荧光分子如罗丹明、荧光素等在稀溶液中具有较强的荧光,而在固相化或者聚集时却发生荧光减弱甚至淬灭的现象(aggregation caused quenching,ACQ),这在一定程度上限制了此类功能性材料的进一步应用。As a novel composite material, inorganic-organic hybrid materials have been widely used in the fields of catalysis, separation, organic-inorganic host-guest chemistry, and functional materials. Among them, inorganic materials modified by organic fluorescent molecules have shown good properties in cell imaging, drug delivery, and biological detection. However, traditional fluorescent molecules such as rhodamine and fluorescein have strong fluorescence in dilute solutions, but the phenomenon of fluorescence weakening or even quenching (aggregation caused quenching, ACQ) occurs during solidification or aggregation. To a certain extent, the further application of such functional materials is limited.
2001年,人们发现了一类特殊的荧光分子,其在溶液状态时不发光,而在固态或者聚集态时却呈现较强的荧光,即聚集诱导发光(aggregation inducedemission,AIE)现象(Chem.Commun.2001,1740)。其中,分子内旋转受限是发生荧光增强现象的主要原因。自这类分子被报道以来,已经在检测、细胞成像及有机光电二极管等领域展现了较好的应用价值。In 2001, people discovered a special class of fluorescent molecules, which do not emit light in the solution state, but show strong fluorescence in the solid state or in the aggregated state, that is, aggregation induced emission (AIE) phenomenon (Chem.Commun .2001, 1740). Among them, the limitation of intramolecular rotation is the main reason for the phenomenon of fluorescence enhancement. Since these molecules were reported, they have shown good application value in the fields of detection, cell imaging, and organic photodiodes.
磷酸锆(ZrP)及其衍生物是一类具有阳离子交换能力的层状无机材料,具有组成单一、合成简单、较高的热稳定性和化学稳定性等优点,是制备柱撑化合物的优良基体。在前期工作中,我们通过后嫁接的方式将AIE分子固载到介孔SBA-15材料中(Chem.Commun.2011,47,11077-11079;Chem.Commun.2012,48,7167-7169),使材料在药物传输和爆炸物检测方面展现了较好的性质。目前关于AIE分子柱撑磷酸锆材料的合成,还没有相关报道。Zirconium phosphate (ZrP) and its derivatives are a kind of layered inorganic materials with cation exchange capacity. They have the advantages of single composition, simple synthesis, high thermal stability and chemical stability, and are excellent substrates for preparing pillared compounds. . In previous work, we immobilized AIE molecules into the mesoporous SBA-15 material by post-grafting (Chem.Commun.2011, 47, 11077-11079; Chem.Commun.2012, 48, 7167-7169), The material exhibits better properties in drug delivery and explosive detection. At present, there is no relevant report on the synthesis of AIE molecular pillared zirconium phosphate materials.
发明内容 Contents of the invention
本发明的目的在于提供一种简单快捷的合成方法,即通过离子交换的方法制备AIE基团功能化的层状磷酸锆材料。它是以具有层状结构的磷酸锆作为骨架基元,采用有机胺为预撑剂,通过离子交换插层的方式将含有水溶性AIE分子的阳离子基团插入到材料中,从而得到具有较强荧光的无机有机杂化材料。The purpose of the present invention is to provide a simple and rapid synthesis method, that is, to prepare layered zirconium phosphate materials functionalized with AIE groups by means of ion exchange. It uses zirconium phosphate with a layered structure as the skeleton unit, uses organic amines as pre-propping agents, and inserts cationic groups containing water-soluble AIE molecules into the material through ion exchange intercalation, thereby obtaining a strong Fluorescent inorganic-organic hybrid materials.
该方法适用于各类含有阳离子基团的AIE水溶性分子及具有阴离子骨架结构的层状磷酸锆材料。通过改变AIE分子或预撑剂的种类及加入量可以有效地控制磷酸锆的层间距及荧光颜色和强度等发光性质,使材料在药物传输,生物成像,爆炸物检测等领域具有较好的应用前景。The method is applicable to all kinds of AIE water-soluble molecules containing cationic groups and layered zirconium phosphate materials with anionic skeleton structure. By changing the type and amount of AIE molecules or pre-propping agents, the interlayer distance of zirconium phosphate, fluorescence color and intensity and other luminescent properties can be effectively controlled, so that the material has better applications in the fields of drug delivery, bioimaging, and explosive detection. prospect.
本发明方法步骤如下:The inventive method step is as follows:
(1)将0.4~1.0g ZrP超声均匀分散于10~20mL去离子水中,然后加入0.07~0.3g有机胺,继续超声0.3~1h;离心分离(转速为8000~11000rpm,时间为15~30min)后用去离子水多次洗涤固体产物,然后充分干燥得到白色的前驱体;(1) Ultrasonically disperse 0.4-1.0g ZrP evenly in 10-20mL deionized water, then add 0.07-0.3g organic amine, continue ultrasonication for 0.3-1h; centrifuge (8000-11000rpm, 15-30min) Finally, the solid product was washed with deionized water several times, and then fully dried to obtain a white precursor;
(2)称量30~60mg步骤(1)得到的前驱体,超声使其完全分散到10~20mL去离子水中,得到前驱体的悬浊液;将10~107mg水溶性AIE分子加入到30~50mL去离子水中,超声使其完全溶解,然后将该溶液加入到前驱体悬浊液中,在10~50℃条件下充分混合0.5~36h,得到均匀的淡黄色悬浊液;(2) Weigh 30-60mg of the precursor obtained in step (1), and ultrasonically disperse it into 10-20mL deionized water to obtain a suspension of the precursor; add 10-107mg of water-soluble AIE molecules to 30- 50mL of deionized water, sonicate to dissolve it completely, then add the solution to the precursor suspension, and mix thoroughly at 10-50°C for 0.5-36h to obtain a uniform light yellow suspension;
(3)将步骤(2)的悬浊液离心(转速为8000~11000rpm,时间为15~30min),并用去离子水多次洗涤固体产物,以洗去未参加反应的AIE分子,干燥后得到AIE基团功能化的层状磷酸锆材料。(3) Centrifuge the suspension in step (2) (rotating speed is 8000-11000rpm, time is 15-30min), and wash the solid product with deionized water several times to wash away the AIE molecules that have not participated in the reaction, and obtain after drying AIE group functionalized layered zirconium phosphate materials.
上述步骤中所述的磷酸锆为α-ZrP、θ-ZrP、γ-ZrP中的一种;有机胺是甲胺、丙胺、丁胺、四甲基氢氧化铵、四乙基氢氧化铵、四丁基氢氧化铵中的一种。水溶性的AIE分子是具有下列结构通式的季铵盐中的一种,其中n为2~5的整数。The zirconium phosphate described in the above steps is one of α-ZrP, θ-ZrP, γ-ZrP; the organic amine is methylamine, propylamine, butylamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, One of tetrabutylammonium hydroxide. The water-soluble AIE molecule is one of the quaternary ammonium salts with the following general structural formula, wherein n is an integer of 2-5.
作为本发明的优选实验范围,充分混合的方式为超声、搅拌、振荡中的一种。As the preferred experimental scope of the present invention, the way of thorough mixing is one of ultrasonic, stirring and shaking.
本发明首次通过离子交换的方式制备AIE基团功能化的层状磷酸锆材料,其具有如下优势:The present invention prepares layered zirconium phosphate materials functionalized with AIE groups for the first time by means of ion exchange, which has the following advantages:
1.本发明提出的离子交换法制备AIE基团功能化的层状磷酸锆材料,无需使用较贵的表面活性剂对磷酸锆材料造孔,如十六烷基三甲基溴化铵、P123、F127等,且原料磷酸锆的合成方法简单、水分散性好、结构稳定、易于调节材料的尺寸和层间距。1. The ion exchange method proposed by the present invention prepares layered zirconium phosphate materials functionalized by AIE groups without using more expensive surfactants to form pores on zirconium phosphate materials, such as cetyltrimethylammonium bromide, P123, F127 etc., and the raw material zirconium phosphate has a simple synthesis method, good water dispersibility, stable structure, and easy adjustment of the size and layer spacing of the material.
2.本发明提出的离子交换法制备AIE基团功能化的层状磷酸锆材料,采用的AIE分子价格低廉、易于制备,降低了生产成本。2. The layered zirconium phosphate material with AIE group functionalization is prepared by the ion exchange method proposed by the invention, the AIE molecule used is cheap, easy to prepare, and reduces the production cost.
3.本发明提出的离子交换法制备AIE基团功能化的层状磷酸锆材料,操作方法简单,合成时间较短,减少了脱除模板剂的过程。同时易于调节插入层中AIE分子的量和种类,从而改变复合材料的荧光强度和发光峰位。3. The ion exchange method proposed by the invention prepares the AIE group functionalized layered zirconium phosphate material, the operation method is simple, the synthesis time is short, and the process of removing the template agent is reduced. At the same time, it is easy to adjust the amount and type of AIE molecules in the intercalation layer, thereby changing the fluorescence intensity and luminescence peak position of the composite material.
附图说明: Description of drawings:
图1:为本发明实施例1原料α-ZrP的XRD谱图;Fig. 1: is the XRD spectrogram of the raw material α-ZrP of embodiment 1 of the present invention;
图2:为本发明实施例1原料α-ZrP的扫描电镜图片;Fig. 2: is the scanning electron microscope picture of raw material α-ZrP of embodiment 1 of the present invention;
图3:为本发明实施例1丁胺扩孔后α-ZrP材料的XRD谱图;Figure 3: is the XRD spectrum of the α-ZrP material after butylamine expansion in Example 1 of the present invention;
图4:为本发明实施例1丁胺扩孔后α-ZrP材料的扫描电镜图片;Fig. 4: is the scanning electron microscope picture of the α-ZrP material after butylamine expansion in Example 1 of the present invention;
图5:为本发明实施例1得到的TPEN插层后α-ZrP材料的XRD谱图;Figure 5: XRD spectrum of the α-ZrP material after TPEN intercalation obtained in Example 1 of the present invention;
图6:为本发明实施例1得到的TPEN插层后α-ZrP材料的扫描电镜图片;Figure 6: a scanning electron microscope picture of the α-ZrP material after TPEN intercalation obtained in Example 1 of the present invention;
图7:为本发明实施例1得到的TPEN插层后α-ZrP材料的透射电镜图片;Figure 7: Transmission electron microscope picture of the α-ZrP material after TPEN intercalation obtained in Example 1 of the present invention;
图8:为本发明实施例1得到的TPEN插层后α-ZrP材料的氮气吸附脱附曲线;Figure 8: The nitrogen adsorption-desorption curve of the α-ZrP material after TPEN intercalation obtained in Example 1 of the present invention;
图9:为本发明实施例1得到的TPEN插层后α-ZrP材料在水溶液中的荧光谱图。Fig. 9 is the fluorescence spectrum of the α-ZrP material in aqueous solution after TPEN intercalation obtained in Example 1 of the present invention.
如图1、3、5所示:原料α-ZrP第一个峰位置出现在2θ=11.6°,表明其层间距为当采用丁胺作为预撑剂柱撑之后,第一个峰位置出现在2θ=5.9°表明柱撑后材料的层间距约为1.5nm。当水溶性的TPEN分子插入柱撑的材料中后,发现材料的第一个衍射峰继续向小角度移动2θ=4.3°,表明TPEN插层后α-ZrP材料的层间距扩大至2.1nm。As shown in Figures 1, 3, and 5: the first peak position of the raw material α-ZrP appears at 2θ=11.6°, indicating that the interlayer spacing is When butylamine was used as a pre-proppant pillar, the first peak appeared at 2θ=5.9°, indicating that the interlayer spacing of the pillared material was about 1.5nm. When water-soluble TPEN molecules were inserted into the pillared material, it was found that the first diffraction peak of the material continued to move to a small angle of 2θ=4.3°, indicating that the interlayer spacing of the α-ZrP material expanded to 2.1nm after TPEN intercalation.
如图2、4、6所示:α-ZrP在插层前后其形貌基本保持不变,仍然为片状六方结构,表明插层过程对材料的基本形貌没有较大改变。As shown in Figures 2, 4, and 6: the morphology of α-ZrP remains basically unchanged before and after intercalation, and is still a sheet-like hexagonal structure, indicating that the intercalation process does not greatly change the basic morphology of the material.
如图7所示:TPEN插层的α-ZrP材料具有明显带形孔道,通过测量其层间距约为2.1nm,这与XRD得到的结果基本一致。As shown in Figure 7: the α-ZrP material intercalated by TPEN has obvious band-shaped channels, and the interlayer spacing is about 2.1nm by measurement, which is basically consistent with the results obtained by XRD.
如图8所示:通过氮气吸附脱附测试表明TPEN插层后α-ZrP材料的BET比表面积为51.9m2/g。(删掉原图九)As shown in Figure 8: the BET specific surface area of the α-ZrP material after TPEN intercalation is 51.9 m 2 /g through nitrogen adsorption and desorption tests. (Delete original picture 9)
如图9所示:TPEN插层的α-ZrP材料均匀分散到水溶液后,在360nm紫外光激发下,在473nm处有较强的荧光发射峰,表明插层后的材料发射蓝光。这是由于水溶性的AIE分子TPEN与α-ZrP有较强的离子键作用,抑制了TPEN分子的高速旋转,从而产生较强的荧光。As shown in Figure 9: After the TPEN-intercalated α-ZrP material is uniformly dispersed in an aqueous solution, there is a strong fluorescence emission peak at 473 nm under the excitation of 360 nm ultraviolet light, indicating that the intercalated material emits blue light. This is because the water-soluble AIE molecule TPEN has a strong ionic bond with α-ZrP, which inhibits the high-speed rotation of the TPEN molecule, resulting in strong fluorescence.
具体实施方式 Detailed ways
下面通过实施例对本发明做进一步的描述,但本发明的实施方式不限于此,不能理解为对本发明保护范围的限制。The present invention will be further described through examples below, but the embodiments of the present invention are not limited thereto, and should not be construed as limiting the protection scope of the present invention.
将合成的α-ZrP(New J.Chem.2007,31,39-43)反复离心、超声分散,充分洗涤至其溶液的pH值在5~7之间,然后冷冻干燥得到白色固体粉末,备用。The synthesized α-ZrP (New J.Chem.2007, 31, 39-43) was centrifuged repeatedly, dispersed ultrasonically, fully washed until the pH value of the solution was between 5 and 7, and then freeze-dried to obtain a white solid powder for future use. .
实施例1:Example 1:
将0.5gα-ZrP(粒径约400nm)超声分散于15mL去离子水中,使其充分分散均匀,然后加入0.07g的丁胺,继续超声0.5h后,离心分离(10000rpm,20min),用大量的去离子水洗涤至中性,冷冻干燥后得到固体前驱物α-ZrP·BA。Ultrasonic disperse 0.5g α-ZrP (particle size about 400nm) in 15mL deionized water to make it fully dispersed, then add 0.07g butylamine, continue ultrasonication for 0.5h, centrifuge (10000rpm, 20min), use a large amount of The solid precursor α-ZrP·BA was obtained after washing with deionized water to neutrality and freeze-drying.
称量50mgα-ZrP·BA,超声均匀分散到17mL水溶液中;然后将57.6mgTPEN加入33mL去离子水中,超声使其完全溶解。将TPEN的水溶液加入α-ZrP前驱体的悬浊液中,40℃条件下继续搅拌24h,得到均匀的淡黄色悬浊液。用高速离心机离心(10000rpm,20min),并用大量的去离子水多次洗涤固体,以洗去未参加反应的TPEN分子,然后冷冻干燥,得到AIE基团功能化的层状磷酸锆材料,质量是55mg。
实施例2:Example 2:
称量35mg实施例1中的α-ZrP·BA,超声分散到10mL水溶液中,将10mg的TPEN加入30mL去离子水中,超声使其完全溶解。将TPEN的水溶液加入α-ZrP·BA的悬浊液中,40℃条件下继续搅拌24h,得到均匀的淡黄色悬浊液。离心分离(10000rpm,20min),并用大量的去离子水多次洗涤固体,以洗去未参加反应的TPEN分子,然后冷冻干燥,得到AIE基团功能化的层状磷酸锆材料,质量是36mg。Weigh 35 mg of α-ZrP·BA in Example 1, ultrasonically disperse it into 10 mL of aqueous solution, add 10 mg of TPEN into 30 mL of deionized water, and ultrasonically dissolve it completely. The aqueous solution of TPEN was added to the suspension of α-ZrP·BA, and the stirring was continued at 40° C. for 24 h to obtain a uniform light yellow suspension. Centrifuge (10000rpm, 20min), and wash the solid several times with a large amount of deionized water to wash away unreacted TPEN molecules, and then freeze-dry to obtain a layered zirconium phosphate material functionalized with AIE groups, with a mass of 36 mg.
实施例3:Example 3:
称量50mg实施例1中的α-ZrP·BA,超声分散到17mL水溶液中,将90mg的TPEN加入33mL去离子水中,超声使其完全溶解。将TPEN的水溶液加入α-ZrP·BA的悬浊液中,40℃条件下继续搅拌24h,得到均匀的淡黄色悬浊液。离心分离(10000rpm,20min),并用大量的去离子水多次洗涤固体,以洗去未参加反应的TPEN分子,然后冷冻干燥,得到AIE基团功能化的层状磷酸锆材料,质量是56mg。Weigh 50 mg of α-ZrP·BA in Example 1, ultrasonically disperse it into 17 mL of aqueous solution, add 90 mg of TPEN into 33 mL of deionized water, and ultrasonically dissolve it completely. The aqueous solution of TPEN was added to the suspension of α-ZrP·BA, and the stirring was continued at 40° C. for 24 h to obtain a uniform light yellow suspension. Centrifuge (10000rpm, 20min), and wash the solid several times with a large amount of deionized water to wash away unreacted TPEN molecules, and then freeze-dry to obtain a layered zirconium phosphate material functionalized with AIE groups, with a mass of 56mg.
实施例4:Example 4:
称量50mg实施例1中的α-ZrP·BA,超声分散到17mL水溶液中,将62.4mg的TPEO(n=2)加入33mL去离子水中,超声使其完全溶解。将TPEO的水溶液加入α-ZrP·BA的悬浊液中,40℃条件下继续搅拌36h,得到均匀的淡黄色悬浊液。离心分离(8000rpm,30min),并用大量的去离子水多次洗涤固体,以洗去未参加反应的TPEO分子,然后冷冻干燥,得到AIE基团功能化的层状磷酸锆材料,质量是52mg。Weigh 50 mg of α-ZrP·BA in Example 1, ultrasonically disperse it into 17 mL of aqueous solution, add 62.4 mg of TPEO (n=2) into 33 mL of deionized water, and ultrasonically dissolve it completely. The aqueous solution of TPEO was added to the suspension of α-ZrP·BA, and the stirring was continued at 40° C. for 36 h to obtain a uniform light yellow suspension. Centrifuge (8000rpm, 30min), and wash the solid with a large amount of deionized water several times to wash away unreacted TPEO molecules, and then freeze-dry to obtain a layered zirconium phosphate material functionalized with AIE groups, with a mass of 52mg.
实施例5:Example 5:
将1gα-ZrP(粒径是400nm)超声分散于20mL去离子水中,使其分散均匀,然后加入0.3g的丁胺,继续超声0.5h后,离心分离(11000rpm,15min),用大量的去离子水洗涤至中性,冷冻干燥后得到固体前驱物α-ZrP·2BA。Ultrasonic disperse 1gα-ZrP (particle size: 400nm) in 20mL deionized water to make it evenly dispersed, then add 0.3g butylamine, continue ultrasonication for 0.5h, centrifuge (11000rpm, 15min), use a large amount of deionized The solid precursor α-ZrP·2BA was obtained after washing with water to neutrality and freeze-drying.
称量60mgα-ZrP·2BA,超声分散到10mL水溶液中,然后将107mg TPEN加入50mL去离子水中,超声使其完全溶解。将TPEN的水溶液加入α-ZrP·2BA的悬浊液中,10℃条件下继续搅拌24h,得到均匀的淡黄色悬浊液。离心分离(11000rpm,15min),并用大量的去离子水多次洗涤固体,以洗去未参加反应的TPEN分子,然后冷冻干燥,得到AIE基团功能化的层状磷酸锆材料,质量是67mg。Weigh 60 mg of α-ZrP·2BA, ultrasonically disperse it into 10 mL of aqueous solution, then add 107 mg of TPEN into 50 mL of deionized water, and ultrasonically dissolve it completely. Add the aqueous solution of TPEN to the suspension of α-ZrP·2BA, and continue stirring at 10°C for 24 hours to obtain a uniform light yellow suspension. Centrifuge (11000rpm, 15min), and wash the solid several times with a large amount of deionized water to wash away unreacted TPEN molecules, and then freeze-dry to obtain a layered zirconium phosphate material functionalized with AIE groups, with a mass of 67 mg.
实施例6:Embodiment 6:
称量50mg实施例5中的α-ZrP·2BA,超声分散到17mL水溶液中,然后将57.6mg TPEN加入33mL去离子水中,超声使其完全溶解。将TPEN的水溶液加入α-ZrP·2BA的悬浊液中,室温继续超声0.5h,得到均匀的淡黄色悬浊液。离心分离(11000rpm,15min),并用大量的去离子水多次洗涤固体,以洗去未参加反应的TPEN分子,然后冷冻干燥,得到AIE基团功能化的层状磷酸锆材料,质量是52mg。Weigh 50 mg of α-ZrP·2BA in Example 5, ultrasonically disperse it into 17 mL of aqueous solution, then add 57.6 mg of TPEN into 33 mL of deionized water, and ultrasonically dissolve it completely. Add the aqueous solution of TPEN to the suspension of α-ZrP·2BA, and continue to sonicate for 0.5 h at room temperature to obtain a uniform light yellow suspension. Centrifuge (11000rpm, 15min), and wash the solid with a large amount of deionized water several times to wash away unreacted TPEN molecules, and then freeze-dry to obtain a layered zirconium phosphate material functionalized with AIE groups, with a mass of 52mg.
实施例7:Embodiment 7:
将0.5gα-ZrP(粒径是150nm)超声分散于10mL去离子水中,使其充分分散均匀,然后加入0.14g的丁胺,继续超声0.3h后,离心分离(11000rpm,20min),用大量的去离子水洗涤至中性,冷冻干燥后得到固体前驱物nano-α-ZrP·BA。Ultrasonic disperse 0.5g α-ZrP (particle size 150nm) in 10mL deionized water to make it fully dispersed, then add 0.14g butylamine, continue ultrasonication for 0.3h, centrifuge (11000rpm, 20min), use a large amount of The solid precursor nano-α-ZrP·BA was obtained after washing with deionized water to neutrality and freeze-drying.
称量50mg nano-α-ZrP·BA,超声分散到20mL水溶液中,然后将14.4mgTPEN加入30mL去离子水中,超声使其完全溶解。将TPEN的水溶液加入nano-α-ZrP·BA的悬浊液中,50℃条件下继续搅拌24h,得到均匀的淡黄色悬浊液。离心分离(11000rpm,20min),并用大量的去离子水多次洗涤固体,以洗去未参加反应的TPEN分子,然后冷冻干燥,得到AIE基团功能化的层状磷酸锆材料,质量是51mg。Weigh 50mg nano-α-ZrP·BA, ultrasonically disperse into 20mL aqueous solution, then add 14.4mgTPEN into 30mL deionized water, ultrasonically dissolve it completely. The aqueous solution of TPEN was added to the suspension of nano-α-ZrP·BA, and the stirring was continued at 50° C. for 24 h to obtain a uniform light yellow suspension. Centrifuge (11000rpm, 20min), and wash the solid several times with a large amount of deionized water to wash away unreacted TPEN molecules, and then freeze-dry to obtain a layered zirconium phosphate material functionalized with AIE groups, with a mass of 51mg.
实施例8:Embodiment 8:
将0.4gα-ZrP(粒径是400nm)超声分散于10mL去离子水中,使其充分分散均匀,然后加入0.08g的四丁基氢氧化铵,继续超声1h后,离心分离(8000rpm,30min),用大量的去离子水洗涤至中性,冷冻干燥后得到固体前驱物α-ZrP·TBA。Ultrasonic disperse 0.4g α-ZrP (particle size: 400nm) in 10mL deionized water to make it fully dispersed, then add 0.08g tetrabutylammonium hydroxide, continue ultrasonication for 1h, centrifuge (8000rpm, 30min), use a large amount of The solid precursor α-ZrP·TBA was obtained after washing with deionized water to neutrality and freeze-drying.
称量30mgα-ZrP·TBA,超声分散到10mL水溶液中;然后将34.6mg TPEN加入30mL去离子水中,超声使其完全溶解。将TPEN的水溶液加入α-ZrP·TBA的悬浊液中,40℃条件下继续搅拌36h,得到均匀的淡黄色悬浊液。用高速离心机离心(8000rpm,30min),并用大量的去离子水多次洗涤固体,以洗去未参加反应的TPEN分子,然后冷冻干燥,得到AIE基团功能化的层状磷酸锆材料,质量是33mg。Weigh 30mg of α-ZrP·TBA and ultrasonically disperse it into 10mL of aqueous solution; then add 34.6mg of TPEN into 30mL of deionized water and ultrasonically dissolve it completely. The aqueous solution of TPEN was added to the suspension of α-ZrP·TBA, and the stirring was continued at 40° C. for 36 h to obtain a uniform light yellow suspension. Centrifuge with a high-speed centrifuge (8000rpm, 30min), and wash the solid multiple times with a large amount of deionized water to wash away unreacted TPEN molecules, and then freeze-dry to obtain a layered zirconium phosphate material functionalized by the AIE group. It is 33mg.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210387362.1A CN102874785B (en) | 2012-10-12 | 2012-10-12 | Method for preparing aggregation induced emission (AIE) group functionalized laminar zirconium phosphate material by ion exchange method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210387362.1A CN102874785B (en) | 2012-10-12 | 2012-10-12 | Method for preparing aggregation induced emission (AIE) group functionalized laminar zirconium phosphate material by ion exchange method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102874785A CN102874785A (en) | 2013-01-16 |
CN102874785B true CN102874785B (en) | 2014-06-11 |
Family
ID=47476350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210387362.1A Expired - Fee Related CN102874785B (en) | 2012-10-12 | 2012-10-12 | Method for preparing aggregation induced emission (AIE) group functionalized laminar zirconium phosphate material by ion exchange method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102874785B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2910618A1 (en) | 2014-02-24 | 2015-08-26 | Centre National De La Recherche Scientifique | Luminescent hybrid nanomaterials with aggregation induced emission |
CN107001927B (en) * | 2014-11-21 | 2019-09-17 | 香港科技大学 | AIE luminophores for imaging, killing bacteria, photodynamic therapy and antibiotic screening and methods for producing the same |
CN105199384B (en) * | 2015-09-21 | 2017-10-27 | 四川天策聚材科技有限公司 | Fire-retardant benzoxazine nano composite material of transparent type and preparation method thereof |
CN105368016B (en) * | 2015-11-30 | 2017-07-04 | 东华大学 | A kind of preparation method of PET organophosphors hydridization α ZrP composites |
CN105369387B (en) * | 2015-11-30 | 2017-10-31 | 东华大学 | A kind of preparation method of PET organophosphors hydridization α ZrP complex fiber materials |
CN106939163B (en) * | 2017-03-13 | 2019-04-09 | 吉林大学 | A kind of preparation method of highly water-dispersible fluorescent functionalized organoclay |
CN106957650A (en) * | 2017-03-22 | 2017-07-18 | 深圳市华星光电技术有限公司 | A kind of preparation method for modifying quantum dot and modification quantum dot film |
CN110760304A (en) * | 2019-10-27 | 2020-02-07 | 浙江理工大学 | Preparation method of tetra (hydroxyphenyl) zirconium porphyrin-AIE fluorescent molecule composite photosensitive sensing material |
CN113716540B (en) * | 2021-08-25 | 2024-03-01 | 西安工业大学 | Preparation method of nano zirconium phosphate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101214947A (en) * | 2008-01-18 | 2008-07-09 | 中国科学技术大学 | A method for preparing carbon nanotubes by catalytic carbonization of polymer and/or pitch |
CN101926358A (en) * | 2009-12-18 | 2010-12-29 | 暨南大学 | A kind of quaternary phosphate pillared layered zirconium phosphate material and its preparation method and application |
CN102897737A (en) * | 2012-09-24 | 2013-01-30 | 常州大学 | Method for preparation of pillared zirconium phosphate material by self-assembly technology |
-
2012
- 2012-10-12 CN CN201210387362.1A patent/CN102874785B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101214947A (en) * | 2008-01-18 | 2008-07-09 | 中国科学技术大学 | A method for preparing carbon nanotubes by catalytic carbonization of polymer and/or pitch |
CN101926358A (en) * | 2009-12-18 | 2010-12-29 | 暨南大学 | A kind of quaternary phosphate pillared layered zirconium phosphate material and its preparation method and application |
CN102897737A (en) * | 2012-09-24 | 2013-01-30 | 常州大学 | Method for preparation of pillared zirconium phosphate material by self-assembly technology |
Non-Patent Citations (4)
Title |
---|
Challa V. Kumar等.Supramolecular Assemblies of Tris(2,2"-bipyridine)ruthenium(II) Bound to Hydrophobically Modified a-Zirconium Phosphate: Photophysical Studies.《J. Phys. Chem.》.1995,第99卷(第49期), |
Supramolecular Assemblies of Tris(2,2"-bipyridine)ruthenium(II) Bound to Hydrophobically Modified a-Zirconium Phosphate: Photophysical Studies;Challa V. Kumar等;《J. Phys. Chem.》;19951231;第99卷(第49期);第17633页的实验部分 * |
张双等.聚集诱导发光机理研究.《化学进展》.2011,第23卷(第4期),623-636. |
聚集诱导发光机理研究;张双等;《化学进展》;20110430;第23卷(第4期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN102874785A (en) | 2013-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102874785B (en) | Method for preparing aggregation induced emission (AIE) group functionalized laminar zirconium phosphate material by ion exchange method | |
Gao et al. | Strategy for activating room-temperature phosphorescence of carbon dots in aqueous environments | |
Ru et al. | Aggregation in carbon dots: special issue: emerging investigators | |
Li et al. | Carbon dots‐in‐matrix boosting intriguing luminescence properties and applications | |
CN104877677B (en) | Preparation method of mesoporous silica/carbon quantum dot nanocomposite material | |
Bhattacharya et al. | Carbon dots from a single source exhibiting tunable luminescent colors through the modification of surface functional groups in ORMOSIL films | |
Chen et al. | A pH-driven DNA nanoswitch for responsive controlled release | |
Xu et al. | Facile synthesis of an up-conversion luminescent and mesoporous Gd 2 O 3: Er 3+@ n SiO 2@ m SiO 2 nanocomposite as a drug carrier | |
CN103738969B (en) | Mesoporous silica and preparation method thereof | |
CN110759348B (en) | Preparation method of silicon dioxide material with hierarchical pore structure | |
CN105199710B (en) | A kind of fluorescence mesoporous silicon oxide composite nanoparticle and preparation method thereof | |
CN103756667B (en) | Sulphur hydrogen radical ion nanosensor material with up-conversion luminescence property and preparation method thereof | |
Ma et al. | Highly selective fluorescence chemosensor based on carbon-dot-aerogel for detection of aniline gas | |
Li et al. | Mesoporous silica functionalized with an AIE luminogen for drug delivery | |
Gu et al. | Intercalation of coumaric acids into layered rare-earth hydroxides: controllable structure and photoluminescence properties | |
Zhu et al. | Microwave synthesis of amphiphilic carbon dots from xylose and construction of luminescent composites with shape recovery performance | |
CN104449714A (en) | UCNP (up-conversion nanoparticle)-graphene oxide composite material and preparation method thereof | |
CN114685907B (en) | Preparation method and application of adjustable amphiphobic fluorescent polystyrene microsphere filler | |
Jia et al. | Visible light-induced lanthanide polymer nanocomposites based on clays for bioimaging applications | |
CN104587471A (en) | Functionalized hollow mesoporous SiO2 nanocomposite material and preparation method thereof | |
CN103387829A (en) | Phosphorescence silica nanometer probe with core shell composition and preparation method thereof | |
CN107163933A (en) | A kind of even porous rare earth composite material of emitting red light, preparation method and application | |
Du et al. | Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges | |
Olivero et al. | Promotion of Förster resonance energy transfer in a saponite clay containing luminescent polyhedral oligomeric silsesquioxane and rhodamine dye | |
Wang et al. | Manipulating energy transfer processes between rhodamine 6G and rhodamine B in different mesoporous hosts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140611 Termination date: 20151012 |
|
EXPY | Termination of patent right or utility model |