CN102854465A - System and method for chaotic prediction of DFIG (doubly fed induction generator) running state based on phase-space reconstruction - Google Patents
System and method for chaotic prediction of DFIG (doubly fed induction generator) running state based on phase-space reconstruction Download PDFInfo
- Publication number
- CN102854465A CN102854465A CN2012103166673A CN201210316667A CN102854465A CN 102854465 A CN102854465 A CN 102854465A CN 2012103166673 A CN2012103166673 A CN 2012103166673A CN 201210316667 A CN201210316667 A CN 201210316667A CN 102854465 A CN102854465 A CN 102854465A
- Authority
- CN
- China
- Prior art keywords
- pin
- circuit unit
- phase space
- signal
- wind turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 230000000739 chaotic effect Effects 0.000 title claims abstract description 19
- 230000006698 induction Effects 0.000 title abstract description 15
- 238000012360 testing method Methods 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 230000003750 conditioning effect Effects 0.000 claims description 21
- 239000003990 capacitor Substances 0.000 claims description 19
- 238000004804 winding Methods 0.000 claims description 18
- 238000013500 data storage Methods 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 4
- 238000005315 distribution function Methods 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 238000011897 real-time detection Methods 0.000 abstract description 2
- 238000001914 filtration Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005183 dynamical system Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
Images
Landscapes
- Control Of Eletrric Generators (AREA)
Abstract
Description
(一)技术领域: (1) Technical field:
本发明属于风电系统预测技术领域,特别是一种基于相空间重构的DFIG(英文全拼——双馈感应发电机)运行状态混沌预测系统及方法。The invention belongs to the technical field of wind power system prediction, in particular to a DFIG (full spelling in English—doubly-fed induction generator) operating state chaos prediction system and method based on phase space reconstruction.
(二)背景技术: (2) Background technology:
随着接入电网的风力发电机组(主要是双馈感应发电机组)容量的不断增加,由于风电机组的运行条件恶劣,如外界温差变化大,风速变化随机等。这些不确定的外界因素导致风电机组的故障率高,使风电场后期运行维护成本居高不下,且风力发电本身所特有的间歇性和随机性大幅度地增加了与其互联电网的不稳定性。作为一个复杂的耦合非线性系统,双馈感应发电机组的安全可靠运行直接影响与其互联电网的稳定负荷合理分配及电网供电质量。因此,提高双馈感应发电机组的运行可靠性,对保障电网的安全优质运行和提高系统经济性具有重大作用。为实现双馈感应发电机组的安全稳定运行及时判断机组部件的性能状况和发展趋势提高其运行效率,本发明采用多种方法和手段对机组的重要部件(齿轮箱、发电机等)进行在线监测和分析,在分析双馈感应发电机组运行状态具有混沌属性的基础上,利用相空间重构方法建立了机组运行状态的加权一阶局域预测模型,对其运行状态进行预测,以便提前发现故障征兆,避免和减轻严重的设备损坏,确定合理的维护时间和方案,从而达到大幅降低维护成本的目的。With the increasing capacity of wind turbines (mainly doubly-fed induction generators) connected to the power grid, due to the harsh operating conditions of wind turbines, such as large changes in external temperature difference and random changes in wind speed, etc. These uncertain external factors lead to a high failure rate of wind turbines, resulting in high post-operation and maintenance costs of wind farms, and the unique intermittent and random nature of wind power generation greatly increases the instability of its interconnected grid. As a complex coupled nonlinear system, the safe and reliable operation of doubly-fed induction generator sets directly affects the stable load distribution of its interconnected grid and the quality of grid power supply. Therefore, improving the operational reliability of doubly-fed induction generator sets plays an important role in ensuring the safe and high-quality operation of the power grid and improving the system economy. In order to realize the safe and stable operation of the doubly-fed induction generator set, judge the performance status and development trend of the unit components in time and improve its operating efficiency, the present invention adopts various methods and means to carry out online monitoring on the important components (gearbox, generator, etc.) of the unit Based on the analysis of the chaotic properties of the operating state of the doubly-fed induction generating set, a weighted first-order local prediction model for the operating state of the generating set is established by using the phase space reconstruction method to predict its operating state so as to detect faults in advance Symptoms, avoid and reduce serious equipment damage, determine a reasonable maintenance time and plan, so as to achieve the purpose of greatly reducing maintenance costs.
(三)发明内容: (3) Contents of the invention:
本发明的目的在于提供一种基于相空间重构的DFIG运行状态混沌预测系统及方法,它可以克服现有技术的不足,是一种可以恢复混沌吸引子的结构简单、可对系统运行趋势进行预测的系统及方法。The object of the present invention is to provide a DFIG operating state chaos prediction system and method based on phase space reconstruction. Systems and methods for forecasting.
本发明的技术方案:一种基于相空间重构的DFIG运行状态混沌预测系统,其特征在于它包括风电机组、测试仪和带混沌预测程序的上位机;其中,所述测试仪采集风电机组的信号,与带混沌预测程序的上位机呈双向连接。Technical solution of the present invention: a DFIG operating state chaos prediction system based on phase space reconstruction, characterized in that it includes a wind turbine, a tester and a host computer with a chaos prediction program; wherein, the tester collects the wind turbine The signal is bidirectionally connected with the host computer with chaos prediction program.
所述测试仪是由信号采集与调理电路单元、A/D转换电路单元、单片机、USB接口电路单元、数据存储电路单元和定时电路单元构成;其中,所述信号采集与调理电路单元单元采集风电机组的信号,其输出端连接A/D转换电路单元的输入端;所述单片机与A/D转换电路单元、USB接口电路单元、数据存储电路单元和定是电路单元分别呈双向连接;所述USB接口电路单元与带混沌预测程序的上位机呈双向连接。The tester is composed of a signal acquisition and conditioning circuit unit, an A/D conversion circuit unit, a single-chip microcomputer, a USB interface circuit unit, a data storage circuit unit, and a timing circuit unit; wherein, the signal acquisition and conditioning circuit unit collects wind power The signal of the unit, its output end connects the input end of A/D conversion circuit unit; Described single-chip microcomputer and A/D conversion circuit unit, USB interface circuit unit, data storage circuit unit and fixed circuit unit are bidirectionally connected respectively; The USB interface circuit unit is bidirectionally connected with the host computer with chaos prediction program.
所述采集风电机组的信号是采集风力发电机组齿轮箱驱动侧轴承温度信号、风力发电机绕组最大温度信号、风力发电机转子平均转速信号和风力发电机有功功率参数信号。The signal collection of the wind turbine is to collect the temperature signal of the driving side bearing of the gearbox of the wind turbine, the maximum temperature signal of the winding of the wind turbine, the average speed signal of the rotor of the wind turbine and the active power parameter signal of the wind turbine.
所述信号采集与调理电路单元由传感器、数据采集卡、电阻Rs、滤波电路、电压跟随器、调理电路和稳压管构成;其连接为常规连接;其中所述传感器采用隔离模板,将输入信号全部转换为5V的标准电压信号;所述数据采集卡为研华公司的PCI-1711 12位多功能数据采集卡,具有16路单端模拟量输入,8个数据信号通道,带有一个自动通道/增益扫描电路,采样时自动控制多路选通开关,其连接为常规连接。The signal acquisition and conditioning circuit unit is composed of a sensor, a data acquisition card, a resistor Rs, a filter circuit, a voltage follower, a conditioning circuit and a voltage regulator tube; its connection is a conventional connection; wherein the sensor uses an isolation template, and the input signal All are converted into 5V standard voltage signals; the data acquisition card is Advantech’s PCI-1711 12-bit multi-function data acquisition card, which has 16 single-ended analog inputs, 8 data signal channels, and an automatic channel/ The gain scanning circuit automatically controls the multi-channel strobe switch when sampling, and its connection is a conventional connection.
所述A/D转换电路单元由转换芯片和外围电路构成;其中所述转换芯片是采用CMOS工艺、是片内有三态数据输出锁存器,输入方式为单通道,转换时间为100μs,电源电压为+5V的逐次逼近型8位转换芯片ADC0804;所述转换芯片ADC0804包含管脚DB0、管脚DB1、管脚DB2、管脚DB3、管脚DB4、管脚DB5、管脚DB6、管脚DB7、管脚/WR、管脚/RD、管脚/CS、管脚VIN(+)、管脚VIN(-)、管脚C LK-IN、管脚CLK-R和管脚Vref/2,且依管脚DB0、管脚DB1、管脚DB2、管脚DB3、管脚DB4、管脚DB5、管脚DB6、管脚DB7、管脚/WR、管脚/RD、管脚/CS与单片机芯片呈等待延时方式连接;所述外围电路是由电容C28、电阻R32、两个电阻R33、电容C29、电源VCC组成;所述管脚VIN(+)经电容C28和一个电阻R33接收信号调理电路处理后的信号,电容C28和该电阻R33连接点与管脚VIN(-)连接共同接地,采取差动电压模拟输入方式;所述管脚CLK-R经另一电阻R33和电容C29接地,管脚CLK-IN连接该电阻R33和电容C29的连接点;所述管脚Vref/2经电阻R32接电源VCC。The A/D conversion circuit unit is composed of a conversion chip and a peripheral circuit; wherein the conversion chip adopts a CMOS process and has a three-state data output latch in the chip, and the input mode is a single channel, and the conversion time is 100 μs, and the power supply voltage It is a successive approximation type 8-bit conversion chip ADC0804 of +5V; the conversion chip ADC0804 includes pins DB0, pins DB1, pins DB2, pins DB3, pins DB4, pins DB5, pins DB6, pins DB7 , pin /WR, pin /RD, pin /CS, pin VIN(+), pin VIN(-), pin CLK-IN, pin CLK-R, and pin Vref/2, and According to pin DB0, pin DB1, pin DB2, pin DB3, pin DB4, pin DB5, pin DB6, pin DB7, pin/WR, pin/RD, pin/CS and MCU chip It is connected in a waiting delay mode; the peripheral circuit is composed of a capacitor C28, a resistor R32, two resistors R33, a capacitor C29, and a power supply VCC; the pin VIN (+) receives a signal conditioning circuit through a capacitor C28 and a resistor R33 The processed signal, the connection point of the capacitor C28 and the resistor R33 and the pin VIN (-) are connected to the common ground, and the differential voltage analog input mode is adopted; the pin CLK-R is grounded through another resistor R33 and the capacitor C29, and the tube The pin CLK-IN is connected to the connection point of the resistor R33 and the capacitor C29; the pin Vref/2 is connected to the power supply VCC through the resistor R32.
所述单片机采用飞思卡尔的单片机MC9S12DP256。The single-chip microcomputer adopts Freescale's single-chip microcomputer MC9S12DP256.
所述数据存储电路单元采用Dallas公司的DS1225芯片。The data storage circuit unit adopts the DS1225 chip of Dallas Company.
所述USB接口电路单元采用南京沁恒电子的CH372芯片。The USB interface circuit unit adopts the CH372 chip of Nanjing Qinheng Electronics.
所述定时电路单元采用带有看门狗的PIC16F716器件。The timing circuit unit adopts a PIC16F716 device with a watchdog.
一种用于风电系统的混沌预测系统的工作方法,其特征在于它包括以下步骤:A kind of working method of the chaotic prediction system that is used for wind power system is characterized in that it comprises the following steps:
⑴由定时电路单元设置采集间隔定时时间,由信号采集与调理电路单元来实时采集风电机组齿轮箱驱动侧轴承温度、发电机绕组最大温度,转子平均转速和发电机有功功率信号;(1) The timing circuit unit sets the collection interval timing time, and the signal collection and conditioning circuit unit collects the driving side bearing temperature of the wind turbine gearbox, the maximum temperature of the generator winding, the average rotor speed and the active power signal of the generator in real time;
⑵步骤⑴中采集的信号经过信号采集与调理电路单元和A/D转换电路单元进行滤波、自校准处理,并通过单片机将机组齿轮箱驱动侧轴承温度、发电机绕组最大温度,转子平均转速和发电机有功功率参数输入到数据存储电路单元中;(2) The signal collected in step (1) is filtered and self-calibrated by the signal acquisition and conditioning circuit unit and the A/D conversion circuit unit, and the driving side bearing temperature of the unit gearbox, the maximum temperature of the generator winding, the average rotor speed and Generator active power parameters are input into the data storage circuit unit;
⑶通过USB接口电路将步骤⑵处理后的风电机组齿轮箱驱动侧轴承温度、发电机绕组最大温度,转子平均转速和发电机有功功率数据传输到装有实现混沌预测程序的上位机中;(3) Through the USB interface circuit, the temperature of the driving side bearing of the wind turbine gearbox, the maximum temperature of the generator winding, the average speed of the rotor and the active power of the generator after processing in step (2) are transmitted to the host computer equipped with the chaos prediction program;
⑷应用上位机中的混沌预测方法进行参数计算和处理。⑷Using the chaotic prediction method in the host computer for parameter calculation and processing.
所述步骤⑷中的混沌预测方法是采用基于相空间重构的方法检测混沌,由以下步骤构成:The method for predicting chaos in the step (4) is to adopt a method based on phase space reconstruction to detect chaos, and is composed of the following steps:
①用C-C法确定嵌入维数与时间延迟:风电机组运行时,对于某一状态参数时间序列x={xi},i=1,2,…,N,若嵌入维数为m,时间延迟为τ,则重构相空间为X={Xi},Xi为m维相空间中的相点:①Use the CC method to determine the embedding dimension and time delay: when the wind turbine is running, for a certain state parameter time series x={ xi },i=1,2,...,N, if the embedding dimension is m, the time delay is τ, then the reconstructed phase space is X={X i }, and X i is the phase point in the m-dimensional phase space:
Xi=[xi,xi+τ,…,xi+(m-1)τ]T,i=1,2,…,M (1)X i =[x i ,x i+τ ,…,x i+(m-1)τ ] T ,i=1,2,…,M (1)
则嵌入时间序列的关联积分为Then the associated integral of the embedded time series is
其中M=N-(m-1)τ,dij=||xi-xj||∞,为∞范数;θ为Heaviside函数,其表达式为Where M=N-(m-1)τ, d ij =||x i -x j || ∞ is the ∞ norm; θ is the Heaviside function, and its expression is
关联积分为累积分布函数,表示相空间中任意两点之间距离小于r 的概率。另外定义x={xi}的检验统计量:The correlation integral is a cumulative distribution function that expresses the probability that the distance between any two points in the phase space is less than r. Additionally define the test statistic for x={ xi }:
S(m,N,r,τ)=C(m,N,r,τ)-Cm(m,N,r,τ) (3)S(m,N,r,τ)=C(m,N,r,τ)-C m (m,N,r,τ) (3)
S(m,N,r,τ)反映了时间序列的自相关特性,最优时间延迟取S(m,N,r,τ)第1个零点,此时重构相空间中的点最接近均匀分布,重构吸引子轨道在相空间完全展开;S(m, N, r, τ) reflects the autocorrelation characteristics of the time series, the optimal time delay takes the first zero point of S(m, N, r, τ), and the point in the reconstructed phase space is closest to Evenly distributed, the reconstructed attractor orbit is completely expanded in the phase space;
②利用最大Lyapunov指数识别DFIG混沌特性:由步骤①计算出的时间延迟τ和嵌入维数m,应用小数据量法计算出风电机组齿轮箱驱动侧轴承温度、发电机绕组最大温度、转子平均转速和发电机有功功率四个状态参数时间序列的最大Lyapunov指数,若的四个最大Lyapunov指数均大于0,则说明存在DFIG混沌特性,并进行下一步预测;② Use the largest Lyapunov exponent to identify the chaotic characteristics of DFIG: from the time delay τ and embedding dimension m calculated in
③利用加权一阶局域法对DFIG进行预测:③Using the weighted first-order local method to predict DFIG:
将步骤①中求得的延迟时间τ和维数m进行相空间重构,应用加权一阶局域法对风力发电机组的风电机组齿轮箱驱动侧轴承温度、发电机绕组最大温度、转子平均转速和发电机有功功率四个状态参数时间序列分别进行预测;Reconstruct the phase space of the delay time τ and dimension m obtained in
设中心点(即预测的起始点)Xk的邻近点为Xki,两点距离为di,设dm是di中的最小值,点Xki的权值为:Let the adjacent point of the central point (that is, the starting point of prediction) X k be X ki , the distance between two points is d i , let d m be the minimum value in d i , and the weight of point X ki is:
一般取l=1,则加权1 阶局域线性拟合为Xki+1=ae+bXki,e=[1,1,…,1]T。根据加权最小二乘法求解,得到预测式Xk+1=a+bXk,构造下一中心点及其邻近点,重复③以进一步预测,直至预测到机组出现异常情况预测停止。Generally take l=1, then the weighted first-order local linear fitting is X ki+1 =ae+bX ki , e=[1,1,…,1] T . Solve according to the method of weighted least squares , get the prediction formula X k+1 =a+bX k , construct the next center point and its adjacent points, repeat
本发明的工作原理:Working principle of the present invention:
双馈感应发电机组系统是一个复杂的多维非线性系统,其运行状态的变化受众多因素影响,仅仅依赖某一因素来预测机组运行状态有很大的局限性,然而在生产实际中容易得到的运行参数时间序列只能反映一部分信息,因此考虑利用重构相空间的方法进行预测,此法通过单一的系统输出时间序列来构造一组表征原系统动力学特性的坐标分量,从而近似地恢复系统的混沌吸引子。在此基础上,利用重构的相空间(实际系统的近似)进行预测(主要是利用该系统的轨道发展即混沌吸引子来预测)。The doubly-fed induction generator system is a complex multi-dimensional nonlinear system. The change of its operating state is affected by many factors. It has great limitations to predict the operating state of the unit only relying on a certain factor. However, it is easy to obtain in actual production The time series of operating parameters can only reflect part of the information, so the method of reconstructing the phase space is considered for prediction. This method uses a single system output time series to construct a set of coordinate components that represent the dynamic characteristics of the original system, thereby approximately restoring the system. chaotic attractor. On this basis, use the reconstructed phase space (approximation of the actual system) to predict (mainly use the system's orbital development, that is, the chaos attractor to predict).
根据Takens定理,对于一个时间序列,当m≥2d+1时(m是嵌入维数,d是动力系统的关联维数),在该m维重构空间可以把吸引子恢复出来。重构空间中的相轨迹与原动力系统保持微分同胚。According to the Takens theorem, for a time series, when m≥2d+1 (m is the embedding dimension, d is the correlation dimension of the dynamical system), the attractor can be recovered in the m-dimensional reconstruction space. The phase trajectory in the reconstructed space remains diffeomorphic to the prime mover system.
重构方法如下:The reconstruction method is as follows:
C-C法确定嵌入维数与时间延迟:风电机组运行时,对于某一状态参数时间序列x={xi},i=1,2,…,N,若嵌入维数为m,时间延迟为τ,则重构相空间为X={Xi},Xi为m维相空间中的相点:The CC method determines the embedding dimension and time delay: when the wind turbine is running, for a certain state parameter time series x={ xi },i=1,2,...,N, if the embedding dimension is m, the time delay is τ , then the reconstructed phase space is X={X i }, where X i is the phase point in the m-dimensional phase space:
Xi=[xi,xi+τ,…,xi+(m-1)τ]T,i=1,2,…,M (1)X i =[x i ,x i+τ ,…,x i+(m-1)τ ] T ,i=1,2,…,M (1)
则嵌入时间序列的关联积分为Then the associated integral of the embedded time series is
其中M=N-(m-1)τ,dij=||xi-xj||∞为∞范数;θ为Heaviside函数,其表达式为Where M=N-(m-1)τ, d ij =||x i -x j || ∞ is the ∞ norm; θ is the Heaviside function, and its expression is
关联积分为累积分布函数,表示相空间中任意两点之间距离小于r 的概率。另外定义x={xi}的检验统计量:The correlation integral is a cumulative distribution function that expresses the probability that the distance between any two points in the phase space is less than r. Additionally define the test statistic for x={ xi }:
S(m,N,r,τ)=C(m,N,r,τ)-Cm(m,N,r,τ) (3)S(m,N,r,τ)=C(m,N,r,τ)-C m (m,N,r,τ) (3)
S(m,N,r,τ)反映了时间序列的自相关特性,最优时间延迟取S(m,N,r,τ)第1个零点,此时重构相空间中的点最接近均匀分布,重构吸引子轨道在相空间完全展开。S(m, N, r, τ) reflects the autocorrelation characteristics of the time series, the optimal time delay takes the first zero point of S(m, N, r, τ), and the point in the reconstructed phase space is closest to Uniformly distributed, the reconstructed attractor orbitals are fully expanded in phase space.
最大Lyapunov指数识别DFIG混沌特性:本发明采用具有较高可靠性且计算量较小的小数据量方法计算风电机组状态参数时间序列的最大Lyapunov指数,在重构相空间后,寻找给定轨道上每个点的最近邻近点,由估算出最大Lyapunov指数。The largest Lyapunov exponent to identify the chaotic characteristics of DFIG: the present invention uses a small amount of data method with high reliability and a small amount of calculation to calculate the maximum Lyapunov exponent of the time series of wind turbine state parameters, and after reconstructing the phase space, find The nearest neighbors of each point, given by Estimate the maximum Lyapunov exponent.
混沌预测: 本发明应用加权一阶局域法预测模型对DFIG运行状态进行预测,它是在原有的局域法上的一种改进,由于引进权值使得其有更好的自适应能力和更高的预测精度。Chaos prediction: The present invention uses the weighted first-order local method prediction model to predict the running state of DFIG. It is an improvement on the original local method. Because of the introduction of weights, it has better adaptive ability and more High prediction accuracy.
设中心点Xk(即预测的起始点)的邻近点为Xki,i=1,2,…,q,两点距离为di,设dm是di中的最小值,点Xki的权值为Let the adjacent point of the center point X k (that is, the starting point of prediction) be X ki , i=1,2,…,q, the distance between two points is d i , let d m be the minimum value in d i , point X ki has a weight of
一般取l=1,则加权1 阶局域线性拟合为Generally take l=1, then the weighted 1st-order local linear fitting is
Xki+1=ae+bXki,e=[1,1,…,1]T (4)X ki+1 =ae+bX ki ,e=[1,1,…,1] T (4)
根据加权最小二乘法求解,得到预测式Xk+1=a+bXk,然后构造下一中心点及其邻近点,进行下一步预测。Solve according to the method of weighted least squares , get the prediction formula X k+1 =a+bX k , and then construct the next central point and its adjacent points for the next step of prediction.
单片机采用飞思卡尔的单片机MC9S12DP256,它的增强捕捉定时器具有与其他定时器相比更为可靠的计数功能。本系统中MC9S12DP256 单片机使用16 MH z外部晶振, 总线时钟频率配置为8 MHz。为提高测量精度, 定时器模块的工作时钟不对总线时钟进行分频处理, 即定时器的计数频率也为8MHz, 采用对上升沿进行捕捉的方式, 允许输入捕捉中断和定时器溢出中断。将转速传感器输出的信号经过调理后变成速度频率的数字信号并传输给单片机MC9S12DP256的输入捕捉模块, 通过捕捉被测信号的有效跳变沿(比如上升沿) , 记录有效跳变沿来临时刻定时器的值, 来计算当前捕捉时刻定时器的值与前次捕捉时刻定时器值之差,此即为被测信号一个周期内定时器的计数个数,由此便可得两个有效沿的间隔时间并依此求得转速。The one-chip computer adopts Freescale's one-chip computer MC9S12DP256, and its enhanced capture timer has a more reliable counting function compared with other timers. The MC9S12DP256 microcontroller in this system uses a 16 MHz external crystal oscillator, and the bus clock frequency is configured as 8 MHz. In order to improve the measurement accuracy, the working clock of the timer module does not divide the frequency of the bus clock, that is, the counting frequency of the timer is also 8MHz, and the method of capturing the rising edge is adopted to allow input capture interrupt and timer overflow interrupt. After conditioning, the signal output by the speed sensor becomes a digital signal of speed frequency and transmits it to the input capture module of the single-chip microcomputer MC9S12DP256. By capturing the effective transition edge (such as the rising edge) of the measured signal, record the timing when the effective transition edge comes To calculate the difference between the value of the timer at the current capture time and the timer value at the previous capture time, this is the number of counts of the timer in one cycle of the signal under test, from which the two effective edges can be obtained Interval time and obtain the rotational speed accordingly.
数据存储电路采用Dallas公司的DS1225芯片。A0-A12为地址输入端口,DQ0-DQ7为数据输入/出端口, 为选通端口, 为可输出端口,为可写入端口,NC为不连接端口。The data storage circuit adopts the DS1225 chip of Dallas Company. A0-A12 are address input ports, DQ0-DQ7 are data input/output ports, is the strobe port, is an output port, It is a writable port, and NC is a non-connectable port.
USB接口电路采用南京沁恒电子的CH372芯片,它是由可作为被动并行接口的8位双向数据总线D7~D0、读选通输入引脚RD#、写选通输入引脚WR#、片选输入引脚CS#、中断输出引脚INT#以及地址输入引脚A0构成;所述8位双向数据总线D7~D0、读选通输入引脚RD#、写选通输入引脚WR#、片选输入引脚CS#、中断输出引脚INT#以及地址输入引脚A0与单片机连接。The USB interface circuit adopts the CH372 chip of Nanjing Qinheng Electronics, which is composed of 8-bit bidirectional data bus D7~D0 that can be used as a passive parallel interface, read strobe input pin RD#, write strobe input pin WR#, chip select The input pin CS#, the interrupt output pin INT# and the address input pin A0 are composed; the 8-bit bidirectional data bus D7~D0, the read strobe input pin RD#, the write strobe input pin WR#, the chip The selection input pin CS#, the interrupt output pin INT# and the address input pin A0 are connected with the microcontroller.
本发明的优越性在于:①硬件装置简单、实用;②掉电后数据自动保护,混沌实时检测不间断,可靠性高;③高测量精度;④系统的实时性可靠性高,能满足风电机组状态监测、过渡过程研究、故障诊断及预测等方面的要求,具有较高的实用价值。The advantages of the present invention are: ① simple and practical hardware device; ② automatic protection of data after power failure, uninterrupted real-time detection of chaos, high reliability; ③ high measurement accuracy; ④ high real-time reliability of the system, which can meet the needs of wind turbines It has high practical value for the requirements of condition monitoring, transition process research, fault diagnosis and prediction, etc.
(四)附图说明:(4) Description of the drawings:
图1为本发明所涉一种用于双馈感应发电机组的混沌预测系统的总体结构示意图。Fig. 1 is a schematic diagram of the overall structure of a chaos prediction system for doubly-fed induction generator set according to the present invention.
图 2为本发明所涉一种用于双馈感应发电机组的混沌预测系统中信号调理电路单元的电路结构示意图。Fig. 2 is a schematic diagram of the circuit structure of a signal conditioning circuit unit in a chaos prediction system for a doubly-fed induction generator set according to the present invention.
图 3为本发明所涉一种用于双馈感应发电机组的混沌预测系统中A/D转换接口电路单元的电路结构示意图。Fig. 3 is a schematic diagram of the circuit structure of an A/D conversion interface circuit unit in a chaos prediction system for a doubly-fed induction generator set according to the present invention.
图 4为本发明所涉一种用于双馈感应发电机组的混沌预测系统中的数据存储单元DS1225芯片的结构示意图。Fig. 4 is a schematic structural diagram of the data storage unit DS1225 chip used in the chaos prediction system of the doubly-fed induction generator set according to the present invention.
图 5为本发明所涉一种用于双馈感应发电机组的混沌预测系统中的接口电路CH372芯片的结构示意图。Fig. 5 is a schematic structural diagram of an interface circuit CH372 chip used in a chaos prediction system for a doubly-fed induction generator set according to the present invention.
图 6为本发明所涉一种用于双馈感应发电机组的混沌预测系统的工作方法的总流程图。Fig. 6 is a general flowchart of a working method of a chaos prediction system for a doubly-fed induction generator set according to the present invention.
(五)具体实施方式: (5) Specific implementation methods:
实施例:一种基于相空间重构的DFIG运行状态混沌预测系统(见图1),其特征在于它包括风电机组、测试仪和带混沌预测程序的上位机;其中,所述测试仪采集风电机组的信号,与带混沌预测程序的上位机呈双向连接。Embodiment: A DFIG operating state chaos prediction system based on phase space reconstruction (see Figure 1), characterized in that it includes a wind turbine, a tester, and a host computer with a chaos prediction program; wherein, the tester collects wind power The signal of the unit is bidirectionally connected with the host computer with chaos prediction program.
所述测试仪(见图1)是由信号采集与调理电路单元、A/D转换电路单元、单片机、USB接口电路单元、数据存储电路单元和定时电路单元构成;其中,所述信号采集与调理单元采集风电机组的信号,其输出端连接A/D转换电路单元的输入端;所述单片机与A/D转换电路单元、USB接口电路单元、数据存储电路单元和定是电路单元分别呈双向连接;所述USB接口电路单元与带混沌预测程序的上位机呈双向连接。The tester (see Figure 1) is composed of a signal acquisition and conditioning circuit unit, an A/D conversion circuit unit, a single-chip microcomputer, a USB interface circuit unit, a data storage circuit unit and a timing circuit unit; wherein the signal acquisition and conditioning The unit collects the signal of the wind turbine, and its output end is connected to the input end of the A/D conversion circuit unit; the single-chip microcomputer is connected with the A/D conversion circuit unit, the USB interface circuit unit, the data storage circuit unit and the fixed circuit unit respectively in two directions ; The USB interface circuit unit is bidirectionally connected to the host computer with the chaos prediction program.
所述采集风电机组的信号是采集风力发电机组齿轮箱驱动侧轴承温度信号、风力发电机绕组最大温度信号、风力发电机转子平均转速信号和风力发电机有功功率参数信号。The signal collection of the wind turbine is to collect the temperature signal of the driving side bearing of the gearbox of the wind turbine, the maximum temperature signal of the winding of the wind turbine, the average speed signal of the rotor of the wind turbine and the active power parameter signal of the wind turbine.
所述信号采集与调理电路单元(见图2)由传感器、数据采集卡、电阻Rs、滤波电路、电压跟随器、调理电路和稳压管构成;其连接为常规连接;其中所述传感器采用隔离模板,将输入信号全部转换为5V的标准电压信号;所述数据采集卡为研华公司的PCI-1711 12位多功能数据采集卡,具有16路单端模拟量输入,8个数据信号通道,带有一个自动通道/增益扫描电路,采样时自动控制多路选通开关,其连接为常规连接。The signal acquisition and conditioning circuit unit (see Figure 2) is composed of a sensor, a data acquisition card, a resistor Rs, a filter circuit, a voltage follower, a conditioning circuit and a voltage regulator tube; its connection is a conventional connection; wherein the sensor adopts an isolation The template converts all input signals into 5V standard voltage signals; the data acquisition card is Advantech's PCI-1711 12-bit multi-function data acquisition card, which has 16 single-ended analog inputs and 8 data signal channels, with There is an automatic channel/gain scanning circuit that automatically controls the multiplexing switch when sampling, and its connection is a conventional connection.
所述A/D转换电路单元(见图3)由转换芯片和外围电路构成;其中所述转换芯片是采用CMOS工艺、是片内有三态数据输出锁存器,输入方式为单通道,转换时间为100μs,电源电压为+5V的逐次逼近型8位转换芯片ADC0804;所述转换芯片ADC0804包含管脚DB0、管脚DB1、管脚DB2、管脚DB3、管脚DB4、管脚DB5、管脚DB6、管脚DB7、管脚/WR、管脚/RD、管脚/CS、管脚VIN(+)、管脚VIN(-)、管脚C LK-IN、管脚CLK-R和管脚Vref/2,且依管脚DB0、管脚DB1、管脚DB2、管脚DB3、管脚DB4、管脚DB5、管脚DB6、管脚DB7、管脚/WR、管脚/RD、管脚/CS与单片机芯片呈等待延时方式连接;所述外围电路是由电容C28、电阻R32、两个电阻R33、电容C29、电源VCC组成;所述管脚VIN(+)经电容C28和一个电阻R33接收信号调理电路处理后的信号,电容C28和该电阻R33连接点与管脚VIN(-)连接共同接地,采取差动电压模拟输入方式;所述管脚CLK-R经另一电阻R33和电容C29接地,管脚CLK-IN连接该电阻R33和电容C29的连接点;所述管脚Vref/2经电阻R32接电源VCC。The A/D conversion circuit unit (see Figure 3) is composed of a conversion chip and peripheral circuits; wherein the conversion chip adopts CMOS technology, has a three-state data output latch in the chip, and the input mode is a single channel, and the conversion time is 100μs, the power supply voltage is +5V successive approximation 8-bit conversion chip ADC0804; the conversion chip ADC0804 includes pins DB0, pins DB1, pins DB2, pins DB3, pins DB4, pins DB5, pins DB6, pin DB7, pin /WR, pin /RD, pin /CS, pin VIN(+), pin VIN(-), pin CLK-IN, pin CLK-R and pin Vref/2, and by pin DB0, pin DB1, pin DB2, pin DB3, pin DB4, pin DB5, pin DB6, pin DB7, pin/WR, pin/RD, pin /CS is connected to the single-chip microcomputer chip in a waiting delay mode; the peripheral circuit is composed of capacitor C28, resistor R32, two resistors R33, capacitor C29, and power supply VCC; the pin VIN (+) is connected through capacitor C28 and a resistor R33 receives the signal processed by the signal conditioning circuit, the connection point of the capacitor C28 and the resistor R33 is connected to the pin VIN (-) and is connected to the common ground, and adopts a differential voltage analog input mode; the pin CLK-R passes through another resistor R33 and The capacitor C29 is grounded, and the pin CLK-IN is connected to the connection point of the resistor R33 and the capacitor C29; the pin Vref/2 is connected to the power supply VCC through the resistor R32.
所述单片机采用飞思卡尔的单片机MC9S12DP256。The single-chip microcomputer adopts Freescale's single-chip microcomputer MC9S12DP256.
所述数据存储电路单元采用Dallas公司的DS1225芯片。The data storage circuit unit adopts the DS1225 chip of Dallas Company.
所述USB接口电路单元采用南京沁恒电子的CH372芯片。The USB interface circuit unit adopts the CH372 chip of Nanjing Qinheng Electronics.
所述定时电路单元采用带有看门狗的PIC16F716器件。The timing circuit unit adopts a PIC16F716 device with a watchdog.
一种用于风电系统的混沌预测系统的工作方法(见图6),其特征在于它包括以下步骤:A working method (see Figure 6) for a chaotic prediction system of a wind power system, characterized in that it comprises the following steps:
⑴由定时电路单元设置采集间隔定时时间,由信号采集与调理电路单元来实时采集风电机组齿轮箱驱动侧轴承温度、发电机绕组最大温度,转子平均转速和发电机有功功率信号;(1) The timing circuit unit sets the collection interval timing time, and the signal collection and conditioning circuit unit collects the driving side bearing temperature of the wind turbine gearbox, the maximum temperature of the generator winding, the average rotor speed and the active power signal of the generator in real time;
⑵步骤⑴中采集的信号经过信号采集与调理电路单元和A/D转换电路单元进行滤波、自校准处理,并通过单片机将机组齿轮箱驱动侧轴承温度、发电机绕组最大温度,转子平均转速和发电机有功功率参数输入到数据存储电路单元中;(2) The signal collected in step (1) is filtered and self-calibrated by the signal acquisition and conditioning circuit unit and the A/D conversion circuit unit, and the driving side bearing temperature of the unit gearbox, the maximum temperature of the generator winding, the average rotor speed and Generator active power parameters are input into the data storage circuit unit;
⑶通过USB接口电路将步骤⑵处理后的风电机组齿轮箱驱动侧轴承温度、发电机绕组最大温度,转子平均转速和发电机有功功率数据传输到装有实现混沌预测程序的上位机中;(3) Through the USB interface circuit, the temperature of the driving side bearing of the wind turbine gearbox, the maximum temperature of the generator winding, the average speed of the rotor and the active power of the generator after processing in step (2) are transmitted to the host computer equipped with the chaos prediction program;
⑷应用上位机中的混沌预测方法进行参数计算和处理。⑷Using the chaotic prediction method in the host computer for parameter calculation and processing.
所述步骤⑷中的混沌预测方法是采用基于相空间重构的方法检测混沌(见图6),由以下步骤构成:The chaos prediction method in the step (4) is to use a method based on phase space reconstruction to detect chaos (see Figure 6), which consists of the following steps:
①用C-C法确定嵌入维数与时间延迟:风电机组运行时,对于某一状态参数时间序列x={xi},i=1,2,…,N,若嵌入维数为m,时间延迟为τ,则重构相空间为X={Xi},Xi为m维相空间中的相点:①Use the CC method to determine the embedding dimension and time delay: when the wind turbine is running, for a certain state parameter time series x={ xi },i=1,2,...,N, if the embedding dimension is m, the time delay is τ, then the reconstructed phase space is X={X i }, and X i is the phase point in the m-dimensional phase space:
Xi=[xi,xi+τ,…,xi+(m-1)τ]T,i=1,2,…,M (1)X i =[x i ,x i+τ ,…,x i+(m-1)τ ] T ,i=1,2,…,M (1)
则嵌入时间序列的关联积分为Then the associated integral of the embedded time series is
其中M=N-(m-1)τ,dij=||xi-xj||∞,为∞范数;θ为Heaviside函数,其表达式为Where M=N-(m-1)τ, d ij =||x i -x j || ∞ is the ∞ norm; θ is the Heaviside function, and its expression is
关联积分为累积分布函数,表示相空间中任意两点之间距离小于r 的概率。另外定义x={xi}的检验统计量:The correlation integral is a cumulative distribution function that expresses the probability that the distance between any two points in the phase space is less than r. Additionally define the test statistic for x={ xi }:
S(m,N,r,τ)=C(m,N,r,τ)-Cm(m,N,r,τ) (3)S(m,N,r,τ)=C(m,N,r,τ)-C m (m,N,r,τ) (3)
S(m,N,r,τ)反映了时间序列的自相关特性,最优时间延迟取S(m,N,r,τ)第1个零点,此时重构相空间中的点最接近均匀分布,重构吸引子轨道在相空间完全展开;S(m, N, r, τ) reflects the autocorrelation characteristics of the time series, the optimal time delay takes the first zero point of S(m, N, r, τ), and the point in the reconstructed phase space is closest to Evenly distributed, the reconstructed attractor orbit is completely expanded in the phase space;
②利用最大Lyapunov指数识别DFIG混沌特性:由步骤①计算出的时间延迟τ和嵌入维数m,应用小数据量法计算出风电机组齿轮箱驱动侧轴承温度、发电机绕组最大温度、转子平均转速和发电机有功功率四个状态参数时间序列的最大Lyapunov指数,若的四个最大Lyapunov指数均大于0,则说明存在DFIG混沌特性,并进行下一步预测;② Use the largest Lyapunov exponent to identify the chaotic characteristics of DFIG: from the time delay τ and embedding dimension m calculated in
③利用加权一阶局域法对DFIG进行预测:③Using the weighted first-order local method to predict DFIG:
将步骤①中求得的延迟时间τ和维数m进行相空间重构,应用加权一阶局域法对风力发电机组的风电机组齿轮箱驱动侧轴承温度、发电机绕组最大温度、转子平均转速和发电机有功功率四个状态参数时间序列分别进行预测;Reconstruct the phase space of the delay time τ and dimension m obtained in
设中心点(即预测的起始点)Xk的邻近点为Xki,两点距离为di,设dm是di中的最小值,点Xki的权值为:Let the adjacent point of the central point (that is, the starting point of prediction) X k be X ki , the distance between two points is d i , let d m be the minimum value in d i , and the weight of point X ki is:
一般取l=1,则加权1 阶局域线性拟合为Xki+1=ae+bXki,e=[1,1,…,1]T。根据加权最小二乘法求解,得到预测式Xk+1=a+bXk,构造下一中心点及其邻近点,重复③以进一步预测,直至预测到机组出现异常情况预测停止。Generally take l=1, then the weighted first-order local linear fitting is X ki+1 =ae+bX ki , e=[1,1,…,1] T . Solve according to the method of weighted least squares , get the prediction formula X k+1 =a+bX k , construct the next center point and its adjacent points, repeat
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103166673A CN102854465A (en) | 2012-08-31 | 2012-08-31 | System and method for chaotic prediction of DFIG (doubly fed induction generator) running state based on phase-space reconstruction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103166673A CN102854465A (en) | 2012-08-31 | 2012-08-31 | System and method for chaotic prediction of DFIG (doubly fed induction generator) running state based on phase-space reconstruction |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102854465A true CN102854465A (en) | 2013-01-02 |
Family
ID=47401216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012103166673A Pending CN102854465A (en) | 2012-08-31 | 2012-08-31 | System and method for chaotic prediction of DFIG (doubly fed induction generator) running state based on phase-space reconstruction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102854465A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103490691A (en) * | 2013-09-29 | 2014-01-01 | 天津理工大学 | Permanent magnetic direct drive type wind driven generator chaos control system and method based on active disturbance rejection |
CN107014444A (en) * | 2017-05-27 | 2017-08-04 | 山东罗泰风机有限公司 | A kind of blower fan dynamic performance parameter measuring system |
CN112731080A (en) * | 2020-12-24 | 2021-04-30 | 国网电力科学研究院武汉南瑞有限责任公司 | Method for diagnosing rapid development type partial discharge oil paper insulation degradation state |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102435437A (en) * | 2011-09-08 | 2012-05-02 | 天津理工大学 | Chaos real-time detection system for wind power system and working method thereof |
-
2012
- 2012-08-31 CN CN2012103166673A patent/CN102854465A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102435437A (en) * | 2011-09-08 | 2012-05-02 | 天津理工大学 | Chaos real-time detection system for wind power system and working method thereof |
Non-Patent Citations (2)
Title |
---|
安学利等: "风力发电机组运行状态的混沌特性识别及其趋势预测", 《电力自动化设备》 * |
张晋华等: "基于相空间重构的风速和风功率超短期预测", 《人民黄河》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103490691A (en) * | 2013-09-29 | 2014-01-01 | 天津理工大学 | Permanent magnetic direct drive type wind driven generator chaos control system and method based on active disturbance rejection |
CN107014444A (en) * | 2017-05-27 | 2017-08-04 | 山东罗泰风机有限公司 | A kind of blower fan dynamic performance parameter measuring system |
CN107014444B (en) * | 2017-05-27 | 2023-08-29 | 山东罗泰风机有限公司 | Fan dynamic performance parameter measurement system |
CN112731080A (en) * | 2020-12-24 | 2021-04-30 | 国网电力科学研究院武汉南瑞有限责任公司 | Method for diagnosing rapid development type partial discharge oil paper insulation degradation state |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103472331B (en) | A kind of photovoltaic generation fault diagnosis system based on photovoltaic physical model | |
CN104929864A (en) | Field programmable gate array (FPGA)-based embedded type operating state monitoring and fault diagnosis system for wind generating set | |
CN107560844A (en) | A kind of fault diagnosis method and system of gearbox of wind turbine | |
CN104579166A (en) | Distributed photovoltaic power station monitoring system and fault diagnosis method thereof | |
CN107632258A (en) | A kind of fan converter method for diagnosing faults based on wavelet transformation and DBN | |
CN108318815A (en) | A kind of doubly-fed wind turbine on-line monitoring and synthetic fault diagnosis method | |
CN103399223A (en) | New energy power generation system grid-connection intelligent detection and warning system and new energy power generation system grid-connection intelligent detection and warning method | |
CN104198932A (en) | High voltage circuit breaker machinery property online monitoring system and fault diagnosis method | |
TW201120310A (en) | The state telemetry technology and fault diagnosing system in large-scale wind power farms | |
CN107524572A (en) | A kind of wind-driven generator set on line state monitoring and method for diagnosing faults | |
CN103048619A (en) | On-line extracting device and extracting method for fault characteristics of wind generating set | |
CN107229269A (en) | A kind of wind-driven generator wheel-box method for diagnosing faults of depth belief network | |
CN103234746A (en) | Device and method for online diagnosing faults of wind turbine generator gear case | |
CN105527568A (en) | Fault testing stand of wind generating set | |
CN102854465A (en) | System and method for chaotic prediction of DFIG (doubly fed induction generator) running state based on phase-space reconstruction | |
CN102435437A (en) | Chaos real-time detection system for wind power system and working method thereof | |
CN104198946A (en) | Auxiliary hybrid battery capacity detecting system and method of wind power variable pitch system | |
CN203362397U (en) | Data acquisition system of wind turbine generator system | |
CN203163988U (en) | Wind turbine generator gear case on-line fault diagnosis device | |
CN115374829A (en) | A bearing fault diagnosis method and system based on deep learning | |
CN203704983U (en) | Wireless transmission based wind turbine blade root stress and blade vibration detection apparatus | |
CN213807942U (en) | Fault data system and device for collecting vibration of wind turbine generator | |
CN204085911U (en) | The fault diagnosis system of wind power generating set | |
Qiao et al. | Research on SCADA data preprocessing method of Wind Turbine | |
CN105865514A (en) | Wind power system running state grey prediction system based on chaos phase space reconstruction and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130102 |