CN102853633B - 空气分离装置以及包括该空气分离装置的系统 - Google Patents

空气分离装置以及包括该空气分离装置的系统 Download PDF

Info

Publication number
CN102853633B
CN102853633B CN201210228197.5A CN201210228197A CN102853633B CN 102853633 B CN102853633 B CN 102853633B CN 201210228197 A CN201210228197 A CN 201210228197A CN 102853633 B CN102853633 B CN 102853633B
Authority
CN
China
Prior art keywords
output stream
air
pressure
bars
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210228197.5A
Other languages
English (en)
Other versions
CN102853633A (zh
Inventor
M.A.G.萨拉扎
P.P.库尔卡尼
G.M.克诺特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102853633A publication Critical patent/CN102853633A/zh
Application granted granted Critical
Publication of CN102853633B publication Critical patent/CN102853633B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04569Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for enhanced or tertiary oil recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/22Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明提供一种空气分离装置以及包括该空气分离装置(ASU)的系统。所述ASU经配置以产生液态氮并使用泵加压至更高的压力。ASU可经进一步配置以产生液态氧,所述液态氧可直接加压以用于所需的应用。所述系统进一步包括氧‑燃料燃烧系统、集成式燃气涡轮机、以及集成式强化油和/或气回收装置。本发明还包括运行所述系统的方法。

Description

空气分离装置以及包括该空气分离装置的系统
技术领域
本发明大体上涉及空气分离装置以及包括所述空气分离装置的系统。确切地说,本发明涉及对液态空气中的氮气和氧气进行分离,以及混合这些产物以用于,例如,发电和自然资源回收等应用的系统。
背景技术
例如,在发电系统中,燃烧化石燃料生成的排气流中包括燃烧副产物:氮氧化物(NOx)和一氧化碳(CO)。无需从排气中除去NOx便可达到近零NOx的方法是氧-燃料燃烧工艺。在这个工艺方法中,使用纯氧(通常结合精洗煤气(secondary gas),例如二氧化碳)而非空气作为氧化剂,因而产生的废气中具有可忽略不计的NOx排放物。此外,对于从氧污染度较低的CO2生产中受益的应用,例如二氧化碳(CO2)生产或隔离而言,氧-燃料燃烧是非常有发展前途的技术。在经由氧-燃料工艺运作的燃气涡轮机中,并不需要CO2隔离装置,这是因为燃烧排气的主要成分主要包括CO2以及水(H2O)。通过使H2O冷凝,可以产生高浓度CO2流,而且所述流可用于CO2隔离或其他CO2应用。
空气分离装置(ASU)分离氧气和氮气,可用作氧-燃料工艺的氧气来源、并可用于单独提供高纯度氮气。ASU获取的高纯度氮气可以用于各种应用,例如强化油或气回收系统中的储油器或储气器管理。氮气和二氧化碳可在强化油回收技术(EOR)中用作注入流体。在EOR应用中,氮气可以用作二氧化碳的经济替代品。
较为有利的是,注入油井的氮气压力大于氮气和油的最低混相压力(minimum miscible pressure,MMP)。氮气与油形成混相段塞,从而有助于释放油,便于回收。因此,通常情况下,ASU所供应的低压气态氮在注入储油器之前,会先被压缩至高压。但是,在这些系统中,在ASU中与氧气分离的氮气随后会在气相状态被压缩至所需的压力,该过程需要大量动力/能量。
因此,仍需要一种用于发电的系统和方法,所述系统和方法可提供低含量/低程度的NOx和CO排放物,同时降低耗电量。
发明内容
简而言之,在一项实施例中,本发明提供一种系统。所述系统包括空气分离装置。所述空气分离装置包括:空气压缩装置,其经配置以产生压力大于约3巴(bars)的压缩空气;热交换器装置,其经配置以接收并冷却所述压缩空气,以产生冷却空气;第一蒸馏装置,其经配置以接收所述冷却空气、并产生包括液态氮的第一输出流;以及第一泵,其与所述第一蒸馏装置直接连通,且经配置可将所述第一输出流加压至大于大气压的压力。
所述第一泵经配置以将所述第一输出流加压至在约300巴到约500巴范围内的压力。所述系统进一步包括经配置以从所述第一泵中接收所述第一输出流的天然气或油回收井。所述第一泵与所述热交换器流体连通。所述第一蒸馏装置经配置以产生包括氮气和氧气的第二输出流。所述ASU进一步包括第二蒸馏装置,所述第二蒸馏装置经配置以接收来自所述第一蒸馏装置的所述第二输出流,并产生包括液态氧的第三输出流。所述ASU进一步包括第二泵,所述第二泵与所述第二蒸馏装置直接连通,且经配置以将所述第三输出流加压至在约30巴到约60巴范围内的压力。所述第二泵与所述热交换器流体连通。
所述系统进一步包括氧-燃料燃烧室,所述氧燃料燃烧室经配置以接收来自所述ASU的所述第三输出流,并产生废气。所述系统进一步包括涡轮机,所述涡轮机经配置以接收来自燃烧室的所述废气,并产生涡轮机排出废气。所述系统进一步包括冷凝器,所述冷凝器经配置以接收所述涡轮机排出废气,并产生二氧化碳流。所述系统包括经配置以接收所述二氧化碳流的油回收井。所述空气压缩装置经配置以产生压力在约15巴到约60巴范围内的压缩空气。所述ASU进一步包括膨胀器,所述膨胀器与热交换装置和第一蒸馏装置流体连通,且经配置以将所述冷却空气膨胀至大气压。
在另一项实施例中,本发明提供一种方法。所述方法包括以下步骤:在空气压缩装置内将空气压缩至大于约3巴的压力;使压缩空气通过热交换器装置,以冷却所述压缩空气;在蒸馏装置中蒸馏所冷却的空气流,以产生包括液态氮的第一流以及第二流;以及将所述第一流加压至大于大气压的压力。
所述方法进一步包括在第二蒸馏装置内蒸馏所述第二流,以产生包括液态氧的第三流;并进一步包括将所述第三流加压至在约30巴到约60巴范围内的压力。所述方法还进一步包括将所述第二流加压至在约30巴到约60巴范围内的压力。
在一项实施例中,本发明提供一种系统。所述系统包括空气分离装置以及油或气回收井。所述空气分离装置包括:空气压缩装置,其经配置以产生压力大于约3巴的压缩空气;热交换器装置,其经配置以接收并冷却所述压缩空气,以产生冷却空气;第一蒸馏装置,其经配置以接收所述冷却空气、并产生液态氮;第一泵,其与所述第一蒸馏装置直接连通,且经配置以将所述液态氮加压至大于大气压的压力;以及油或气回收井经配置以接收液态氮并回收油或气。
所述第一泵经配置以将所述液态氮加压至在约300巴到约500巴范围内的压力。所述ASU经进一步配置以产生液态氧。ASU包括第二泵,所述第二泵经配置以将所述液态氧加压至约30巴到约60巴范围内的压力。所述系统可进一步包括:燃烧室,其配置以接收所加压的液态氧,以燃烧燃料流并产生废气流;涡轮机,其经配置以接收所述废气流,用以发电、并放出排出废气;冷凝器,其与所述涡轮机流体连通,且经配置以接收所述排出废气、并产生二氧化碳流;以及压缩机,其经配置以压缩所述二氧化碳流。所述油或气回收井经进一步配置以接收所述二氧化碳流,并回收所述油或气。
附图说明
在参阅附图阅读以下具体说明后,可更好地理解本发明的这些和其他特征、方面和优点,在附图中,类似的符号代表所有附图中类似的部分,其中:
图1描绘联合氧-燃料涡轮机系统;
图2是根据本发明一项实施例的空气分离装置;
图3是根据本发明一项实施例的空气分离装置;以及
图4描绘根据本发明另一项实施例的涡轮机系统。
元件符号列表:
参考标号 部件 参考标号 部件
10 系统 12 ASU
14 燃烧室 16 冷却系统
18 储存器管理装置 20 空气压缩装置
22 热交换器装置 24 膨胀器
26 第一蒸馏装置 28 第一泵
30 第一输出流 32 第二输出流
34 第二膨胀器 35 气-液分离器
36 第二蒸馏装置 38 第三输出流
39 40 第四输出流
41 第一流 42 第二流
43 分流器 44 一个热交换器
45 另一个热交换器 46 气态废物流
48 涡轮机 49 混合器
50 系统 58 燃料流
60 等离子体 62 废气(flue gas)
64 涡轮机 66 排出废气
70 二氧化碳流 72 储存装置
76 CO2压缩机 78 油回收系统
80 气体储存装置
具体实施方式
本发明的实施例包括一种提供清洁、加压的液态氮和氧输出的ASU,以及具有所述ASU的系统。
在以下说明和随后的权利要求中,单数形式“一”、“一个”和“所述”可包括复数形式,除非上下文以其他方式明确指出。
通常情况下,氧-燃料联合循环电厂系统10包括空气分离装置(ASU)12、燃烧室14、以及具有冷却系统16的电厂系统,如图1所示。ASU 12将氧气从空气中分离出来,从而将氧气作为氧化剂提供给燃烧室14。燃烧室14经配置以在所供应的氧气单独存在、或与CO2混合后的情况下燃烧燃料。ASU 12中的氮气可储存在储存器管理装置18中,和/或用于其他应用,例如从气田中回收天然气、或回收油。燃烧的产物通常主要包括CO2、H2O,以及CO和O2的微量排放物(traceemissions)。设于电厂中的冷却系统16使来自燃烧室14排气下游的H2O冷凝,从而导致排气中有超过95%的CO2成分。
在本发明一项实施例中,提供一种包括ASU的系统。所述ASU经配置以在温度非常低时液化氮气。在一项实施例中,所述ASU还可经配置以液化氧气。液态氧可抽至(pumped)适合于氧-燃料燃烧的压力。此外,在某些实施例中,液态氮可抽至(pumped)非常高的压力(300巴到500巴),并注入储油/气器中以用于强化油/气回收。通过在高压ASU内对氮气和氧气进行液化,可在温度非常低时抽吸这些气体,因此,与使用低压ASU所供应的的气态氮和气态氧的现有电厂系统相比,本发明提高了电厂系统的整体效率。
在一项实施例中,所述系统经配置以从氧-燃料燃烧室的排放产物中产生二氧化碳流。在一项实施例中,此处产生的所述二氧化碳流是高含量CO2流。本说明书中所使用的“高含量CO2流”定义为CO2量在约80%体积以上的流。在另一项实施例中,高含量CO2流的CO2量在约90%体积以上。在又一项实施例中,高含量CO2流的CO2量在约95%体积以上。“几乎无氧气”的流定义为氧气量小于约1%体积的流。在一项实施例中,希望CO2排气流中的含氧量低于10ppm。需要高含量CO2流的应用的一个实例是从废油回收井中回收油,其中注入CO2流以迫使油离开井。高含量CO2排气的一部分还可回流进燃烧室14,从而与ASU 12中分离的O2混合。保持燃烧排放的CO最少有助于保持较高的燃烧效率。
在一项实施例中,系统10包括ASU 12,如图2所示。ASU 12包括:空气压缩装置20;热交换器装置22;第一蒸馏装置26;以及第一泵28。本说明书中所使用的“装置”可由单个元件组成,或由一个以上元件组成。例如,空气压缩装置可为一个压缩机,或者可具有一个以上压缩机的组合,以进行所需的空气压缩。
空气压缩装置20经配置以产生压力大于约3巴的压缩空气。在一项实施例中,空气压缩装置20经配置以产生压力大于约7巴的压缩空气。在另一项实施例中,空气压缩装置20经配置以产生压力在约15巴到约60巴范围内的压缩空气。在一项特定实施例中,空气压缩装置20经配置以产生压力达到约40巴的压缩空气。所述压缩空气穿过热交换器装置22,在所述热交换器装置中,所述空气得以冷却。对压缩空气进行冷却的方法是,使穿过热交换器装置22的不同流之间进行热交换。例如,从空气中分离出来的冷却氮气流和/或氧气流穿过热交换器装置22,以吸收压缩空气中的热量,从而冷却所述压缩空气。
穿过热交换器装置22后,冷却的压缩空气可在膨胀器24内膨胀,从而进一步对已经冷却的空气进行冷却。在一项实施例中,膨胀器24为用于使冷却的压缩进气产生压差的阀。在膨胀器24内,所述冷却的压缩空气突然膨胀至较低压力,从而产生进一步冷却、且压力降低的压缩空气。在一项实施例中,穿过膨胀器24后,压缩空气的压力低于约5巴。在一项实施例中,穿过膨胀器24之后的空气压力低于约3巴。在下面将所公开的一项特定实施例中,来自于膨胀器24的膨胀空气处于大气压。
在一项实施例中,穿过膨胀器24的冷却空气进入第一蒸馏装置26。在一项实施例中,所述第一蒸馏装置26经配置以在大于约2巴的压力下运作,而且所述第一蒸馏装置称为“高压蒸馏装置”。在一项实施例中,第一蒸馏装置的入口压力在约3.5巴到约5巴的范围内。在一项实施例中,第一蒸馏装置26在大气压下运作。
进入第一蒸馏装置26的压缩空气通常处于相对较低的温度。在一项实施例中,进入第一蒸馏装置26的空气的温度介于约-150℃与约-210℃之间。在另一项实施例中,空气的温度在约-165℃到约-185℃的范围内。
进入第一蒸馏装置26的空气的温度部分取决于:压缩空气的初压、热交换器装置22冷却压缩空气的能力,以及膨胀器24用以使冷却空气膨胀的配置。与压缩至较低压力的空气相比,处于高压的压缩空气在膨胀时最终会释放更多热量。类似地,与冷却剂流温度较高的热交换器装置22相比,冷却剂流温度较低的热交换器装置22将从压缩空气中有效地提取更多热量。膨胀器24的体积、压差、以及温度可改变从穿过所述膨胀器24的空气中所提取的热量。
在一项实施例中,第一蒸馏装置26产生的第一输出流30包括液态氮。在一项实施例中,第一蒸馏装置26产生的第一输出流30包括约25%以上的压缩进气质量流,而且包括高纯度液态氮。在一项实施例中,第一输出流30的液态氮纯度高于95%。在一项实施例中,所述液态氮的纯度在约99%以上。在一项特定实施例中,所述液态氮的纯度在99.9%以上。在一项实施例中,第一蒸馏装置26产生的第一输出流30的温度低于约-175℃军。在一项实施例中,第一输出流30的温度低于约-178℃。在一项特定实施例中,第一输出流30的温度在约-178℃到约-185℃的范围内。
在一项实施例中,第一输出流30的压力大于大气压。在一项实施例中,第一输出流30的压力大于约3巴。在一项特定实施例中,第一输出流的压力在约3.5巴到约5巴的范围内。根据特定应用的要求,在一项实施例中,使用第一泵28对第一输出流30进一步加压。在一项实施例中,第一泵28与第一蒸馏装置26直接连通。本说明书中所使用的泵28与蒸馏装置26之间的“直接连通”是指,来自于蒸馏装置26的第一输出流30直接被抽至高压,而无需介入膨胀或气-液分离。在一项实施例中,将第一输出流30加压至大于约300巴。在另一项实施例中,将第一输出流加压至大于约400巴。在一项实施例中,将第一输出流30加压至约500巴。在一项实施例中,第一泵28连接到热交换器装置22,这样,由第一泵28加压的第一输出流30便会穿过热交换器装置22,从而对压缩进气进行冷却。本说明书中所使用的“连接”仅指代流体连通,且并不禁止使用介入部件,例如阀。
可输送第一输出流30,以用于不同应用。在一项实施例中,第一输出流30穿过热交换器装置24,从而除去来自于压缩机装置20的压缩进气中的一些热量。在对压缩进气进行降温时,低温液态形式的第一输出流30比气态氮相对更有效。
蒸馏出液态氮后,在一项实施例中,蒸馏装置26中剩下包括氮气和氧气的第二输出流32(图2)。可从蒸馏装置26中提取出第二输出流32,并使用,例如第二蒸馏装置36,对所述第二输出流进一步蒸馏。根据第二输出流32的压力,所述第二输出流会在第二膨胀器34中进一步膨胀,如图2所示。在一项实施例中,第二膨胀器34的出口压力接近大气压,且其内容物的温度在约-190℃到约-195℃的范围内。在一项实施例中,第二膨胀器34的输出内容物的蒸汽分率(vapor fraction)在约0.12到0.18的范围内。根据第二输出流32的温度和第二膨胀器34的压力范围,来自于第二膨胀器34的流可处于液态、气态,或液-气混合态。因此,根据需要,第二输出流32可选择性地在分离器35中进行气-液分离。在一项实施例中,将第二输出流32的气态部分和液态部分均注入到第二蒸馏塔36中。在一项实施例中,第二蒸馏装置36是低压蒸馏装置。蒸馏装置内的压力可低于约2巴。在一项实施例中,低压蒸馏装置36在大气压下工作。
第二蒸馏装置36可具有一个或多个输出。一个蒸馏输出是包括液态氧的第三输出流38。在一项实施例中,第三输出流38约占压缩进气质量的15%或以上,且包括高纯度液态氧。在一项实施例中,第三输出流38的液态氧纯度高于95%。在一项实施例中,液态氧的纯度在约99%以上。在一项特定实施例中,液态氧的纯度在99.9%以上。在一项实施例中,蒸馏装置36产生的第三输出流38的温度低于约-175℃。在一项实施例中,第三输出流38的温度低于约-178℃。
在一项实施例中,第三输出流38的压力高于大气压。根据特定应用的要求,在一项实施例中,使用第二泵39对第三输出流38进一步加压。在一项实施例中,将第三输出流38加压至大于约20巴。在另一实施例中,将所述第三输出流38加压在约30巴到约60巴的范围内。在一项特定实施例中,将所述第三输出流加压至约为100巴的压力。
可输送蒸馏所产生的第三输出流38,以用于不同应用,包括氧-燃料燃烧。与第一输出流30类似,在传输到预定应用期间,可使第三输出流38通过热交换器装置22,从而有助于除去来自压缩机装置20的压缩空气的热量。在对压缩进气进行降温时,包括氧气的低温液态形式的第三输出流38比气态氧相对更有效。
在一项实施例中,第二蒸馏装置的一个输出是包括氮气和氧气的第四输出流40。在一项实施例中,第四输出流40包括气态形式的氮气和氧气。在一项实施例中,该流的温度为约-190℃。在一项实施例中,根据第二膨胀器34的使用和/或第二蒸馏装置36中的蒸馏条件,第四输出流40约占压缩进气质量流的40%到60%。在此实施例中,混合流40的成分包括(占第四输出流40的)摩尔量约87%的氮气和摩尔量约12%的氧气。
第四输出流40可用于不同的应用,包括用作燃气涡轮机中的氧化剂。例如,如果将第四输出流40用在某个通常将空气用作氧化剂的燃烧室中,则会减少燃烧室的NOx排放。在一项实施例中,所述流40可循环到空气压缩装置20或蒸馏装置26。
与第一输出流30和第三输出流38类似,在一项实施例中,第四输出流40有助于对穿过热交换器装置22的压缩空气进行冷却。
可极大地改变压缩装置20所供应的压缩空气的压力、通过膨胀器24、34获得的压差和总冷却,以及蒸馏装置26、36中的蒸馏条件,从而获得纯度更高、液态氮和/或液态氧含量更高的流。就本发明的教示而论,所属领域的技术人员可明白所有此类变化。
在图3所示的一个变化中,压缩机装置20经配置以产生压力大于约35巴的压缩空气。在一项实施例中,压缩空气的压力为约40巴。使高压的压缩空气通过热交换器装置22,并将其冷却。来自所述热交换器装置的冷却压缩空气在膨胀器24中膨胀。本说明书中使用的热交换器装置22可为一个装置,或多个热交换器装置的组合。在一项实施例中,膨胀器24通过快速(“瞬间”)将压力降至大气压而使压缩空气膨胀,从而使所述空气快速冷却至温度低于约-185℃的液体形式。所冷却的液体在第一蒸馏装置26中进行蒸馏,以直接产生包括液态氮的高纯度第一输出流30和包括液态氧的第二输出流32。在一项实施例中,第一输出流30和第二输出流32都是液体形式。因此,在一项实施例中,第一蒸馏装置26是液-液分离器。在一项特定实施例中,第一输出流30是液态氮流,而第二输出流32是液态氧流。可使用泵39对包括液态氧的第二输出流进一步加压,并用于不同应用中。
许多热交换器装置和冷却剂流可有效用于对在第一蒸馏装置26中蒸馏的空气流进行冷却。在一个此类变化中,使用分流器43将来自压缩机20的压缩进气分成第一流41和第二流42。所述第一流穿过第二热交换装置44和第三热交换装置45,以进行进一步冷却。通过多个热交换器44、45进行冷却的第一流41在膨胀器24中膨胀。根据需要,来自膨胀器24的冷却空气在分离器25中进行液-气分离,液态部分用于蒸馏装置26,并留下气态废物流46,所述气态废物流可通过一个或多个热交换器装置22、44、45,从而进一步冷却压缩进气。
来自分流器43的压缩空气的第二流42可以选择性地用于涡轮机48,且冷却流42在混合器49中与气态废物流46混合。根据第二流42的温度、气态废物流46、以及热交换器44和45的冷却需求,第二流42和气态废物流46可在穿过第二热交换器装置22、44和45中的任一装置之前进行混合。在一项实施例中,气态废物流46穿过第三热交换器45,然后在穿过第二热交换器装置44之前与第二流42混合,从而对从第三热交换器45传送到膨胀器24的冷却空气流41进行有效冷却。
上述ASU的一个特殊有利的应用在于,将这些ASU集成一个氧-燃料燃气涡轮机联合循环,如图4所示。系统50包括:ASU 12,其提供氧输出;燃烧室14,其经配置以接收来自ASU 12的氧气、并燃烧燃料流58,从而产生废气(flue gas)62。在一项实施例中,冷却系统16通过涡轮机联合循环64与燃烧室14流体连通。燃气涡轮机联合循环64可接收来自燃烧室14的废气62,并使用废气62的相关能量的至少一部分,以进行发电或执行某些其他工作,从而释放出排出废气66。来自燃气涡轮机联合循环64的排出废气66可穿过冷却系统16,例如,水冷凝系统或HRSG,从而使来自排气66的水冷凝,并产生二氧化碳流70。二氧化碳流70可储存在储存装置72内。在另一项实施例中,所述二氧化碳流70可引导到使用“高含量”二氧化碳的应用中,例如,在CO2压缩机76中进行可选的压缩后用于油/气回收系统78。在另一项实施例中,在CO2压缩机76内进行可选的压缩后,二氧化碳流70的至少一部分改道至燃烧室14,以与氧气混合。
在一项实施例中,本发明提供一种在包括燃气涡轮机的电厂系统中产生能量的方法。所述方法包括运行ASU 12(图4),以将氧气从空气中分离,将燃料传送到燃烧室14,并在氧气存在的情况下在燃烧室14内燃烧燃料流58。通过这种方法,产生废气62,所述废气包括二氧化碳和水。燃烧室14的废气62可用于运行涡轮机64,例如,用以发电。涡轮机64的排出废气66可穿过水冷凝系统16,以将水从排气66中分离出来,并产生高含量二氧化碳流70。出于安全性考虑,在存在氧气是个严重问题的情况下,高含量二氧化碳流70中几乎没有氧气。如上所述,二氧化碳流70可储存、引导到其他应用,例如油回收系统,和/或压缩并返回到燃烧室14,例如与压缩氧气结合。
虽然ASU 12所获得的液态氧可抽至(pumped to)适合于在燃烧室14中进行氧-燃料燃烧的压力,但液态氮可抽至非常高的压力(300巴到500巴)、并可注入油/气回收系统78中。在一项实施例中,油/气回收系统78是天然气回收系统。从系统78回收的天然气58可返回到燃烧室14以用于氧-燃料燃烧,或者储存在天然气储存装置80中以用于其他应用。
有利的是,如上所述,在高压ASU内液化氮气和氧气可让这些产物在非常低的温度下被抽吸,因此,与对处于气相的氮气和氧气进行压缩的现有电厂系统相比,本发明提高了联合燃气涡轮机电厂系统的整体效率。
此外,由于ASU的运行压力(约3巴至40巴)远远低于氮气注入回收系统78中的压力(300巴至500巴),因此,与使用低压ASU的常规系统相比,预期所述系统50不仅可提供更高的整体能效,而且可提供更为紧凑、且因此低成本的设计。在一项实施例中,与常规集成系统相比,本说明书中所述的集成系统的耗电量减少约20%。
尽管本说明书中仅说明并描绘了本发明的某些特征,但所属领域的技术人员可对本发明进行多种修改和变化。因此,应理解,所附权利要求书意图涵盖本发明真实精神范围内的所有此类修改和变化。

Claims (9)

1.一种包括空气分离装置的系统(10、50),
所述空气分离装置(ASU)(12)包括:
空气压缩装置(20),其经配置以产生压力大于3巴的压缩空气;
热交换器装置(22),其经配置以接收并冷却所述压缩空气,从而产生冷却空气;
第一蒸馏装置(26),其经配置以接收所述冷却空气、并产生包括液态氮的第一输出流(30);以及
第一泵(28),其与所述第一蒸馏装置(26)直接连通,且经配置以将所述第一输出流(30)加压至大于大气压的压力;
其中,所述第一泵(28)与所述热交换器装置(22)流体连通。
2.根据权利要求1所述的系统,其特征在于,所述第一泵(28)经配置以将所述第一输出流(30)加压至在300巴到500巴范围内的压力。
3.根据权利要求1所述的系统,其特征在于,进一步包括经配置以接收来自所述第一泵(28)的所述第一输出流(30)的天然气或油回收井。
4.根据权利要求1所述的系统,其特征在于,所述第一蒸馏装置(26)经配置以产生包括氮气和氧气的第二输出流(32)。
5.根据权利要求1所述的系统,其特征在于,所述ASU(12)进一步包括第二蒸馏装置(36),所述第二蒸馏装置经配置以接收来自所述第一蒸馏装置(26)的第二输出流(32),并产生包括液态氧的第三输出流(38)。
6.根据权利要求5所述的系统,其特征在于,所述ASU(12)进一步包括第二泵(39),所述第二泵与所述第二蒸馏装置(36)直接连通,且经配置以将所述第三输出流(38)加压至在30巴到60巴范围内的压力。
7.一种利用空气分离装置分离空气的方法,其包括:
在空气压缩装置(20)内将空气压缩至大于3巴的压力;
使所述压缩空气通过热交换器装置(22),以冷却所述压缩空气;
在蒸馏装置(26)中蒸馏所述冷却空气流,以产生包括液态氮的第一输出流(30)和第二输出流(32);
由泵将所述第一输出流(30)加压至大于大气压的压力;以及
使由所述泵加压的第一输出流穿过所述热交换器装置,从而对压缩进气进行冷却。
8.根据权利要求7所述的方法,其特征在于,进一步包括在第二蒸馏装置(36)内蒸馏所述第二输出流(32),以产生包括液态氧的第三输出流(38)。
9.根据权利要求8所述的方法,其特征在于,进一步包括将所述第三输出流(38)加压至在30巴到60巴范围内的压力。
CN201210228197.5A 2011-06-30 2012-07-02 空气分离装置以及包括该空气分离装置的系统 Expired - Fee Related CN102853633B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/174056 2011-06-30
US13/174,056 US20130000352A1 (en) 2011-06-30 2011-06-30 Air separation unit and systems incorporating the same

Publications (2)

Publication Number Publication Date
CN102853633A CN102853633A (zh) 2013-01-02
CN102853633B true CN102853633B (zh) 2016-08-10

Family

ID=46384221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210228197.5A Expired - Fee Related CN102853633B (zh) 2011-06-30 2012-07-02 空气分离装置以及包括该空气分离装置的系统

Country Status (3)

Country Link
US (1) US20130000352A1 (zh)
EP (1) EP2541175A3 (zh)
CN (1) CN102853633B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106430B2 (en) * 2013-12-30 2018-10-23 Saudi Arabian Oil Company Oxycombustion systems and methods with thermally integrated ammonia synthesis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775399A (en) * 1987-11-17 1988-10-04 Erickson Donald C Air fractionation improvements for nitrogen production
CN1135596A (zh) * 1995-01-05 1996-11-13 英国氧气集团有限公司 空气分离
CN1513079A (zh) * 2001-06-15 2004-07-14 ��ʩ�����ͺ� 一种从天然油层中采油的方法
CN1549885A (zh) * 2001-08-31 2004-11-24 通过气体注入增加油回收的方法和设备
CN1880214A (zh) * 2006-05-15 2006-12-20 白杨 超低压低温法空气分离制氧流程

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407135A (en) * 1981-12-09 1983-10-04 Union Carbide Corporation Air separation process with turbine exhaust desuperheat
FR2700205B1 (fr) * 1993-01-05 1995-02-10 Air Liquide Procédé et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air.
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
US5666823A (en) * 1996-01-31 1997-09-16 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
FR2862004B3 (fr) * 2003-11-10 2005-12-23 Air Liquide Procede et installation d'enrichissement d'un flux gazeux en l'un de ses constituants
DE102007031759A1 (de) * 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
US20110100055A1 (en) * 2008-06-19 2011-05-05 Innovative Nitrogen Systems Inc. Hybrid Air Separation Method with Noncryogenic Preliminary Enrichment and Cryogenic Purification Based on a Single Component Gas or Liquid Generator
SG178160A1 (en) * 2009-09-01 2012-03-29 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
CA2779712A1 (en) * 2009-12-17 2011-07-14 Greatpoint Energy, Inc. Integrated enhanced oil recovery process injecting nitrogen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775399A (en) * 1987-11-17 1988-10-04 Erickson Donald C Air fractionation improvements for nitrogen production
CN1135596A (zh) * 1995-01-05 1996-11-13 英国氧气集团有限公司 空气分离
CN1513079A (zh) * 2001-06-15 2004-07-14 ��ʩ�����ͺ� 一种从天然油层中采油的方法
CN1549885A (zh) * 2001-08-31 2004-11-24 通过气体注入增加油回收的方法和设备
CN1880214A (zh) * 2006-05-15 2006-12-20 白杨 超低压低温法空气分离制氧流程

Also Published As

Publication number Publication date
CN102853633A (zh) 2013-01-02
EP2541175A2 (en) 2013-01-02
EP2541175A3 (en) 2018-03-21
US20130000352A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
EP2499332B1 (en) Integrated system for power generation and method for low emission hydrocarbon recovery with power generation
US8171718B2 (en) Methods and systems involving carbon sequestration and engines
US7637109B2 (en) Power generation system including a gas generator combined with a liquified natural gas supply
CN102536468B (zh) 二氧化碳压缩系统
US7827778B2 (en) Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions
JP6923629B2 (ja) 発電システム及び方法からの低圧液体二酸化炭素の生成
JP6186650B2 (ja) 二酸化炭素分離方式を含む低エミッション動力発生システム及び方法
JP2020076398A (ja) 効率が向上した動力発生方法およびシステム
US10315150B2 (en) Carbon dioxide recovery
US8252091B2 (en) CO2 recovery from IGCC power plants
US20160201521A1 (en) Energy generation from waste heat using the carbon carrier thermodynamic cycle
CN103582792A (zh) 用于天然气液化的方法
Botero et al. Redesign, optimization, and economic evaluation of a natural gas combined cycle with the best integrated technology CO2 capture
CN103534544A (zh) 低温空气分离方法与系统
EP2688657A1 (en) Systems and methods for carbon dioxide capture in low emission turbine systems
US9766011B2 (en) Optimized heat exchange in a CO2 de-sublimation process
US9027322B2 (en) Method and system for use with an integrated gasification combined cycle plant
JP2017533371A5 (zh)
WO2008091158A1 (en) Method and plant for enhancing co2 capture from a gas power plant or thermal power plant
US20140020388A1 (en) System for improved carbon dioxide capture and method thereof
WO2020035470A1 (en) Gas cycle and method
EP2508721B1 (en) Integrated gasification combined cycle system with vapor absorption chilling
CN102853633B (zh) 空气分离装置以及包括该空气分离装置的系统
US20160010511A1 (en) Power generation system and method to operate
EP3315186B1 (en) Carbon capture systems comprising compressors and coolers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160810

Termination date: 20180702