CN102832389B - High-nickel positive active material of surface-modified lithium ion battery and preparation method of positive active material - Google Patents
High-nickel positive active material of surface-modified lithium ion battery and preparation method of positive active material Download PDFInfo
- Publication number
- CN102832389B CN102832389B CN201210359842.7A CN201210359842A CN102832389B CN 102832389 B CN102832389 B CN 102832389B CN 201210359842 A CN201210359842 A CN 201210359842A CN 102832389 B CN102832389 B CN 102832389B
- Authority
- CN
- China
- Prior art keywords
- positive active
- lithium
- lithium ion
- aluminium
- nickel positive
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 80
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances   [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 60
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium Ion Chemical class   [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 51
- WHXSMMKQMYFTQS-UHFFFAOYSA-N lithium Chemical compound   [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 40
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound   [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 20
- 239000010416 ion conductor Substances 0.000 claims abstract description 14
- 239000010936 titanium Substances 0.000 claims abstract description 14
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 14
- QCWXUUIWCKQGHC-UHFFFAOYSA-N zirconium Chemical compound   [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 12
- 238000001354 calcination Methods 0.000 claims abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound   [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 239000000725 suspension Substances 0.000 claims abstract description 8
- 239000011363 dried mixture Substances 0.000 claims abstract description 3
- 239000012535 impurity Substances 0.000 claims abstract 8
- 230000004048 modification Effects 0.000 claims description 33
- 238000006011 modification reaction Methods 0.000 claims description 33
- 229910003002 lithium salt Inorganic materials 0.000 claims description 23
- 159000000002 lithium salts Chemical class 0.000 claims description 23
- 239000004411 aluminium Substances 0.000 claims description 21
- 229910013716 LiNi Inorganic materials 0.000 claims description 19
- 239000003960 organic solvent Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 229910010093 LiAlO Inorganic materials 0.000 claims description 12
- WMFOQBRAJBCJND-UHFFFAOYSA-M lithium hydroxide Chemical compound   [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 12
- 238000007792 addition Methods 0.000 claims description 9
- GEIAQOFPUVMAGM-UHFFFAOYSA-N oxozirconium Chemical compound   [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 9
- SMZOGRDCAXLAAR-UHFFFAOYSA-N Aluminium isopropoxide Chemical compound   [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N EtOH Substances   CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound   O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound   [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 4
- 230000014759 maintenance of location Effects 0.000 claims description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N 2-propanol Substances   CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- XLSMFKSTNGKWQX-UHFFFAOYSA-N hydroxyacetone Chemical compound   CC(=O)CO XLSMFKSTNGKWQX-UHFFFAOYSA-N 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propanol Chemical compound   CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxyl anion Chemical compound   [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims 4
- 239000000463 material Substances 0.000 abstract description 14
- 238000002156 mixing Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 9
- 239000003513 alkali Substances 0.000 abstract description 4
- 238000001035 drying Methods 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 abstract 4
- 229910007822 Li2ZrO3 Inorganic materials 0.000 abstract 1
- 229910010479 Li4Ti5O2 Inorganic materials 0.000 abstract 1
- 229910010092 LiAlO2 Inorganic materials 0.000 abstract 1
- 229910013478 LiNixCoyMzO2 Inorganic materials 0.000 abstract 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N Lithium aluminate Chemical compound   [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 abstract 1
- 239000010950 nickel Substances 0.000 description 50
- 239000002585 bases Substances 0.000 description 27
- 241001081830 Degeneriaceae Species 0.000 description 16
- 229910001855 lithium hydroxide Inorganic materials 0.000 description 10
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000000654 additives Substances 0.000 description 7
- BNLBUVFPTCUHTE-ZDUSSCGKSA-O (6aS)-1,2-dimethoxy-6,6-dimethyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-6-ium-10,11-diol Chemical compound   C1C2=CC=C(O)C(O)=C2C2=C(OC)C(OC)=CC3=C2[C@H]1[N+](C)(C)CC3 BNLBUVFPTCUHTE-ZDUSSCGKSA-O 0.000 description 6
- 239000007815 EtOH Substances 0.000 description 5
- 230000000996 additive Effects 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000005516 engineering processes Methods 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- WNROFYMDJYEPJX-UHFFFAOYSA-K Aluminium hydroxide Chemical compound   [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 4
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 4
- 230000000875 corresponding Effects 0.000 description 4
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound   [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particles Substances 0.000 description 4
- 229910026532 ZrO Inorganic materials 0.000 description 3
- 239000011248 coating agents Substances 0.000 description 3
- 239000010410 layers Substances 0.000 description 3
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 2
- 239000010405 anode materials Substances 0.000 description 2
- 238000003556 assay method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011247 coating layers Substances 0.000 description 2
- 229910052803 cobalt Inorganic materials 0.000 description 2
- 230000001276 controlling effects Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagrams Methods 0.000 description 2
- 239000000843 powders Substances 0.000 description 2
- 239000002994 raw materials Substances 0.000 description 2
- 239000000376 reactants Substances 0.000 description 2
- 239000000953 sodium hydroxide Substances 0.000 description 2
- 229910001856 sodium hydroxide Inorganic materials 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 239000007787 solids Substances 0.000 description 2
- 239000011901 water Substances 0.000 description 2
- 239000008065 2-propanol Substances 0.000 description 1
- 229910003726 AI2O3 Inorganic materials 0.000 description 1
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- 229910017119 AlPO Inorganic materials 0.000 description 1
- 206010016766 Flatulence Diseases 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013292 LiNiO Inorganic materials 0.000 description 1
- 280000095725 Linio companies 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxides Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound   OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reactions Methods 0.000 description 1
- 238000002479 acid--base titration Methods 0.000 description 1
- 239000002253 acids Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000006183 anode active materials Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt Chemical compound   [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- RFYUQSQGLHNNOY-UHFFFAOYSA-N cobalt;sulfuric acid Chemical compound   [Co].OS(O)(=O)=O RFYUQSQGLHNNOY-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolytes Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000011521 glasses Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Chemical compound   [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910000140 magnesium oxide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052751 metals Inorganic materials 0.000 description 1
- 239000002184 metals Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000002086 nanomaterials Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N nitric acid Chemical compound   O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000003014 reinforcing Effects 0.000 description 1
- 238000007086 side reactions Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical group   [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound   [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 1
- 239000011977 sulfuric acid Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Abstract
The invention discloses a high-nickel positive active material of a surface-modified lithium ion battery. A matrix substance is the high-nickel positive active material LiNixCoyMzO2, the surface of the matrix substance is uniformly coated by a lithium-ion conductor compound which comprises at least one of LiAlO2, Li4Ti5O2 and Li2ZrO3; the content of the total impurity lithium in the positive active material is below 0.085%. The invention also discloses a preparation method of the positive active material. The preparation method comprises the following steps of: firstly mixing the matrix substance with an organic solution containing aluminum, an organic solution containing titanium or an organic suspension liquid containing aluminum/titanium/zirconium, drying, calcining the dried mixture, finally generating the lithium-ion conductor compound on the surface of the matrix substance, namely the high-nickel positive active material of the surface-modified lithium ion battery. The high-nickel positive active material disclosed by the invention has the advantages that the content of alkali substances is obviously reduced, the processing performance of the material is improved, and the electrochemical stability is improved.
Description
Technical field
The present invention relates to a kind of cell positive material and preparation method thereof, particularly relate to a kind of anode active material of lithium ion battery and preparation method thereof.
Background technology
Current lithium ion battery has been widely used in various mobile electronic product, electric tool and energy-storage system.In order to adapt to the development of these equipment, the demand of people to the lithium ion battery of high-energy-density, high power, long-life and low cost constantly increases.Lithium ion anode material is the critical material affecting battery performance and cost, but cobalt acid lithium, LiMn2O4 and the LiFePO 4 of commercial applications are difficult to there is breakthrough again in specific capacity at present, and doping type lithium nickelate positive electrode has the feature of high power capacity and low cost because of it, receive publicity, be expected to become the leading lithium ion anode material in future market.The elements such as doping Co, Mn, Al, Mg, can stablize the layer structure of lithium nickelate material, the cyclical stability of reinforcing material.For the nickelic positive electrode of doping type, LiNi
xco
ym
zo
2(0.6≤x≤1, x+y+z=1,0≤y≤0.4,0≤z≤0.4, M is other doped chemicals), along with the increase (i.e. the increase of nickel content) of x, gram specific capacity is also higher, but in building-up process, the alkaline matter of surface residual is also more.At non-patent literature ([1] H.S. Liu, Z.R. Zhang, Z.L. Gong, Y.Yang, Electrochemical and Solid-State Letters 7 (2004): A190-A193. [2] J. Eom, M.G. Kim, J. Cho, Journal of the Electrochemical Society 155 (2008): A239-A245. [3] H. Kobayashi, S. Emura, Y. Arachi, K. Tatsumi, Journal of Power Sources 174 (2007): 774-778.) in demonstrate lithium nickelate and the nickelic positive electrode of doping type thereof surface contain Li
2cO
3, the alkaline matter such as LiOH.Because strong alkaline substance is easy to water suction, which inhibits the mobility of positive electrode when organic solvent mixing is sized mixing; This will bring great impact to slurrying and further battery performance.And these impurity lithium salts poorly conductives, be unfavorable for the transmission of ion.Therefore, how reducing the alkalescence of this type of nickelic positive electrode, eliminate its surface impurity lithium salts, is the key technical problem that this area needs to solve.
The positive electrode surface coating method reported at present, its objective is and hinder electrolyte to contact with the direct of positive electrode, reduce the side reaction of electrode solid/liquid interfaces.The coating adopted, such as MgO(is see CN1770514A Chinese patent literature), AlF
3(see B.-C. Park, H.-B. Kim, H.J. Bang, J. Prakash, Y.-K. Sun, Industrial & Engineering Chemistry Research 47 (2008): 3876-3882), AlPO
4(see B. Kim, C. Kim, T.-G. Kim, D. Ahn, B. Park, Journal of The Electrochemical Society153 (2006): A1773-A1777 and CN1416189A Chinese patent literature) and electro-conductive glass (see CN1797822A and CN1773763A Chinese patent literature) etc., although the electrochemical stability of material can be improved to a certain extent, but these coatings can not with the alkali substance reaction of high nickel positive active material, cannot reduce its alkalescence.In addition, also report is had to adopt the compound of other aluminium, titanium and zirconium to add (see CN1773763A, CN1731605A, CN1416189A) in positive electrode to, but existing technological operation not designs for " reducing the alkalescence of high nickel positive active material ", therefore fail to solve the problems referred to above that the nickelic positive electrode of lithium ion battery exists equally.
Summary of the invention
The technical problem to be solved in the present invention overcomes the deficiencies in the prior art, there is provided that a kind of alkaline matter content significantly reduces, drawing abillity improves, the lithium ion battery height nickel positive active material of the electrochemical stability also surface modification of corresponding raising, the preparation method that a kind of step is simple, operate the lithium ion battery height nickel positive active material of this surface modification easy, that cost is low is also provided.
For solving the problems of the technologies described above, the technical scheme that the present invention proposes is a kind of lithium ion battery height nickel positive active material of surface modification, and its base matter is high nickel positive active material LiNi
xco
ym
zo
2, wherein 0.6≤x≤1,0≤y≤0.4,0≤z≤0.4, and x+y+z=1, M are one or more in Mn, Al, Mg, Ti; The coated with uniform lithium ion conductor compound of described base matter, described lithium ion conductor compound comprises LiAlO
2, Li
4ti
5o
24, Li
2zrO
3in one or more; In the lithium ion battery height nickel positive active material of described surface modification, the mass content (content referred to as total impurities lithium) of total lithium of impurity lithium salts is below 0.085%.
The lithium ion battery height nickel positive active material of above-mentioned surface modification, described impurity lithium salts preferably refers to Li
2cO
3and/or LiOH is the alkaline impurities of main component.
As a total technical conceive, the present invention also provides a kind of preparation method of lithium ion battery height nickel positive active material of above-mentioned surface modification, comprise the following steps: described base matter is mixed with containing aluminium organic solution, titaniferous organic solution or the organic suspension liquid containing aluminium/titanium/zirconium, dry; Dried mixture is calcined again, makes the impurity lithium salts on base matter surface fully participate in reaction, finally at base matter Surface Creation lithium ion conductor compound, obtain the lithium ion battery height nickel positive active material of surface modification.
In above-mentioned preparation method, the described mixture being preferably aluminium isopropoxide and organic solvent containing aluminium organic solution, described titaniferous organic solution is preferably the mixture of butyl titanate and organic solvent, and the described organic suspension liquid containing aluminium/titanium/zirconium is preferably the mixture of at least one (preferably comprising one or both metals) in the hydroxide of the oxide of aluminium, titanyl compound, the oxide of zirconium, the hydroxide of aluminium, the hydroxide of titanium, zirconium and organic solvent.
In above-mentioned preparation method, the oxide of described aluminium is preferably nanometer Al
2o
3, described titanyl compound is preferably nano-TiO
2, the oxide of described zirconium is preferably nanometer ZrO
2, the hydroxide of described aluminium is preferably nanometer Al (OH)
3, described nanometer Al
2o
3, nano-TiO
2, nanometer ZrO
2, nanometer Al (OH)
3average grain diameter be all preferably 1nm ~ 250nm.
In above-mentioned preparation method, the mol ratio of the lithium in the addition of described aluminium isopropoxide, butyl titanate and the impurity lithium salts on described base matter surface is preferably (0.5 ~ 1.5): 1.Described nanometer Al
2o
3, nano-TiO
2, nanometer ZrO
2, nanometer Al (OH)
3addition and described base matter surface impurity lithium salts in lithium mol ratio be preferably (0.25 ~ 2): 1.
In above-mentioned preparation method, described organic solvent is preferably ethanol, propyl alcohol, acetone or isopropyl alcohol, the addition of described organic solvent and the mass ratio (0.5 ~ 3) of described base matter consumption: 1.
In above-mentioned preparation method, the content of the total impurities lithium on described base matter surface is preferably 0.09% ~ 0.80%.
In above-mentioned preparation method, described calcination process preferably includes heat temperature raising stage and holding stage, the heating rate in described heat temperature raising stage is preferably 1 DEG C/min ~ 10 DEG C/min, the temperature of described holding stage preferably controls at 500 DEG C ~ 800 DEG C, and temperature retention time preferably controls at 0.5h ~ 15h; Keep oxygen atmosphere in described calcination process or contain oxygen air atmosphere.
Compared with prior art, the invention has the advantages that:
(1) the present invention utilizes the impurity lithium salts of self remnants of the nickelic surface of positive electrode active material of lithium ion battery (namely containing the alkali compounds of lithium) to react in calcination process with the encapsulated additives in preparation technology, so not only can eliminate impurity lithium salts, improve the processing characteristics of positive electrode active materials, and can be formed coated at nickelic surface of positive electrode active material, improve the electrochemical stability of positive electrode active materials;
(2) its Surface Creation coating layer in the modified product obtained of the present invention, this coating layer has lithium ion conductance, is conducive to the transmission of lithium ion at electrode interface;
(3) the nano material encapsulated additives adopted in preparation technology of the present invention, is conducive to improving reactivity; In addition, due to the organic solution that adopts in preparation technology of the present invention or suspension method for coating, it can realize Homogeneous phase mixing and evenly coated, more coated than use solution easier to be dry.
Generally speaking, the present invention changes the Surface Physical Chemistry character of high nickel positive active material, solve the common problems such as the alkaline matter water suction that existing this kind of positive electrode in use faces, and method of modifying of the present invention is simple, the alkaline matter content of modified lithium ion battery height nickel positive active material significantly reduces, the range of decrease can reach more than 70%, the moisture absorption problem of positive electrode active materials is resolved, the stability of positive electrode active materials, fail safe and machinability are all improved significantly, " jelly " phenomenon is there will not be in coating process, cycle performance and the high temperature flatulence phenomenon of lithium ion battery are effectively improved.
Accompanying drawing explanation
Fig. 1 is LiAlO in the embodiment of the present invention 1
2x-ray diffractogram.
Fig. 2 is high nickel positive active material scanning electron microscope (SEM) photograph before modified in the embodiment of the present invention 1.
Fig. 3 is the scanning electron microscope (SEM) photograph that in the embodiment of the present invention 1, high nickel positive active material is modified.
Fig. 4 be in the embodiment of the present invention 1 high nickel positive active material before modified, after X-ray diffractogram.
Fig. 5 is high nickel positive active material first charge-discharge curve before modified in the embodiment of the present invention 1 (button cell, 0.1C, 2.80V ~ 4.30 V).
Fig. 6 is the first charge-discharge curve (button cell, 0.1C, 2.80 V ~ 4.30 V) that in the embodiment of the present invention 1, high nickel positive active material is modified.
Fig. 7 be in the embodiment of the present invention 1 and embodiment 2 high nickel positive active material before modified, after cycle performance comparison diagram (1C, 2.80 V ~ 4.30 V).
Fig. 8 is LiAlO in the embodiment of the present invention 2
2x-ray diffractogram.
Fig. 9 is the scanning electron microscope (SEM) photograph that in the embodiment of the present invention 2, high nickel positive active material is modified.
Figure 10 be in the embodiment of the present invention 2 high nickel positive active material before modified, after X-ray diffractogram.
Figure 11 is the modified scanning electron microscope (SEM) photograph of the high nickel positive active material in the embodiment of the present invention 3.
Embodiment
Below in conjunction with Figure of description and specific embodiment, the invention will be further described.
embodiment 1:
A lithium ion battery height nickel positive active material for surface modification of the present invention, its base matter is high nickel positive active material LiNi
0.8co
0.15al
0.05o
2, Al element wherein can be substituted by one or more in Al, Mn, Mg, Ti; The coated with uniform of base matter has lithium ion conductor compound, and this lithium ion conductor compound is LiAlO
2; The content of the total impurities lithium in the lithium ion battery height nickel positive active material of surface modification is 0.083%, is 0.27 times before modified.Impurity lithium salts in the present embodiment refers to Li
2cO
3be the alkaline impurities of main component with LiOH, the content of total impurities lithium refers to alkaline impurities Li
2cO
3with the mass content of the lithium in LiOH.Before modified, base matter LiNi
0.8co
0.15al
0.05o
2the content of total impurities lithium be 0.308%.
The preparation method of the lithium ion battery height nickel positive active material of the surface modification of the present embodiment, comprises the following steps:
(1) aluminium isopropoxide is added in organic solvent ethanol, fully stir at 60 DEG C ~ 70 DEG C (40 DEG C ~ 80 DEG C) temperature, be made into containing aluminium organic solution; Wherein, the addition of aluminium isopropoxide and high nickel positive active material LiNi before modified
0.8co
0.15al
0.05o
2the mol ratio of the lithium in surface impurity lithium salts is 1: 1;
(2) by base matter height nickel positive active material LiNi
0.8co
0.15al
0.05o
2(raw material before modified) and obtained mixing containing aluminium organic solution in step (1), wherein, the quality controlling organic solvent ethanol is 1 ~ 2 times of base matter quality, stirs 0.2h ~ 0.5h(0.1h ~ 2h) make it mix, then that mixture is dry;
(3) mixture after step (2) is placed in heating furnace to calcine, calcination process comprises heat temperature raising stage and holding stage, the heating rate in heat temperature raising stage is 3 DEG C/min, holding stage is entered after being heated to 700 DEG C, the temperature of holding stage controls at 700 DEG C, and temperature retention time is 10h; Keep oxygen atmosphere in calcination process, make the impurity lithium salts on base matter surface and coated additive fully participate in reacting, at base matter Surface Creation lithium ion conductor compound L iAlO
2, finally by natural cooling, obtain the lithium ion battery height nickel positive active material of surface modification.In order to prove that aluminium isopropoxide can react with impurity lithium salts, and generate LiAlO
2, by aluminium isopropoxide respectively with Li
2cO
3with LiOH mixing, above-mentioned condition is adopted to sinter.Detect through X-ray diffraction (XRD) and show (as shown in Figure 1), the product of gained is single-phase LiAlO
2(corresponding XRD standard card is PDF#38-1464).
After testing, the LiNi of surface modification that obtains of the present embodiment
0.8co
0.15al
0.05o
2the pH value of positive electrode active materials drops to 11.6 by 12.2, the content of the total impurities lithium in the lithium ion battery height nickel positive active material of surface modification reduces to 0.083% by original 0.308%, and the content of the total impurities lithium of surface alkalinty material is 0.27 times (assay method of the content of total impurities lithium adopts acid-base titration) before modified.
Fig. 2 and Fig. 3 is respectively LiNi in the present embodiment
0.8co
0.15al
0.05o
2positive electrode active materials before modification with modified electronic scanning Electronic Speculum figure (SEM); From Fig. 2 and Fig. 3, modified particle surface is smooth, soilless sticking fine powder still.Fig. 4 be in the present embodiment high nickel positive active material before modified, after X-ray diffractogram, from XRD figure, positive electrode active materials has α-NaFeO
2layer structure, with LiNiO
2mutually identical, showing as in 2 θ values is the three strongest ones peak that (003), (101), (104) appear in 18.75,36.69,44.48 places respectively, and before modified after all there is not other dephasign peaks.In addition, because the content of the content of the alkaline matter on base matter surface and the coating on modified base matter surface is before modified few, XRD inspection does not measure.Therefore, the positive electrode active materials of the present embodiment is modified, and its granule-morphology and crystal structure do not change, and alkalescence is effectively reduced.
The LiNi of the surface modification that the present embodiment obtains
0.8co
0.15al
0.05o
2positive electrode active materials before modification, after first charge-discharge curve as shown in Figure 5 and Figure 6, in the present embodiment high nickel positive active material before modified, after cycle performance comparison diagram as shown in Figure 7, from Fig. 5 ~ Fig. 7, although a gram specific capacity for positive electrode active materials declines to some extent, stable circulation performance be improved significantly.
embodiment 2:
A lithium ion battery height nickel positive active material for surface modification of the present invention, its base matter is high nickel positive active material LiNi
0.8co
0.15al
0.05o
2, Al element wherein can be substituted by one or more in Al, Mn, Mg, Ti; The coated with uniform of base matter has lithium ion conductor compound, and this lithium ion conductor compound is LiAlO
2; The content of the total impurities lithium in the lithium ion battery height nickel positive active material of surface modification is 0.0847%, is 0.28 times before modified.Impurity lithium salts in the present embodiment refers to Li
2cO
3be the alkaline impurities of main component with LiOH; The content of total impurities lithium refers to alkaline impurities Li
2cO
3with the mass content of the lithium in LiOH.
The preparation method of the lithium ion battery height nickel positive active material of the surface modification of the present embodiment, comprises the following steps:
(1) aluminium hydroxide average grain diameter being about 20nm adds in organic solvent ethanol, fully stirs, and is made into containing aluminium organic suspension liquid; Wherein, the addition of aluminium hydroxide and high nickel positive active material LiNi before modified
0.8co
0.15al
0.05o
2the mol ratio of the lithium in surface impurity lithium salts is 1: 1; Before modified, base matter LiNi
0.8co
0.15al
0.05o
2the content of total impurities lithium be 0.308%;
(2) by base matter height nickel positive active material LiNi
0.8co
0.15al
0.05o
2(raw material before modified) and obtained mixing containing aluminium organic suspension liquid in step (1), wherein, the quality controlling organic solvent ethanol is 1 ~ 2 times of base matter quality, stirs 0.2h ~ 0.5h(0.1h ~ 2h) make it mix, then that mixture is dry;
(3) mixture after step (2) is placed in heating furnace to calcine, calcination process comprises heat temperature raising stage and holding stage, the heating rate in heat temperature raising stage is 3 DEG C/min, holding stage is entered after being heated to 700 DEG C, the temperature of holding stage controls at 700 DEG C, and temperature retention time is 10h; Keep oxygen atmosphere in calcination process, make the impurity lithium salts on base matter surface and coated additive fully participate in reacting, at base matter Surface Creation lithium ion conductor compound L iAlO
2, finally by natural cooling, obtain the lithium ion battery height nickel positive active material of surface modification.In order to prove that nano-aluminum hydroxide can react with impurity lithium salts, and generate LiAlO
2, by aluminium hydroxide respectively with Li
2cO
3with LiOH mixing, above-mentioned condition is adopted to sinter.Detect through XRD and show (see Fig. 8), the product of gained is LiAlO
2material.Difference is with Li
2cO
3for the reactant in lithium source, the product of gained is single-phase LiAlO
2(corresponding XRD standard card is PDF#38-1464); Take LiOH as the reactant in lithium source, the product of gained is the LiAlO of two-phase mixtures
2(corresponding XRD standard card is PDF#38-1464 and PDF#44-0224).
After testing, the LiNi of surface modification that obtains of the present embodiment
0.8co
0.15al
0.05o
2the pH value of positive electrode active materials drops to 11.6 by 12.2, the content of the total impurities lithium in the lithium ion battery height nickel positive active material of surface modification reduces to 0.0847% by original 0.308%, and the content of the total impurities lithium of surface alkalinty material is 0.28 times (assay method of the content of total impurities lithium is with embodiment 1) before modified.Fig. 9 is LiNi in the present embodiment
0.8co
0.15al
0.05o
2the electronic scanning Electronic Speculum figure (SEM) that positive electrode active materials is modified; As seen from Figure 9, particle diameter in the distribution of particles of 50 nm ~ 200 nm at positive electrode active materials LiNi
0.8co
0.15al
0.05o
2the surface of particle.Figure 10 be in the present embodiment high nickel positive active material before modified, after X-ray diffractogram, from X-ray diffractogram, positive electrode active materials has α-NaFeO
2the LiNiO of layer structure
2phase, showing as in 2 θ values is the three strongest ones peak that (003), (101), (104) appear in 18.75,36.69,44.48 places respectively, and before modified after all there is not other dephasign peaks.Therefore, the positive electrode active materials of the present embodiment is modified, and its granule-morphology and crystal structure do not change, and by surface modification, the alkaline matter content of positive electrode active materials is effectively reduced.Similar to Example 1, the LiNi of the surface modification that the present embodiment obtains
0.8co
0.15al
0.05o
2the stable circulation performance of positive electrode active materials be improved significantly (see Fig. 7).
embodiment 3:
In the present embodiment, coated for embodiment 2 additive is used instead as micron order aluminium hydroxide (1 μm ~ 2 μm); Other preparation process and technological parameter condition identical with embodiment 2.
After surface modification, the lithium ion height nickel positive active material LiNi that the present embodiment is obtained
0.8co
0.15al
0.05o
2pH value drop to 11.9 by 12.2, the content of the total impurities lithium of surface alkalinty material is before modified 0.36 times.From reduce alkalescence effect, the present embodiment than embodiment 1 and embodiment 2 a bit weaker.
Figure 11 is LiNi in the present embodiment
0.8co
0.15al
0.05o
2modified SEM photo; From Figure 11, positive electrode remained on surface has some fine powders.
embodiment 4:
In the present embodiment, coated for embodiment 2 additive is used instead as alumina in Nano level; Other preparation process and technological parameter condition identical with embodiment 2.
After surface modification, the lithium ion height nickel positive active material LiNi that the present embodiment is obtained
0.8co
0.15al
0.05o
2pH value drop to 11.6 by 12.2, the content of the total impurities lithium of surface alkalinty material is before modified 0.27 times.
embodiment 5:
In the present embodiment, coated for embodiment 2 additive is used instead as nanoscale TiO
2, its addition and before modified high nickel positive active material LiNi
0.8co
0.15al
0.05o
2the mol ratio of the lithium in surface impurity lithium salts is 1.2: 1; Other preparation process and technological parameter condition identical with embodiment 2.
After surface modification, the lithium ion height nickel positive active material LiNi that the present embodiment is obtained
0.8co
0.15al
0.05o
2pH value drop to 11.7 by 12.2, the content of the total impurities lithium of surface alkalinty material is before modified 0.28 times.
embodiment 6:
In the present embodiment, the base matter of embodiment 2 is used instead as LiNi
0.6co
0.2mn
0.2o
2; Other preparation process and technological parameter condition identical with embodiment 2.
After surface modification, the lithium ion height nickel positive active material LiNi that the present embodiment is obtained
0.6co
0.2mn
0.2o
2pH value drop to 11.4 by 11.8, the content of the total impurities lithium in the lithium ion battery height nickel positive active material of surface modification reduces to 0.04% by original 0.10%, and the content of the total impurities lithium of surface alkalinty material is before modified 0.4 times.
Base matter height nickel positive active material LiNi of the present invention
xco
ym
zo
2(wherein 0.6≤x≤1,0≤y≤0.4,0≤z≤0.4, and x+y+z=1, M are one or more in Mn, Al, Mg, Ti) can be prepared by soft chemical method and solid sintering technology, specifically comprise the following steps:
First, by sulfuric acid (or nitric acid) solution of the nickel of certain mol proportion, cobalt sulfuric acid solution, M and NaOH/NH
4the co-precipitation of OH alkali lye, obtains presoma hydroxide after washing and drying; Then certain mol proportion is pressed by presoma hydroxide with LiOH or Li
2cO
3mixing, mixture is placed in electric furnace at 600 DEG C ~ 850 DEG C temperature, under oxygen atmosphere, roasting 15h ~ 25h, obtains and LiNiO
2identical layered rock salt structure (a-Na
2feO
2) single-phase LiNi
xco
ym
zo
2.Adopt the method obtained its surface alkalinty material of positive electrode active materials---the mass content of the total impurities lithium in impurity lithium salts is in 0.09% ~ 0.80% scope.The modification object LiNi used in each embodiment above
0.8co
0.15al
0.05o
2and LiNi
0.6co
0.2mn
0.2o
2namely be adopt said method to obtain.
Claims (3)
1. the preparation method of the lithium ion battery height nickel positive active material of a surface modification, comprise the following steps: base matter is mixed with containing aluminium organic solution, titaniferous organic solution or the organic suspension liquid containing aluminium/titanium/zirconium, dry, the mass content of the total impurities lithium on described base matter surface is 0.09% ~ 0.80%, and described impurity lithium salts refers to Li
2cO
3and/or LiOH is the alkaline impurities of main component; Described is the mixture of aluminium isopropoxide and organic solvent containing aluminium organic solution, described titaniferous organic solution is the mixture of butyl titanate and organic solvent, and the described organic suspension liquid containing aluminium/titanium/zirconium is the mixture of at least one in the hydroxide of the oxide of aluminium, titanyl compound, the oxide of zirconium, the hydroxide of aluminium, the hydroxide of titanium, zirconium and organic solvent; The oxide of described aluminium is nanometer Al
2o
3, described titanyl compound is nano-TiO
2, the oxide of described zirconium is nanometer ZrO
2, the hydroxide of described aluminium is nanometer Al (OH)
3, described nanometer Al
2o
3, nano-TiO
2, nanometer ZrO
2, nanometer Al (OH)
3average grain diameter be 1nm ~ 250nm; The mol ratio of the lithium in the addition of described aluminium isopropoxide or butyl titanate and the impurity lithium salts on described base matter surface is (0.5 ~ 1.5): 1; Described nanometer Al
2o
3, nano-TiO
2, nanometer ZrO
2, nanometer Al (OH)
3addition and described base matter surface impurity lithium salts in the mol ratio of lithium be (0.25 ~ 2): 1;
Dried mixture is calcined again, makes the impurity lithium salts on base matter surface fully participate in reaction, finally at base matter Surface Creation lithium ion conductor compound, obtain the lithium ion battery height nickel positive active material of surface modification;
The base matter of described lithium ion battery height nickel positive active material is high nickel positive active material LiNi
xco
ym
zo
2, wherein 0.6≤x≤1,0≤y≤0.4,0≤z≤0.4 and x+y+z=1, M are one or more in Mn, Al, Mg, Ti; The coated with uniform lithium ion conductor compound of described base matter, described lithium ion conductor compound comprises LiAlO
2, Li
4ti
5o
24, Li
2zrO
3in one or more; In the lithium ion battery height nickel positive active material of described surface modification, the mass content of total impurities lithium is below 0.085%.
2. preparation method according to claim 1, is characterized in that: described organic solvent is ethanol, propyl alcohol, acetone or isopropyl alcohol, and the addition of described organic solvent and the mass ratio of described base matter consumption are (0.5 ~ 3): 1.
3. preparation method according to claim 1 and 2, it is characterized in that: described calcination process comprises heat temperature raising stage and holding stage, the heating rate in described heat temperature raising stage is 1 DEG C/min ~ 10 DEG C/min, the temperature of described holding stage controls at 500 DEG C ~ 800 DEG C, and temperature retention time controls at 0.5h ~ 15h; Keep oxygen atmosphere in described calcination process or contain oxygen air atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210359842.7A CN102832389B (en) | 2012-09-25 | 2012-09-25 | High-nickel positive active material of surface-modified lithium ion battery and preparation method of positive active material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210359842.7A CN102832389B (en) | 2012-09-25 | 2012-09-25 | High-nickel positive active material of surface-modified lithium ion battery and preparation method of positive active material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102832389A CN102832389A (en) | 2012-12-19 |
CN102832389B true CN102832389B (en) | 2015-04-15 |
Family
ID=47335423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210359842.7A CN102832389B (en) | 2012-09-25 | 2012-09-25 | High-nickel positive active material of surface-modified lithium ion battery and preparation method of positive active material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102832389B (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103247797B (en) * | 2013-05-20 | 2015-10-28 | 深圳市贝特瑞新能源材料股份有限公司 | A kind of anode material for lithium-ion batteries and preparation method thereof |
CN103413930B (en) * | 2013-07-30 | 2015-09-09 | 南京航空航天大学 | The LiNi1/2Mn3/2O4 positive electrode of lithium ion conductor Li2MO3 (M=Ti, Si, Zr) coating modification and preparation method |
CN110739451A (en) * | 2014-01-27 | 2020-01-31 | 住友化学株式会社 | Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery |
CN103794777B (en) * | 2014-02-18 | 2016-08-31 | 苏州路特新能源科技有限公司 | A kind of preparation method of surface coated nickel lithium manganate cathode material |
CN103996838A (en) * | 2014-05-09 | 2014-08-20 | 上海大学 | Lithium zirconate-cladded lithium-rich positive material for lithium ion battery and preparation method thereof |
CN104183849B (en) * | 2014-08-12 | 2017-05-03 | 江苏大学 | Preparation method of solid solution positive material covering surface of fast ionic conductor |
CN105470455A (en) * | 2014-09-03 | 2016-04-06 | 中国科学院宁波材料技术与工程研究所 | Modified lithium ion battery positive electrode material and preparation method therefor |
CN104393280B (en) * | 2014-11-19 | 2017-12-15 | 广州盘太能源科技有限公司 | A kind of preparation method of manganese cobalt lithium anode material |
CN104538612B (en) * | 2014-12-20 | 2017-03-08 | 贵州中伟正源新材料有限公司 | A kind of preparation method of nickel aluminium lithium anode material |
KR20160083227A (en) * | 2014-12-30 | 2016-07-12 | 삼성에스디아이 주식회사 | Cathode active material for lithium ion secondary battery, method for preparing the same, and lithium ion secondary battery including the same |
CN105810896A (en) * | 2014-12-31 | 2016-07-27 | 北京当升材料科技股份有限公司 | Surface alkali reduction cladding preparation method of high nickel material |
KR20160081545A (en) * | 2014-12-31 | 2016-07-08 | 주식회사 에코프로 | Cathod active material and manufacturing method of the same |
CN105185954B (en) * | 2015-06-17 | 2018-10-16 | 电子科技大学 | A kind of LiAlO2Coat LiNi1-xCoxO2Anode material for lithium-ion batteries and preparation method thereof |
CN105140492A (en) * | 2015-10-14 | 2015-12-09 | 广东天劲新能源科技股份有限公司 | Cobalt-nickel lithium manganate composite positive electrode material with surface wrapped by lithium zirconate and preparation method |
KR20170090196A (en) * | 2016-01-28 | 2017-08-07 | 주식회사 엘지화학 | Cathode active material having high electrochemical properties and lithium secondary battery comprising the same |
CN105633403A (en) * | 2016-03-16 | 2016-06-01 | 江苏乐能电池股份有限公司 | High-rate lithium iron phosphate positive electrode material and preparation method thereof |
CN106711444A (en) * | 2016-11-30 | 2017-05-24 | 荆门市格林美新材料有限公司 | Preparation method of in situ coating modified NCA cathode material |
CN108206280A (en) * | 2016-12-19 | 2018-06-26 | 天津国安盟固利新材料科技股份有限公司 | A kind of preparation method of low however, residual base nickel cobalt lithium aluminate cathode material |
CN106784632B (en) * | 2016-12-21 | 2020-04-17 | 桑顿新能源科技有限公司 | Method for synthesizing high-interface-stability cathode material |
CN106602021A (en) * | 2016-12-22 | 2017-04-26 | 金瑞新材料科技股份有限公司 | Coated positive electrode material of lithium-ion battery and preparation method of positive electrode material |
CN106505193B (en) * | 2017-01-12 | 2020-07-14 | 宁波容百新能源科技股份有限公司 | Single crystal nickel cobalt lithium manganate positive electrode material, preparation method thereof and lithium ion battery |
CN107369815B (en) * | 2017-05-26 | 2020-06-30 | 青海泰丰先行锂能科技有限公司 | Lithium ion secondary battery composite positive electrode material and preparation method thereof |
CN107275605B (en) * | 2017-06-12 | 2019-12-13 | 合肥国轩高科动力能源有限公司 | Surface selective coating method for high-nickel ternary material of lithium ion battery |
CN107256955B (en) * | 2017-06-26 | 2020-05-12 | 广东邦普循环科技有限公司 | Modified high-nickel positive electrode material of lithium ion battery and preparation method thereof |
CN107706373B (en) * | 2017-09-19 | 2020-05-22 | 合肥国轩高科动力能源有限公司 | High-nickel ternary material for lithium ion battery and preparation method thereof |
CN107681138B (en) * | 2017-09-21 | 2020-04-14 | 深圳市贝特瑞纳米科技有限公司 | Lithium-based high-temperature carbon-absorbing material modified cathode material, and preparation method and application thereof |
CN108172821A (en) * | 2017-12-28 | 2018-06-15 | 复旦大学 | It is a kind of to eliminate residual lithium and prepare the method that lithium ion conductor coats the positive electrode of nickelic ternary |
CN108735981A (en) * | 2018-03-23 | 2018-11-02 | 格林美(无锡)能源材料有限公司 | A kind of two-conductor modification composite lithium ion cell tertiary cathode material and preparation method |
CN108878865A (en) * | 2018-06-28 | 2018-11-23 | 内蒙古华夏新材料科技有限公司 | A kind of nickelic positive electrode of cladded type lithium ion battery and preparation method thereof |
CN109037650B (en) * | 2018-08-14 | 2020-11-06 | 合肥工业大学 | Method for preparing lithium-rich material of lithium aluminate coated lithium ion battery based on homogeneous coprecipitation system |
CN111029536A (en) * | 2018-10-09 | 2020-04-17 | 北大先行科技产业有限公司 | Lithium ion battery anode material and preparation method thereof |
CN110416550A (en) * | 2019-08-21 | 2019-11-05 | 中国科学院宁波材料技术与工程研究所 | A kind of cladded type lithium ion battery electrode material and preparation method thereof and lithium ion battery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1224537A (en) * | 1996-06-14 | 1999-07-28 | 联合米尼埃尔股份有限公司 | Electrode material for rechargeable batteries and process for prepartion thereof |
-
2012
- 2012-09-25 CN CN201210359842.7A patent/CN102832389B/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1224537A (en) * | 1996-06-14 | 1999-07-28 | 联合米尼埃尔股份有限公司 | Electrode material for rechargeable batteries and process for prepartion thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102832389A (en) | 2012-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6380608B2 (en) | Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery | |
Ding et al. | Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles | |
Xie et al. | The role of sodium in LiNi0. 8Co0. 15Al0. 05O2 cathode material and its electrochemical behaviors | |
Wu et al. | Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries | |
Sandhya et al. | Lithium titanate as anode material for lithium-ion cells: a review | |
Zheng et al. | Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution | |
Chemelewski et al. | Factors influencing the electrochemical properties of high-voltage spinel cathodes: relative impact of morphology and cation ordering | |
Miao et al. | Li2ZrO3-coated 0.4 Li2MnO3· 0.6 LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery | |
Li et al. | Fundamental insight into Zr modification of Li-and Mn-rich cathodes: combined transmission electron microscopy and electrochemical impedance spectroscopy study | |
Cabana et al. | Composition-structure relationships in the Li-ion battery electrode material LiNi0. 5Mn1. 5O4 | |
Xu et al. | Constructing a protective pillaring layer by incorporating gradient Mn4+ to stabilize the surface/interfacial structure of LiNi0. 815Co0. 15Al0. 035O2 cathode | |
Wang et al. | Cycle performance improvement of Li-rich layered cathode material Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 by ZrO2 coating | |
Jung et al. | Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries | |
CN103715424B (en) | A kind of nucleocapsid structure positive electrode and preparation method thereof | |
Liu et al. | Conductive surface modification with aluminum of high capacity layered Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 cathodes | |
Wu et al. | Petal-like Li 4 Ti 5 O 12–TiO 2 nanosheets as high-performance anode materials for Li-ion batteries | |
Kim et al. | Spinel LiMn2O4 nanorods as lithium ion battery cathodes | |
KR101400593B1 (en) | Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same | |
Kim et al. | Electrochemical and Structural Properties of x Li2M ‘O3⊙(1− x) LiMn0. 5Ni0. 5O2 Electrodes for Lithium Batteries (M ‘= Ti, Mn, Zr; 0≤ x⊠ 0.3) | |
KR101582394B1 (en) | Positive electrode active material particles, and positive electrode and all-solid-state battery using same | |
TWI553949B (en) | Cathode composite material of lithium ion battery | |
Xu et al. | Highly crystalline alumina surface coating from hydrolysis of aluminum isopropoxide on lithium-rich layered oxide | |
Cao et al. | A novel carbon-coated LiCoO2 as cathode material for lithium ion battery | |
Myung et al. | Role of alumina coating on Li− Ni− Co− Mn− O particles as positive electrode material for lithium-ion batteries | |
JP5093643B2 (en) | Lithium secondary battery active material, method for producing the same, and lithium secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
C06 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C10 | Entry into substantive examination | ||
GR01 | Patent grant | ||
C14 | Grant of patent or utility model | ||
CP03 | Change of name, title or address |
Address after: 410205 No. 18 Lutian Road, Yuelu District, Changsha City, Hunan Province Patentee after: Hunan Changyuan Lithium Co., Ltd. Address before: 410205 69 Lufeng Road, Lugu High-tech Industrial Development Zone, Changsha City, Hunan Province Patentee before: Hunan Changyuan Lico Co.,Ltd. |
|
CP03 | Change of name, title or address |