CN102854528B - Pre-stack non-linear inversion method based on particle swarm optimization algorithm - Google Patents
Pre-stack non-linear inversion method based on particle swarm optimization algorithm Download PDFInfo
- Publication number
- CN102854528B CN102854528B CN201210241783.3A CN201210241783A CN102854528B CN 102854528 B CN102854528 B CN 102854528B CN 201210241783 A CN201210241783 A CN 201210241783A CN 102854528 B CN102854528 B CN 102854528B
- Authority
- CN
- China
- Prior art keywords
- particle
- reflection coefficient
- inversion
- fitness
- particle swarm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002245 particle Substances 0.000 title claims abstract description 79
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 39
- 238000005457 optimization Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 7
- 230000006870 function Effects 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 2
- 238000004321 preservation Methods 0.000 claims 1
- 238000011160 research Methods 0.000 abstract description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000003345 natural gas Substances 0.000 abstract 1
- 230000002459 sustained effect Effects 0.000 abstract 1
- 230000006399 behavior Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 244000144992 flock Species 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域 technical field
本发明涉及油气田勘探技术领域,属于地震资料反演范畴,具体的说是通过粒子群优化算法解决非线性的地震反演问题。 The invention relates to the technical field of oil and gas field exploration, belongs to the category of seismic data inversion, and specifically solves the non-linear seismic inversion problem through particle swarm optimization algorithm. the
背景技术 Background technique
利用地震资料进行储层岩性识别和流体预测一直是地球物理学家努力追求的目标。地震叠前反演即AVO反演的理论基础是著名的左普利茨(Zoeppritz)方程组。Ostrander(1984)在研究“亮点型”砂岩储层地震振幅特征过程中,发现了“含气砂岩反射振幅随偏移距增加而增大,含水砂岩反射振幅随偏移距增加而减小”的现象,这一现象极大的改善了烃类检测的能力,将人们的视线从叠后引向叠前,标志着实用AVO技术的出现。但是,左普利茨方程十分复杂,物理含义也不明确。国内外地球物理学家对其进行了很多形式的研究和简化,得到了一系列近似公式。Bortfeld(1961)利用地层厚度趋于零来逼近单界面的方法计算了平面纵波和透射波的反射系数,给出了区分流体和固体的简化公式。Aki和Richards于1980年提出的近似方程侧重描述了纵、横波速度和密度的变化对反射系数的影响。Shuey(1985)近似方程则将反射系数表示成法线入射与近、中、远不同入射的三项之和的关系式,较直观的反映了振幅与入射角的关系。Smith和Gidlow(1987)在对含气砂岩进行AVO分析时,提出了AVO分析的加权叠加处理方法,并引入了“流体因子”概念。Fatti等(1994)从Aki和Richards方程出发,在弱化地层密度项的前提下,提出了较为精简的公式用于预测含气砂岩的AVO响应。Connolly(1999)提出的弹性阻抗(EI)概念和数学表达式,极大地丰富了AVO分析技术的内涵,扩大了AVO反演技术的外延,将传统的纵波阻抗反演推广到分角度叠加数据。Ozdemir等(2001)提出了利用AVO信息进行弹性参数同步反演,称为“联合反演”。马劲风等(2003)提出了广义弹性波阻抗的概念。近几年,AVO分析和随机反演技术方法不断发展,叠前同步反演方法日益成熟,在同步反演方法中多采用非线性反演技术。AVO的提出最初仅仅是为了提高烃类检测能力,今天AVO的发展早已超出了这个范畴,渗透到地震勘探的各个领域。在裂缝检测、压力预测、油藏动态检测、油气预测、储层非均质性描述方面得到了广泛应用。 Reservoir lithology identification and fluid prediction using seismic data has always been the goal pursued by geophysicists. The theoretical basis of seismic prestack inversion (AVO inversion) is the famous Zoeppritz equations. Ostrander (1984) found that "the reflection amplitude of gas-bearing sandstone increases with the increase of offset, and the reflection amplitude of water-bearing sandstone decreases with the increase of offset" in the process of studying the seismic amplitude characteristics of "bright spot" sandstone reservoirs. This phenomenon has greatly improved the ability of hydrocarbon detection, drawn people's attention from post-stack to pre-stack, and marked the emergence of practical AVO technology. However, the Zoplitz equation is very complicated, and its physical meaning is not clear. Geophysicists at home and abroad have studied and simplified it in many forms, and obtained a series of approximate formulas. Bortfeld (1961) calculated the reflection coefficients of plane longitudinal waves and transmitted waves by using the method of approaching a single interface with the formation thickness approaching zero, and gave a simplified formula for distinguishing fluids and solids. The approximation equation proposed by Aki and Richards in 1980 focused on describing the influence of changes in the velocity and density of compressional and shear waves on the reflection coefficient. Shuey's (1985) approximation equation expresses the reflection coefficient as the relationship between the normal incidence and the sum of the near, middle and far different incidences, which more intuitively reflects the relationship between the amplitude and the incidence angle. Smith and Gidlow (1987) proposed a weighted superposition processing method for AVO analysis and introduced the concept of "fluid factor" when performing AVO analysis on gas-bearing sandstone. Starting from the Aki and Richards equations, Fatti et al. (1994) proposed a relatively simplified formula to predict the AVO response of gas-bearing sandstones under the premise of weakening the formation density term. The elastic impedance (EI) concept and mathematical expression proposed by Connolly (1999) greatly enriched the connotation of AVO analysis technology, expanded the extension of AVO inversion technology, and extended the traditional P-wave impedance inversion to sub-angle stacked data. Ozdemir et al. (2001) proposed the synchronous inversion of elastic parameters using AVO information, which is called "joint inversion". Ma Jinfeng et al. (2003) proposed the concept of generalized elastic wave impedance. In recent years, AVO analysis and stochastic inversion techniques have been continuously developed, pre-stack synchronous inversion methods have become increasingly mature, and non-linear inversion techniques are mostly used in synchronous inversion methods. AVO was originally proposed only to improve the ability of hydrocarbon detection. Today, the development of AVO has already gone beyond this category and penetrated into various fields of seismic exploration. It has been widely used in fracture detection, pressure prediction, reservoir dynamic detection, oil and gas prediction, and description of reservoir heterogeneity. the
粒子群优化算法(Particle Swarm Optimization,PSO),又称微粒群算法,是群智能算法(Swarm Intelligence,SI)的一种。最先是由美国学者Kennedy和Eberhart于1995年提出。粒子群算法是受鸟类群体的防御、捕食行为中的搜索策略启发而形成的。自然界中许多生物具有一定的群体行为,如鸟群、鱼群等,虽然群体中单个个体只具有简单的行为规则,但是组成的群体行为却非常复杂。很多科学家对鸟群或者鱼群的群体行为进行了研究,包括计算机仿真。粒子群优化算法从这种模型中得到启示并用于解决优化问题,将优化问题的解看作是搜索空间中的点,称之为“粒子”。每个粒子的运动根据自己和其它粒子的“飞行经验”寻优,从而达到全空间搜索最优解的目的。许多学者和研究人员在基本PSO算法的基础上在参数选择、拓扑结构以及与其他优化算法相融合方面,提出了很多改进的PSO算法。Kennedy和Eberhart于1997年提出了二进制粒子群(Binary Particle Swarm Optimization,BPSO)算法,这是基于连续空间的离散粒子群(Discrete PSO,DPSO)算法。Clerc(2000)针对旅行熵问题(Traveling Salesman Problem,TSP)提出了TSP-DPSO算法,是基于离散空间的DPSO。Jun Sun等(2003)将量子行为引入到粒子群算法中,提出了量子粒子群算法(Quantum PSO,QPSO)。2004年高鹰提出了基于模拟退火的粒子群算法(SA-PSO)。P.S.Shelokar等人于2007年提出了基于蚁群和粒子群算法的混合算法,即PSACO(Particle Swarm Ant Colony Optimization)算法。周雅兰等(2008)把分布估计算法思想引入到PSO算法中,提出基于分布估计的离散粒子群(Estimation of Distribution PSO,EDPSO)算法。林东毅等(2008)将免疫机制引入到BPSO算法中,基于决策表差别矩阵的某种属性重要性度量作为疫苗模式,提出了一种基于免疫粒子群优化的最小属性约简算法,称为免疫离散粒子群算法(IPSO算法)。粒子群算法近年来发展很快,被成功地应用于函数寻优、神经网络训练、模式识别分类、模糊系统控制以及工程等众多领域,大量实际应用证明其是有效的。它有着较好的发展前景,值得做进一步的研究。 Particle Swarm Optimization (PSO), also known as PSO, is a kind of Swarm Intelligence (SI). It was first proposed by American scholars Kennedy and Eberhart in 1995. Particle swarm optimization algorithm is inspired by the search strategy in the defense and predation behavior of bird groups. Many creatures in nature have certain group behaviors, such as flocks of birds, schools of fish, etc. Although a single individual in the group has only simple behavior rules, the behavior of the formed group is very complicated. Many scientists have conducted research, including computer simulations, on the group behavior of flocks of birds or fish. The particle swarm optimization algorithm is inspired from this model and used to solve the optimization problem, and the solution of the optimization problem is regarded as a point in the search space, which is called "particle". The movement of each particle is optimized according to the "flight experience" of itself and other particles, so as to achieve the purpose of searching the optimal solution in the whole space. Many scholars and researchers have proposed many improved PSO algorithms on the basis of the basic PSO algorithm in terms of parameter selection, topology structure and integration with other optimization algorithms. Kennedy and Eberhart proposed the Binary Particle Swarm Optimization (BPSO) algorithm in 1997, which is a discrete particle swarm (Discrete PSO, DPSO) algorithm based on continuous space. Clerc (2000) proposed the TSP-DPSO algorithm for the Traveling Salesman Problem (TSP), which is a DPSO based on discrete space. Jun Sun et al. (2003) introduced quantum behavior into particle swarm algorithm and proposed quantum particle swarm algorithm (Quantum PSO, QPSO). In 2004, Gao Ying proposed a particle swarm algorithm based on simulated annealing (SA-PSO). In 2007, P.S. Shelokar et al. proposed a hybrid algorithm based on ant colony and particle swarm optimization, that is, PSACO (Particle Swarm Ant Colony Optimization) algorithm. Zhou Yalan et al. (2008) introduced the idea of distribution estimation algorithm into the PSO algorithm, and proposed a discrete particle swarm (Estimation of Distribution PSO, EDPSO) algorithm based on distribution estimation. Lin Dongyi et al. (2008) introduced the immune mechanism into the BPSO algorithm, based on a certain attribute importance measure of the difference matrix of the decision table as the vaccine model, and proposed a minimum attribute reduction algorithm based on immune particle swarm optimization, called immune discrete Particle Swarm Optimization (IPSO Algorithm). The particle swarm optimization algorithm has developed rapidly in recent years and has been successfully applied to many fields such as function optimization, neural network training, pattern recognition and classification, fuzzy system control and engineering, and a large number of practical applications have proved its effectiveness. It has a good development prospect and deserves further research. the
发明内容 Contents of the invention
本发明利用保幅处理的高分辨率地震资料进行非线性反演,在解决非线性问的过程中使用了更新的反射系数公式,并使用了粒子群算法进行寻优。这一措施可以减少人为误差,有效的提高反演的精度。 The invention utilizes amplitude-preserving high-resolution seismic data to carry out nonlinear inversion, uses updated reflection coefficient formulas in the process of solving nonlinear problems, and uses particle swarm algorithm to search for optimization. This measure can reduce human error and effectively improve the accuracy of inversion. the
首先做如下定义: First make the following definitions:
在地球物理学中,连续函数x(t)的反射系数的定义为, In geophysics, the reflection coefficient of a continuous function x(t) is defined as,
以dt的采样间隔将连续函数x(t)采样成离散的函数,那么, The continuous function x(t) is sampled into a discrete function at the sampling interval of dt, then,
其中x可以为纵波速度α、横波速度β、密度ρ。下标1表示下伏地层的参数,下标2表示上覆地层的参数。定义横纵波速度比
Where x can be the longitudinal wave velocity α, the shear wave velocity β, and the density ρ.
本专利使用保幅处理得到的反射角域共反射点道集作为输入,实现上述目的采取的技术方案如下: This patent uses the common reflection point gather in the reflection angle domain obtained by amplitude-preserving processing as input, and the technical scheme adopted to achieve the above purpose is as follows:
步骤1:对于地下任意位置。首先给定纵波速度反射系数、横波速度反射系数、密度反射系数、以及横纵波速度比的取值范围,设定最大迭代次数以及种群的大小。给定惯性权重和学习因子,设定容许的误差范围。 Step 1: For any location underground. Firstly, the value ranges of P-wave velocity reflection coefficient, S-wave velocity reflection coefficient, density reflection coefficient, and S-wave velocity ratio are given, and the maximum number of iterations and population size are set. Given the inertia weight and learning factor, set the allowable error range. the
其中惯性权重、学习因子、种群大小有如下意义: The inertia weight, learning factor, and population size have the following meanings:
惯性权重:勘探能力和开发能力的平衡是影响优化算法性能的一个重要方面。对于粒子群优化算法来说,这两种能力的平衡是靠惯性权重w来实现的。较大的惯性权重使粒子在自己原来的方向上具有更大的速度,从而在原方向上飞行更远,具有更好的勘探能力;较小的惯性权重使粒子继承了较少的原方向的速度,从而飞行较近,具有更好的开发能力。 Inertial weight: The balance between exploration ability and development ability is an important aspect that affects the performance of the optimization algorithm. For the particle swarm optimization algorithm, the balance of these two capabilities is achieved by the inertia weight w. A larger inertia weight makes the particle have a greater speed in its original direction, so it can fly farther in the original direction and has better exploration capabilities; a smaller inertia weight makes the particle inherit less speed in the original direction , so that the flight is closer and has better development capabilities. the
学习因子:学习因子为非负常数,代表粒子偏好的权值,使粒子具有自我总结和向群体中优秀个体学习的能力,从而向群体内或邻域内最优点靠近。Kennedy认为,两个学习因子之和应为4.0左右,此时的搜索效果比较好。通常的做法是将他们都设为2.05。 Learning factor: The learning factor is a non-negative constant, which represents the weight of particle preference, so that particles have the ability to self-summarize and learn from outstanding individuals in the group, so as to approach the optimal point in the group or in the neighborhood. Kennedy believes that the sum of the two learning factors should be about 4.0, and the search effect at this time is better. A common practice is to set them all to 2.05. the
群体大小:当群体大小设定的很小时,陷入局部极优的可能性很高;当群体大小为一时,粒子群优化算法变为基于个体搜索的方法,一旦陷入局优,将不可能跳出;当群体大小很大时,粒子群优化算法的优化能力更好,但会导致计算时间大幅增加,并且当群体数目增长至一定水平时,继续增长将不再有显著的作用。至于究竟多少粒子参加搜索能够取得理想的效果,前人通过使用多个基准函数对数量不同的种群计算其平均适应度,认为种群数量保持在30左右时搜索效率较好。 Group size: When the group size is set to be small, the possibility of falling into a local optimum is high; when the group size is 1, the particle swarm optimization algorithm becomes a method based on individual search, and once trapped in a local optimum, it is impossible to jump out; When the group size is large, the optimization ability of the particle swarm optimization algorithm is better, but it will lead to a substantial increase in computing time, and when the number of groups grows to a certain level, continuing to grow will no longer have a significant effect. As for how many particles can participate in the search to achieve the desired effect, the predecessors calculated the average fitness for different populations by using multiple benchmark functions, and believed that the search efficiency is better when the population number is kept at about 30. the
步骤2:对各个粒子的纵波速度反射系数、横波速度反射系数、密度反射系数、以及横纵波速度比用随机数进行初始化,并设定初始速度为零,令粒子的个体最优值与初始值相同,并计算各个粒子的适应度,选择适应度最小的粒子为当前的全局最优解。 Step 2: Initialize the P-wave velocity reflection coefficient, S-wave velocity reflection coefficient, Density reflection coefficient, and S-wave velocity ratio of each particle with random numbers, and set the initial velocity to zero, so that the individual optimal value and initial value of the particle The same, and calculate the fitness of each particle, choose the particle with the smallest fitness as the current global optimal solution. the
粒子适应度的计算方法为: The calculation method of particle fitness is:
首先定义矩阵 First define the matrix
式中的A、B、C、D以及K用以下方式定义 A, B, C, D and K in the formula are defined in the following way
D=sini1 D = sini 1
其中i1为入射角。再定义 where i 1 is the angle of incidence. redefine
则由左普利茨方程可以得到以下形式的解 Then the solution of the Zoplitz equation can be obtained in the following form
由这一表达形式可以得到粒子适应度的表达式为 From this expression form, the expression of particle fitness can be obtained as
E=||w(θ)*Rpp(Rα,Rβ,Rρ,K,θ)-d(θ)|| E=||w(θ)*R pp (R α , R β , R ρ , K, θ)-d(θ)||
式中E为粒子适应度,w(θ)为地震子波,d(θ)为地震观测数据。 In the formula, E is particle fitness, w(θ) is seismic wavelet, and d(θ) is seismic observation data. the
步骤3:比较当前的全局最优的适应度是否达到了误差容许范围。如果达到误差容许范围就停止计算,输出全局最优为反演结果。否则进入步骤4。
Step 3: Compare whether the current global optimal fitness has reached the error tolerance range. If the error tolerance range is reached, the calculation is stopped, and the global optimum is output as the inversion result. Otherwise, go to
步骤4:更新粒子的速度,并用新的粒子速度更新粒子的位置。迭代次数增加一次,若迭代次数超过最大迭代次数,则停止计算,输出全局最优。 Step 4: Update the particle's velocity, and update the particle's position with the new particle velocity. The number of iterations is increased once, and if the number of iterations exceeds the maximum number of iterations, the calculation is stopped and the global optimum is output. the
粒子速度以及位置的更新方法为: The update method of particle velocity and position is:
vid(t+1)=wvid(t)+c1r1(pid(t)-xid(t))+c2r2(gd(t)-xid(t)) v id (t+1)=wv id (t)+c 1 r 1 (p id (t)-x id (t))+c 2 r 2 (g d (t)-x id (t))
xid(t+1)=xid(t)+vid(t+1) x id (t+1)=x id (t)+v id (t+1)
式中,v为速度,x为粒子位置。m为种群大小,n为粒子的维数,1≤i≤m,1≤d≤n,w称为惯性权重因子;c1、c2称为学习因子或加速因子,其中,c1为调节粒子飞向自身最好位置方向的步长,c2为调节粒子飞向全局最好位置的步长;r1、r2为[0,1]内的随机数;t为当前迭代代数。 In the formula, v is the velocity and x is the position of the particle. m is the population size, n is the dimension of particles, 1≤i≤m, 1≤d≤n, w is called the inertia weight factor; c 1 and c 2 are called learning factors or acceleration factors, among which c 1 is the adjustment The step size of the particle flying to its own best position, c 2 is the step size for adjusting the particle to fly to the global best position; r 1 and r 2 are random numbers in [0, 1]; t is the current iteration algebra.
步骤5:重新计算粒子的适应度,检测各个粒子的适应度是否小于更新前的适应度。若小于则更新粒子的个体最优为粒子更新后的位置。 Step 5: Recalculate the fitness of the particles, and check whether the fitness of each particle is smaller than the fitness before updating. If it is less than, the individual optimum of the updated particle is the updated position of the particle. the
步骤6:比较新的个体最优,选择适应度最小的个体最优作为全局最优。判断全局最优是否达到误差容许范围,达到误差容许范围就输出全局最优为反演结果,否则回到步骤4。直到处理完地下所有计算点。
Step 6: Compare the new individual optimum, and select the individual optimum with the smallest fitness as the global optimum. Determine whether the global optimum reaches the tolerance range of the error, and output the global optimum as the inversion result if it reaches the tolerance range of the error, otherwise return to
以上具体实施方式仅用于说明本发明,而非用于限定本发明。 The above specific embodiments are only used to illustrate the present invention, but not to limit the present invention. the
附图说明 Description of drawings
图1是粒子群算法粒子位置更新的示意图。 Figure 1 is a schematic diagram of particle position update by particle swarm optimization algorithm. the
图2是一个合成的反射角域的共反射点道集。 Figure 2 is a composite common reflection point gather in the reflection angle domain. the
图3是图2所示道集使用本方法的反演得到的纵波反射系数与模型纵波反射系数的对比。 Fig. 3 is a comparison of the P-wave reflection coefficient obtained by inversion of the gather shown in Fig. 2 using this method and the model P-wave reflection coefficient. the
图4(a)是图2所示道集用本方法的反演得到的纵波速度与模型纵波速度的对比; Fig. 4(a) is the comparison of the P-wave velocity obtained by inversion of the gather shown in Fig. 2 with the model P-wave velocity;
图4(b)是图2所示道集用本方法的反演得到的横波速度与模型横波速度的对比; Figure 4(b) is the comparison of the shear wave velocity obtained by inversion of the gather shown in Figure 2 with the model shear wave velocity;
图4(c)是图2所示道集用本方法的反演得到的密度与模型密度的对比; Figure 4(c) is the comparison between the density obtained by inversion of the gather shown in Figure 2 and the model density;
图4(d)是图2所示道集用本方法的反演得到的横纵波速度比与模型横纵波速度比的对比。 Fig. 4(d) is a comparison between the S-P wave velocity ratio obtained by the inversion of the gather shown in Fig. 2 and the model S-P wave velocity ratio. the
图5是本方法在某地区实际资料中反演得到的纵横波速度比(右)与商业软件得到的纵横波速度比(左)的对比。 Figure 5 is a comparison of the P-to-S wave velocity ratio (right) obtained by inversion of the method in the actual data in a certain area and the P-to-S wave velocity ratio (left) obtained by commercial software. the
具体实施方式 Detailed ways
通过一个合成道集来说明: Illustrate with a synthetic gather:
首先,利用左普利茨方程对该模型进行正演,每隔3°计算1°到30°范围内各地层的反射系数。计算出的10个反射系数序列分别与40Hz的零相位雷克子波进行褶积,得到的合成地震记录,即角道集数据如图2所示。 Firstly, the Zoplitz equation was used to perform forward modeling on the model, and the reflection coefficients of each layer within the range of 1° to 30° were calculated every 3°. The calculated 10 reflection coefficient sequences are respectively convoluted with the 40Hz zero-phase Reker wavelet, and the obtained synthetic seismic records, that is, angle gather data, are shown in Fig. 2 . the
将这十个角道集数据作为输入进行反演。以求解计算出的纵波反射系数Rpp与实际地震记录之间误差函数E最小作为目标函数。采用粒子群优化算法叠前反演的步骤如下: These ten angle gather data are used as input for inversion. The minimum error function E between the calculated P-wave reflection coefficient R pp and the actual seismic record is taken as the objective function. The steps of pre-stack inversion using particle swarm optimization algorithm are as follows:
(1)将由模型正演得到的角道集记录作为观测值(真值)。 (1) The angle gather record obtained by the forward modeling of the model is taken as the observed value (true value). the
(2)利用粒子群优化算法生成各角道集的反射系数序列如r(t)候选解。每个粒子的位置向量即为r(t)候选解,每个粒子的维数为4,即4个自变量纵波反射系数Rα,横波反射系数Rβ,密度反射系数Rρ,以及横纵波速度比K。 (2) Use the particle swarm optimization algorithm to generate the reflection coefficient sequence of each angle gather, such as r(t) candidate solutions. The position vector of each particle is the candidate solution of r(t), and the dimension of each particle is 4, that is, the four independent variables, longitudinal wave reflection coefficient R α , shear wave reflection coefficient R β , density reflection coefficient R ρ , and transverse and longitudinal wave Speed than K.
(3)按照步骤2计算适应度函数E。将计算得到Rpp的与角道集数据比较,计算适应度函数E。
(3) Calculate the fitness function E according to
(4)将求取的适应度函数E代入全局最优解Gbest,并按照步骤4对每个粒子进行位置更新。
(4) Substitute the obtained fitness function E into the global optimal solution G best , and update the position of each particle according to
(5)利用粒子群算法循环迭代,对最优解不断进行优化,直到满足终止条件(如E小于某截断误差,或达到最大迭代次数),则此时个体最优与全局最优一致,所有粒子收敛于一点,对应的位置向量即为要求的纵波反射系数Rα,横波反射系数Rβ,密度反射系数Rρ,以及横纵波速度比K。 (5) Use the particle swarm optimization algorithm to iterate cyclically to continuously optimize the optimal solution until the termination condition is met (such as E is less than a certain truncation error, or reaches the maximum number of iterations), then the individual optimum is consistent with the global optimum at this time, and all The particles converge to one point, and the corresponding position vector is the required longitudinal wave reflection coefficient R α , shear wave reflection coefficient R β , density reflection coefficient R ρ , and shear-to-pitch wave velocity ratio K.
在本例中利用粒子群算法反演数值模型角道集数据的反射系数时,参数取值如下:误差函数小于1e-6,种群大小m=30,惯性因子w=0.1,学习因子c1=c2=2.04,粒子位置取值的最大值为[0.1,0.1,0.1,0.75],最小值为[-0.1,-0.1,-0.1,0.35],分别对应纵波反射系数Rα,横波反射系数Rβ,密度反射系数Rρ,以及横纵波速度比K的限制范围。 In this example, when the particle swarm optimization algorithm is used to invert the reflection coefficient of the corner gather data of the numerical model, the parameter values are as follows: the error function is less than 1e-6, the population size m=30, the inertia factor w=0.1, and the learning factor c 1 =c 2 = 2.04, the maximum value of the particle position is [0.1, 0.1, 0.1, 0.75], and the minimum value is [-0.1, -0.1, -0.1, 0.35], corresponding to the longitudinal wave reflection coefficient R α and the shear wave reflection coefficient R β , the density reflection coefficient R ρ , and the limit range of the shear-to-pillar velocity ratio K.
反演出的反射系数与原反射系数的对比如图3所示。可以看出,反演出的反射系数(虚线)与真实的反射系数(圆圈)吻合的很好。通过反演得到的反射系数Rα、Rβ、Rρ,以及K,可以计算各层的纵波速度、横波速度、密度等弹性参数(实线),与模型的弹性参数(虚线)对比如图4所示。由图4看出,纵波数据和密度数据与真实情况完全吻合,只是横波数据和纵横波速度比有极小的误差,产生这些误差的原因一是因为在反演过程中,横波分量的精确程度受初值设定、岩石物理关系等因素的影响,稳定性不如纵波分量;二是由于反演过程中计算机的截断误差导致。为了使误差尽量减小,在可能的情况下,不仅使用纵波数据作为反演的观测值,还可以使用转换横波的信息。甚至在拥有VSP资料的情况下,可将反射纵波、反射横波、透射纵波、透射横波的数据均作为反演的观测值,那么反演得到的各种反射系数以及由此推导出的岩石的弹性参数将会更加准确。 The comparison between the inverted reflection coefficient and the original reflection coefficient is shown in Figure 3. It can be seen that the inverted reflection coefficient (dashed line) agrees well with the true reflection coefficient (circle). Through the reflection coefficients R α , R β , R ρ , and K obtained from the inversion, elastic parameters (solid lines) such as P-wave velocity, S-wave velocity, and density of each layer can be calculated. The comparison with the elastic parameters (dotted line) of the model is shown in Fig. 4. It can be seen from Figure 4 that the P-wave data and density data are completely consistent with the real situation, but there is a very small error between the S-wave data and the P-S wave velocity ratio. The reason for these errors is that in the inversion process, the accuracy of the S-wave component Affected by factors such as initial value setting and petrophysical relations, the stability is not as good as that of the longitudinal wave component; the second is due to the truncation error of the computer during the inversion process. In order to reduce the error as much as possible, not only the longitudinal wave data are used as the inversion observation value, but also the converted shear wave information can be used when possible. Even in the case of having VSP data, the data of reflected longitudinal wave, reflected shear wave, transmitted longitudinal wave, and transmitted shear wave can be used as inversion observations, then the various reflection coefficients obtained from the inversion and the rock’s elasticity derived from it parameters will be more accurate.
参考文献 references
Zoeppritz K,Erdbebenwellen VIIIB.On the reflection and propagation of seismic waves.Gottinger Naehriehten,1919,66-84 Zoeppritz K, Erdbenwellen VIIIB. On the reflection and propagation of seismic waves. Gottinger Naehriehten, 1919, 66-84
Ostrander W J.Plane waves reflection coefficient s for gas sands at normal angles of incidence.Geophysics,1984,49(10):1637-1648. Ostrander W J. Plane waves reflection coefficients for gas sands at normal angles of incidence. Geophysics, 1984, 49(10): 1637-1648.
Bortfeld R.Approximation to the reflection and transmission coefficients of plane longitudinal and transverse wave.Geophysics Prospecting,1961,9(4):485-502. Bortfeld R. Approximation to the reflection and transmission coefficients of plane longitudinal and transverse wave. Geophysics Prospecting, 1961, 9(4): 485-502.
Aki K,Richards P G.Quantitative seismology:Theory and methods.W.H.Freeman and Co,1980,100-170. Aki K, Richards P G. Quantitative seismology: Theory and methods. W.H. Freeman and Co, 1980, 100-170.
Shuey.A simplification of the Zoeppritz equations.Geophysics,1985,50(4):609-634. Shuey. A simplification of the Zoeppritz equations. Geophysics, 1985, 50(4): 609-634.
Smith G C,Gidlow P M.Weighted stacking for rock property estimation and detection of gas.Geophysical Prospecting,1987,35:993-1014. Smith G C, Gidlow P M. Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting, 1987, 35: 993-1014.
Fatti J L,Vail P J,Smith G C,et al.Detection of gas in sandstone reservoirs using AVO analysis:A case seismic case history using the Geostack technique.Geophysics,1994,59(5):1362~1376. Fatti J L, Vail P J, Smith G C, et al. Detection of gas in sandstone reservoirs using AVO analysis: A case seismic case history using the Geostack technique. Geophysics, 1994, 59(5): 1362~1376.
Connolly P.Elastic Impedance.The Leading Edge,1999,18(4):438~452. Connolly P. Elastic Impedance. The Leading Edge, 1999, 18(4): 438~452.
Ostrander W J.Plane-wave reflection coefficients for gas sands at non-normal angels of incidence.Exploration Geophysics,1984,49:1637-1648. Ostrander W J. Plane-wave reflection coefficients for gas sands at non-normal angels of incidence. Exploration Geophysics, 1984, 49: 1637-1648.
马劲风.地震勘探中广义弹性阻抗的正反演.地球物理学报,2003,46(1):118-124. Ma Jinfeng. Forward and inversion of generalized elastic impedance in seismic exploration. Acta Geophysics, 2003, 46(1): 118-124.
杜焰.AVO技术及在苏里格气田储层含气性检测中的应用:(硕士学位论文).成都.成都理工大学,2009. Du Yan. AVO technology and its application in gas-bearing detection of Sulige gas field reservoirs: (Master's thesis). Chengdu. Chengdu University of Technology, 2009.
Kennedy,Eberhart R C.Particle Swarm Optimization.International conference on Neural Networks,1995,1942-1948. Kennedy, Eberhart R C. Particle Swarm Optimization. International conference on Neural Networks, 1995, 1942-1948.
刘波.粒子群优化算法及其工程应用.北京:电子工业出版社,2010. Liu Bo. Particle Swarm Optimization Algorithm and Its Engineering Application. Beijing: Electronic Industry Press, 2010.
Kennedy J,Eberhart R C.A discrete binary version of the Particle Swarm Algorithm.The 1997 Conference on System,Cybernetics and Informatics,1997,4104-4109. Kennedy J, Eberhart R C.A discrete binary version of the Particle Swarm Algorithm. The 1997 Conference on System, Cybernetics and Informatics, 1997, 4104-4109.
Clerc M.Discrete Particle Swarm Optimization,Illustrated by the Traveling Salesman Problem.http://www.mau-ricecierc.net,2000. Clerc M. Discrete Particle Swarm Optimization, Illustrated by the Traveling Salesman Problem. http://www.mau-ricecierc.net, 2000.
Sun J,Feng B,Xu W.Particle Swarm Optimization with Particle Having Quantum Behavior.IEEE Proc.Of Congress on Evolutionar Computation,2004,325-331. Sun J, Feng B, Xu W. Particle Swarm Optimization with Particle Having Quantum Behavior. IEEE Proc.Of Congress on Evolutionar Computation, 2004, 325-331.
高鹰,谢胜利.基于模拟退火的粒子群优化算法.计算机工程与应用,2004(1):47-50. Gao Ying, Xie Shengli. Particle Swarm Optimization Algorithm Based on Simulated Annealing. Computer Engineering and Application, 2004(1): 47-50.
Shelokar P S,Siarry P,Jayaraman V K,Kulkarni B D.Particle swarm and ant colony algorithms hybridized for improved continuous optimization.Applied Mathematics and Computation,2007,188:129-142. Shelokar P S, Siarry P, Jayaraman V K, Kulkarni B D. Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Applied Mathematics and Computation, 2007, 188: 129-142.
周雅兰,王甲海等.一种基于分布估计的离散粒子群优化算法.电子学报,2008,36(6):1242-1248. Zhou Yalan, Wang Jiahai, etc. A Discrete Particle Swarm Optimization Algorithm Based on Distribution Estimation. Acta Electronica Sinica, 2008, 36(6): 1242-1248.
林东毅,廖建坤.最小约简问题的一个免疫离散粒子群算法.小型微型计算机系统,2008,29(6):1089-1092. Lin Dongyi, Liao Jiankun. An Immune Discrete Particle Swarm Optimization Algorithm for the Minimum Reduction Problem. Small Microcomputer Systems, 2008, 29(6): 1089-1092.
贺懿.地震储层参数非线性反演与预测方法研究:(博士学位论文).青岛.中国海洋大学,2008。 He Yi. Research on Nonlinear Inversion and Prediction of Seismic Reservoir Parameters: (PhD Dissertation). Qingdao. Ocean University of China, 2008. the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210241783.3A CN102854528B (en) | 2012-07-13 | 2012-07-13 | Pre-stack non-linear inversion method based on particle swarm optimization algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210241783.3A CN102854528B (en) | 2012-07-13 | 2012-07-13 | Pre-stack non-linear inversion method based on particle swarm optimization algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102854528A CN102854528A (en) | 2013-01-02 |
CN102854528B true CN102854528B (en) | 2014-04-16 |
Family
ID=47401274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210241783.3A Expired - Fee Related CN102854528B (en) | 2012-07-13 | 2012-07-13 | Pre-stack non-linear inversion method based on particle swarm optimization algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102854528B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104570101A (en) * | 2013-10-09 | 2015-04-29 | 中国石油化工股份有限公司 | AVO (amplitude versus offset) three-parameter inversion method based on particle swarm optimization |
CN104111474B (en) * | 2014-04-16 | 2016-08-24 | 张远银 | The reservoir that a kind of prestack elastic parameter inversion based on linear hybrid realizes and fluid prediction method |
CN104090299B (en) * | 2014-07-16 | 2017-01-25 | 中国石油集团川庆钻探工程有限公司地球物理勘探公司 | Surface seismic data amplitude compensation method based on VSP primary waves |
CN104217118B (en) * | 2014-09-12 | 2017-04-26 | 河海大学常州校区 | Vessel pilot scheduling problem model and solving method |
CN106154323B (en) * | 2015-04-01 | 2018-08-17 | 中国石油化工股份有限公司 | The thin method for predicting reservoir of phased stochastic inverse of frequency processing is opened up based on earthquake |
CN104897769B (en) * | 2015-06-02 | 2017-11-03 | 上海电力学院 | Magnetic Flux Leakage Inspecting Root cause analysis method based on improved particle swarm optimization algorithm |
CN108539730B (en) * | 2017-03-02 | 2023-05-30 | 华北电力大学(保定) | Optimal method for measurement location of active distribution network based on improved immune discrete particle swarm optimization algorithm |
CN109143346B (en) * | 2017-06-19 | 2020-10-20 | 中国石油化工股份有限公司 | Pre-stack hybrid nonlinear inversion method and computer-readable storage medium |
CN107390269B (en) * | 2017-07-05 | 2018-08-10 | 西安交通大学 | A kind of wave impedance inversion particle swarm optimization algorithm of well-log information statistical property constraint |
CN107884824A (en) * | 2017-10-25 | 2018-04-06 | 中国地质大学(武汉) | A kind of improvement particle cluster algorithm of earthquake data before superposition elastic parameter inversion problem |
CN108445537B (en) * | 2018-02-07 | 2019-05-31 | 中国地质大学(武汉) | Earthquake data before superposition AVO elastic parameter inversion method and system based on Spark |
CN109034403A (en) * | 2018-06-21 | 2018-12-18 | 北京工业大学 | A kind of urban rail transit equipment skeleton |
CN110568494B (en) * | 2019-09-12 | 2020-06-26 | 电子科技大学 | Prestack non-Gaussian AVO inversion method based on generalized extreme value distribution |
CN110956249B (en) * | 2019-12-05 | 2023-01-24 | 桂林电子科技大学 | Stratified medium inversion method based on resampling optimization particle swarm algorithm |
CN115169229B (en) * | 2022-06-29 | 2023-04-18 | 广州海洋地质调查局 | Method for dividing seabed sediment types |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5583825A (en) * | 1994-09-02 | 1996-12-10 | Exxon Production Research Company | Method for deriving reservoir lithology and fluid content from pre-stack inversion of seismic data |
US20020010549A1 (en) * | 2000-05-26 | 2002-01-24 | Vetle Vinje | Method for finding the reflectivity of reflectors |
CN101551466A (en) * | 2008-04-03 | 2009-10-07 | 中国石油天然气集团公司 | Method for improving prediction precision of oil and gas reservoir by using seismic attribute related to offset distance |
CN102393532A (en) * | 2011-09-06 | 2012-03-28 | 电子科技大学 | Seismic signal inversion method |
-
2012
- 2012-07-13 CN CN201210241783.3A patent/CN102854528B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5583825A (en) * | 1994-09-02 | 1996-12-10 | Exxon Production Research Company | Method for deriving reservoir lithology and fluid content from pre-stack inversion of seismic data |
US20020010549A1 (en) * | 2000-05-26 | 2002-01-24 | Vetle Vinje | Method for finding the reflectivity of reflectors |
CN101551466A (en) * | 2008-04-03 | 2009-10-07 | 中国石油天然气集团公司 | Method for improving prediction precision of oil and gas reservoir by using seismic attribute related to offset distance |
CN102393532A (en) * | 2011-09-06 | 2012-03-28 | 电子科技大学 | Seismic signal inversion method |
Non-Patent Citations (6)
Title |
---|
严哲,等.量子行为的粒子群算法在叠前AVO反演中的应用.《石油地球物理勘探》.2010,第45卷(第4期), * |
岳碧波,等.基于粒子群优化算法的叠前角道集子波反演.《地球物理学报》.2009,第52卷(第12期), * |
张繁昌,等.一种地震共反射点道集数据的叠前反演方法.《物探化探计算技术》.2011,第33卷(第1期), * |
杨培杰,等.叠前三参数同步反演方法及其应用.《石油学报》.2009,第30卷(第2期), * |
蔡涵鹏,等.基于粒子群算法波阻抗反演的研究与应用.《石油地球物理勘探》.2008,第43卷(第5期), * |
袁三一,等.一种新的地震子波提取与层速度反演方法.《地球物理学进展》.2008,第23卷(第1期), * |
Also Published As
Publication number | Publication date |
---|---|
CN102854528A (en) | 2013-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102854528B (en) | Pre-stack non-linear inversion method based on particle swarm optimization algorithm | |
Ren et al. | A physics-based neural-network way to perform seismic full waveform inversion | |
CN111239802B (en) | Deep Learning Velocity Modeling Method Based on Seismic Reflection Waveform and Velocity Spectrum | |
Lu et al. | Improving the image quality of elastic reverse-time migration in the dip-angle domain using deep learning | |
CN104570101A (en) | AVO (amplitude versus offset) three-parameter inversion method based on particle swarm optimization | |
CN110058302A (en) | A kind of full waveform inversion method based on pre-conditional conjugate gradient accelerating algorithm | |
Wamriew et al. | Joint event location and velocity model update in real-time for downhole microseismic monitoring: A deep learning approach | |
CN113947198A (en) | Logging curve reconstruction method based on nonlinear autoregressive neural network model | |
CN103116703B (en) | A kind of covariation differential evolution algorithm for higher-dimension parameter space waveform inversion | |
CN108445537B (en) | Earthquake data before superposition AVO elastic parameter inversion method and system based on Spark | |
CN110632662A (en) | An Algorithm for Automatic Microseismic Signal Recognition Using DCNN-Inception Network | |
CN115453623A (en) | A joint inversion method of receiver function and surface wave dispersion based on UNet | |
Yan et al. | Intelligent inversion method for pre-stack seismic big data based on MapReduce | |
CN105044775B (en) | A kind of earthquake fluid inverting recognition methods and device | |
CN104237937A (en) | Pre-stack seismic inversion method and system thereof | |
CN109782354B (en) | Cooperative Differential Evolution Algorithm Based on Direction Guidance and Its Application in Ray Tracing | |
Wu et al. | Research of pre-stack AVO elastic parameter inversion problem based on hybrid genetic algorithm | |
CN116047583A (en) | Adaptive wave impedance inversion method and system based on deep convolutional neural network | |
Yan et al. | Spark-based intelligent parameter inversion method for prestack seismic data | |
CN111025388A (en) | Multi-wave combined prestack waveform inversion method | |
Wu et al. | An unsupervised inversion method for seismic brittleness parameters driven by the physical equation | |
Golubev et al. | Simulation of seismic responses from fractured MARMOUSI2 model | |
Cheng et al. | Meta-PINN: Meta learning for improved neural network wavefield solutions | |
CN103235879A (en) | Bi-phase medium parametric inversion method based on niche master-slave parallel genetic algorithm | |
Sajeva et al. | Estimation of velocity macro-models using stochastic full-waveform inversion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190314 Address after: 102249 18 Fu Xue Road, Changping District, Beijing Patentee after: China University of Petroleum (Beijing) Address before: 102249 China University of Petroleum, Changping, Beijing, 18, Fu Xue Road (China University of Petroleum) Co-patentee before: Chen Lei Patentee before: Sun Zandong Co-patentee before: Zhang Yuanyin |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140416 Termination date: 20210713 |