CN102831898A - Microphone array voice enhancement device with sound source direction tracking function and method thereof - Google Patents
Microphone array voice enhancement device with sound source direction tracking function and method thereof Download PDFInfo
- Publication number
- CN102831898A CN102831898A CN2012103200049A CN201210320004A CN102831898A CN 102831898 A CN102831898 A CN 102831898A CN 2012103200049 A CN2012103200049 A CN 2012103200049A CN 201210320004 A CN201210320004 A CN 201210320004A CN 102831898 A CN102831898 A CN 102831898A
- Authority
- CN
- China
- Prior art keywords
- source direction
- signal
- sound source
- sounnd source
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000003044 adaptive effect Effects 0.000 claims abstract description 58
- 238000012545 processing Methods 0.000 claims abstract description 22
- 230000000903 blocking effect Effects 0.000 claims abstract description 21
- 238000001914 filtration Methods 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims 6
- 230000008676 import Effects 0.000 claims 1
- 230000008030 elimination Effects 0.000 abstract description 3
- 238000003379 elimination reaction Methods 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000012804 iterative process Methods 0.000 description 3
- 230000004807 localization Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 101100122583 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GPB2 gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Circuit For Audible Band Transducer (AREA)
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
Abstract
带声源方向跟踪功能的麦克风阵列语音增强装置及其方法,涉及一种语音信号处理。装置设有麦克风阵列、可调平行波束形成器组模块、固定系数FIR滤波器模块、固定系数信号阻塞模块、自适应噪声对消器模块、声源方向更新模块。所述方法包括初始化、可调波束形成、固定系数滤波、信号阻塞、自适应噪声消除、声源方向更新等步骤。提供一种可调的平行波束形成器组结合旁瓣对消结构来实现对目标声源方向的实时跟踪,将声源方向跟踪功能直接嵌入广义旁瓣消除器结构,可实现声源方向跟踪、语音增强的同时进行,从而可克服算法性能对DOA估计误差的敏感性。
The invention discloses a microphone array speech enhancement device with sound source direction tracking function and its method, relating to speech signal processing. The device is provided with a microphone array, an adjustable parallel beamformer group module, a fixed coefficient FIR filter module, a fixed coefficient signal blocking module, an adaptive noise canceller module, and a sound source direction update module. The method includes the steps of initialization, adjustable beam forming, fixed coefficient filtering, signal blocking, adaptive noise elimination, sound source direction update and the like. An adjustable parallel beamformer group combined with a sidelobe cancellation structure is provided to realize real-time tracking of the target sound source direction, and the sound source direction tracking function is directly embedded in the generalized sidelobe canceller structure, which can realize sound source direction tracking, The simultaneous speech enhancement can overcome the sensitivity of the algorithm performance to the DOA estimation error.
Description
技术领域 technical field
本发明涉及一种语音信号处理,尤其是涉及一种带声源方向跟踪功能的麦克风阵列语音增强装置及其方法。The invention relates to a voice signal processing, in particular to a microphone array voice enhancement device with sound source direction tracking function and its method.
背景技术 Background technique
基于麦克风阵列的研究和应用是当前语音信号处理的一个新领域。在语音识别、语音控制、语音合成等语音信号处理领域中麦克风接收到的语音信号受到环境噪声和干扰的影响很大,严重影响了语音信号的处理质量,一般的基于单麦克风的语音增强系统难以获得较好的增强效果。麦克风阵列由于利用了目标信号、噪声和干扰的空间信息,基于麦克风阵列的语音增强系统能提供更好的增强效果。The research and application based on microphone array is a new field of speech signal processing. In the field of speech signal processing such as speech recognition, speech control, and speech synthesis, the speech signal received by the microphone is greatly affected by environmental noise and interference, which seriously affects the processing quality of the speech signal. The general speech enhancement system based on a single microphone is difficult Get a better enhancement effect. Since the microphone array utilizes the spatial information of the target signal, noise and interference, the speech enhancement system based on the microphone array can provide better enhancement effect.
阵列麦克风,可将多个麦克风按照设计的拓扑结构组成一个阵列,这样采集到的信号在时频域的基础上又增加一个空间域,可以对采集到的多径信号进行空时分集处理,麦克风阵列可对不同方向上的信号形成不同响应,也即阵列的空间指向特性,使阵列麦克风具有声源定位和跟踪、语音提取和分离以及去噪等功能,从而提高在复杂背景下的语音信号质量,弥补孤立麦克风无法获取和利用空间信息的缺陷。Array microphones can form multiple microphones into an array according to the designed topology, so that the collected signals can add a space domain on the basis of the time-frequency domain, and can perform space-time diversity processing on the collected multipath signals. The array can form different responses to signals in different directions, that is, the spatial pointing characteristics of the array, so that the array microphone has functions such as sound source localization and tracking, voice extraction and separation, and denoising, thereby improving the quality of voice signals in complex backgrounds , to make up for the defect that isolated microphones cannot acquire and utilize spatial information.
1982年Griffiths和Jim(1、L.J.Griffiths,C.W.Jim.An alternative approach to linearlyconstrained adaptive beamforming.IEEE Transactions on Antennas and Propagation.January,1982,30,27-34)提出修正线性波束形成器,即广义旁瓣消除器(Generalized Sidelobe Canceller,简称GSC)。广义旁瓣消除器允许对波束形成器的响应进行广泛的控制,尤其是可把线性约束的受限问题转化为非受限的自适应求解,因而更具有一般意义,在麦克风阵列语音增强处理中得到了广泛的研究和应用。针对经典GSC算法在实际应用中的不足,Gannot等人(2、Sharon Gannot,Israel Cohen.Speech Enhancement Based on the General TransferFunction GSCand Postfiltering.IEEE Transactions on Speech and Audio Processing.2004,12(6))以经典的广义旁瓣消除器算法为基础,提出了一种基于有用信号非平稳性的声学转移函数广义旁瓣消除器。Abad等人(3.A Abad,J Hernando.Speech Enhancement and recognition by Integrating AdaptiveBeamforming and Wiener Filtering.IEEE Sensor Array and Multichannel Signal ProcessingWorkshop,SAM,Sitges,2004)则提出将维纳滤波引入GSC的非自适应支路进一步改善旁瓣消除的效果。In 1982, Griffiths and Jim (1, L.J.Griffiths, C.W.Jim. An alternative approach to linearly constrained adaptive beamforming. IEEE Transactions on Antennas and Propagation. January, 1982, 30, 27-34) proposed a modified linear beamformer, that is, a generalized side lobe Eliminator (Generalized Sidelobe Canceller, GSC for short). The generalized sidelobe canceller allows extensive control over the response of the beamformer, especially the linearly constrained restricted problem can be transformed into an unrestricted adaptive solution, so it has more general significance, in the microphone array speech enhancement processing It has been extensively researched and applied. In response to the shortcomings of the classic GSC algorithm in practical applications, Gannot et al. (2, Sharon Gannot, Israel Cohen. Speech Enhancement Based on the General TransferFunction GSC and Postfiltering. IEEE Transactions on Speech and Audio Processing. 2004, 12 (6)) based on the classic Based on the generalized sidelobe canceller algorithm, a generalized sidelobe canceller based on the non-stationary acoustic transfer function of the useful signal is proposed. Abad et al. (3. A Abad, J Hernando. Speech Enhancement and recognition by Integrating Adaptive Beamforming and Wiener Filtering. IEEE Sensor Array and Multichannel Signal Processing Workshop, SAM, Sitges, 2004) proposed to introduce Wiener filtering into the non-adaptive branch of GSC way to further improve the effect of sidelobe cancellation.
需要指出的是,获取声源的准确方向是利用广义旁瓣消除器技术进行麦克风阵列语音增强处理的前提,只有获取了目标声源方位后才能在最小化输出方差准则下通过自适应算法训练麦克风阵列在期望声源方向形成波束实现语音增强。It should be pointed out that obtaining the accurate direction of the sound source is the premise of using the generalized sidelobe canceller technology for microphone array speech enhancement processing. Only after obtaining the target sound source direction can the microphone be trained by an adaptive algorithm under the criterion of minimizing the output variance. The array forms beams in the direction of the desired sound source for speech enhancement.
中国专利ZL 200510105526.7公开一种使用噪声降低的多通道自适应语音信号处理方法,该方法通过对GSC的固定波束通路增加一个自适应处理器改善信号通道的信噪比。但该方法仍然需要借助频域时延估计来补偿各通道时延,以使得波束对准期望声源方向。Chinese patent ZL 200510105526.7 discloses a multi-channel adaptive speech signal processing method using noise reduction, which improves the signal-to-noise ratio of the signal channel by adding an adaptive processor to the fixed beam path of the GSC. However, this method still needs to compensate the time delay of each channel with the help of time delay estimation in the frequency domain, so that the beam is aligned in the direction of the desired sound source.
但是,经典的广义旁瓣消除器算法在语音增强处理过程中始终对准期望通道的波束保持不变,只有当定位算法重新计算目标方向后才可再次设定算法对准的预期信号方向。在视频会议、语音识别、说话人识别等麦克风阵列语音增强的实际应用过程中,往往会有说话人在说话过程中移动的场合。此时,从麦克风阵列语音增强的角度,要求麦克风阵列的指向波束能始终对准移动的目标说话人以获取最佳的语音增强效果。而根据传统的广义旁瓣消除器算法结构,需要先进行声源定位运算,然后再根据获取的目标声源方位进行GSC麦克风阵列语音增强处理,会导致GSC对准的预期声源方位与实际声源方位间存在滞后,从而影响语音增强效果。However, the classic generalized sidelobe canceller algorithm always keeps the beam aligned to the desired channel unchanged during the speech enhancement process, and the expected signal direction aligned by the algorithm can be set again only after the positioning algorithm recalculates the target direction. In the actual application process of microphone array speech enhancement such as video conferencing, speech recognition, and speaker recognition, there are often occasions when the speaker moves during the speaking process. At this time, from the perspective of microphone array speech enhancement, it is required that the directional beam of the microphone array can always be aimed at the moving target speaker to obtain the best speech enhancement effect. However, according to the traditional generalized sidelobe canceller algorithm structure, the sound source localization calculation needs to be performed first, and then the GSC microphone array speech enhancement processing is performed according to the obtained target sound source azimuth, which will cause the expected sound source azimuth aligned by the GSC to be different from the actual sound source. There is a lag between source bearings, which affects speech enhancement.
同时,由于经典的广义旁瓣消除器需要获得目标声源方向作为算法运行前提条件,当获得目标声源方向与实际声源方向有一定误差时的声源方向(DOA,Direction ofarrival)失配会影响到阻塞矩阵对声源方向期望信号的阻塞效果,即非自适应支路的部分信号泄漏到自适应支路的噪声抵消器输入端,造成语音信号被削弱,从而影响到语音增强效果。At the same time, since the classic generalized sidelobe canceller needs to obtain the target sound source direction as the precondition for the algorithm to run, when there is a certain error between the target sound source direction and the actual sound source direction, the DOA (Direction of arrival) mismatch will It affects the blocking effect of the blocking matrix on the desired signal in the sound source direction, that is, part of the signal of the non-adaptive branch leaks to the input of the noise canceller of the adaptive branch, causing the speech signal to be weakened, thus affecting the speech enhancement effect.
发明内容 Contents of the invention
本发明的第一目的在于提供一种带声源方向跟踪功能的麦克风阵列语音增强装置。The first object of the present invention is to provide a microphone array speech enhancement device with sound source direction tracking function.
本发明的第二目的在于提供一种采用所述带声源方向跟踪功能的麦克风阵列语音增强装置的麦克风阵列语音增强方法。The second object of the present invention is to provide a microphone array speech enhancement method using the microphone array speech enhancement device with sound source direction tracking function.
所述带声源方向跟踪功能的麦克风阵列语音增强装置设有:The microphone array speech enhancement device with sound source direction tracking function is provided with:
麦克风阵列,用于语音信号多通道采集、前置处理和模数转换;Microphone array for multi-channel acquisition, pre-processing and analog-to-digital conversion of voice signals;
可调平行波束形成器组模块,用于通过调整各通道时延进行声源方向的实时跟踪;Adjustable parallel beamformer group module, used for real-time tracking of sound source direction by adjusting the time delay of each channel;
固定系数FIR滤波器模块,用于在非自适应支路形成预期频率特性得到含噪信号;A fixed-coefficient FIR filter module is used to form expected frequency characteristics in the non-adaptive branch to obtain noisy signals;
固定系数信号阻塞模块,用于滤除声源方向所包含的信号得到噪声信号;The fixed coefficient signal blocking module is used to filter out the signal contained in the direction of the sound source to obtain the noise signal;
自适应噪声对消器模块,用于根据自适应噪声对消原理以噪声信号作为参考消除含噪信号中所包含的噪声,输出语音增强信号;The adaptive noise canceller module is used to eliminate the noise contained in the noisy signal with the noise signal as a reference according to the principle of adaptive noise cancellation, and output the speech enhancement signal;
声源方向更新模块,用于根据当前预期声源方向及当前预期声源左右偏移方向对应进行旁瓣消除输出的语音增强信号方差选择当前最优声源方向,并将获得的当前最优声源方向输入至可调平行波束形成器组模块更新当前声源方向及当前声源方向的左右偏移方向;The sound source direction update module is used to select the current optimal sound source direction according to the current expected sound source direction and the current expected sound source left and right offset direction corresponding to the speech enhancement signal variance output by sidelobe cancellation, and obtain the current optimal sound source direction. The source direction is input to the adjustable parallel beamformer group module to update the current sound source direction and the left and right offset direction of the current sound source direction;
所述麦克风阵列中各通道语音信号输出端依次经前置放大电路和模数转换器后,通过数据线直接与可调平行波束形成器组模块的信号输入端相连接;The voice signal output terminals of each channel in the microphone array pass through the preamplifier circuit and the analog-to-digital converter in turn, and are directly connected to the signal input terminals of the adjustable parallel beamformer group module through the data line;
所述可调平行波束形成器组模块设有3个平行可调波束形成器,所述3个平行可调波束形成器分别设有信号输入端和声源方向输入端,各信号输入端接模数转换器的各通道语音信号输出端,各声源方向输入端则与声源方向更新模块的当前最优声源方向输出端连接;所述3个平行可调波束形成器的经时延调整后的各通道语音信号输出端接固定系数信号阻塞模块的输入端,时延调整后各通道语音信号的叠加输出则与固定系数FIR滤波器模块的输入端相连接;The adjustable parallel beamformer group module is provided with 3 parallel adjustable beamformers, and the 3 parallel adjustable beamformers are respectively provided with signal input terminals and sound source direction input terminals, and each signal input terminal is connected to the module Each channel voice signal output end of the digital converter, and each sound source direction input end is connected with the current optimal sound source direction output end of the sound source direction update module; the delay adjustment of the three parallel adjustable beamformers After each channel voice signal output terminal is connected to the input end of the fixed coefficient signal blocking module, the superposition output of each channel voice signal after time delay adjustment is then connected with the input end of the fixed coefficient FIR filter module;
所述自适应噪声消除器模块设有参考噪声输入端和含噪语音输入端,固定系数信号阻塞模块对输入信号进行阻塞处理后的输出接自适应噪声消除器模块的参考噪声输入端,固定系数FIR滤波器模块对输入信号进行滤波处理后的输出接自适应噪声消除器模块的含噪语音输入端;The adaptive noise eliminator module is provided with a reference noise input end and a noisy speech input end, and the fixed coefficient signal blocking module blocks the input signal after the output is connected to the reference noise input end of the adaptive noise eliminator module, and the fixed coefficient The output after the FIR filter module filters the input signal is connected to the noise-containing speech input end of the adaptive noise canceller module;
所述自适应噪声消除器模块的语音增强信号输出端接声源方向更新模块以进行当前最优声源方向的选择,自适应噪声消除器模块设有当前最优声源方向输出端和语音增强信号输出端,当前最优声源方向输出端接可调平行波束形成器组模块,语音增强信号输出端输出当前最优声源方向对应的语音增强信号。The voice enhancement signal output terminal of the adaptive noise eliminator module is connected to the sound source direction update module to select the current optimal sound source direction, and the adaptive noise eliminator module is provided with the current optimal sound source direction output end and the voice enhancement The signal output terminal, the output terminal of the current optimal sound source direction is connected to the adjustable parallel beamformer group module, and the voice enhancement signal output terminal outputs the voice enhancement signal corresponding to the current optimal sound source direction.
所述麦克风阵列可采用由5元麦克风组成的等间距线阵。The microphone array may be an equidistant linear array composed of 5-element microphones.
所述麦克风阵列语音增强方法,采用所述带声源方向跟踪功能的麦克风阵列语音增强装置,所述方法包括以下步骤:The microphone array voice enhancement method adopts the microphone array voice enhancement device with sound source direction tracking function, and the method comprises the following steps:
1个初始化步骤:在初始化阶段设置正前方为默认当前声音方向,或输入由麦克风阵列定位算法获取的声源方向,作为初始化声源方向,作为可调波束形成器组模块的声源方向参数;1 initialization step: In the initialization stage, set the front as the default current sound direction, or input the sound source direction obtained by the microphone array positioning algorithm as the initial sound source direction, as the sound source direction parameter of the adjustable beamformer group module;
1个可调波束形成步骤:按照设定的声源方向调整步长,通过当前声源方向分别加、减调整步长产生当前声源方向的左、右偏移方向并计算麦克风阵列各通道信号相应的时延补偿值,并对3个平行波束形成器内的麦克风阵列各通道输出信号进行对应方向的时延补偿,使其分别对准声源方向和左右偏移方向;1 adjustable beamforming step: adjust the step size according to the set sound source direction, and adjust the step size by adding and subtracting the current sound source direction to generate the left and right offset directions of the current sound source direction and calculate the signal of each channel of the microphone array Corresponding time delay compensation value, and carry out time delay compensation in the corresponding direction for the output signals of each channel of the microphone array in the three parallel beamformers, so that they are respectively aligned with the direction of the sound source and the direction of the left and right offset;
1个固定系数滤波步骤:利用固定系数分别对3个平行波束形成器的输出进行FIR滤波,用于在当前声源方向、左右偏移方向3个波束对准方向形成需要的频率响应;1 fixed coefficient filtering step: use fixed coefficients to perform FIR filtering on the outputs of the 3 parallel beamformers to form the required frequency response in the current sound source direction and the 3 beam alignment directions in the left and right offset directions;
1个信号阻塞步骤:在自适应支路,3个可调波束形成器输出的信号分别输入3个相同的信号阻塞矩阵,用于滤除当前声源方向、左右偏移方向3个波束对准方向内包含的语音信号;1 signal blocking step: In the adaptive branch, the signals output by the 3 adjustable beamformers are respectively input into 3 identical signal blocking matrices, which are used to filter out the current sound source direction and align the 3 beams in the left and right offset directions Speech signals contained within directions;
1个自适应噪声消除步骤:在自适应支路,以当前声源方向、左右偏移方向3个波束对应的阻塞矩阵输出信号作为参考噪声信号,固定支路中相对应3个波束的输出信号作为带噪输入信号进行自适应噪声消除处理;1 adaptive noise elimination step: In the adaptive branch, the blocking matrix output signals corresponding to the current sound source direction and the three beams in the left and right offset directions are used as the reference noise signal, and the output signals corresponding to the three beams in the fixed branch Adaptive noise cancellation processing as a noisy input signal;
1个声源方向更新步骤:获取3个波束方向非自适应支路信号输出与对应自适应噪声消除器的输出之差,并观察窗内选择方差最小的波束方向作为当前声源方向进行更新,更新当前声源方向后分别加、减调整步长产生当前声源方向的左、右偏移方向并计算麦克风阵列各通道信号相应的时延补偿值再次进行算法迭代。1 sound source direction update step: obtain the difference between the output of the non-adaptive branch signal of the 3 beam directions and the output of the corresponding adaptive noise canceller, and select the beam direction with the smallest variance in the observation window as the current sound source direction for update, After updating the current sound source direction, add and subtract the adjustment steps respectively to generate the left and right offset directions of the current sound source direction, and calculate the corresponding delay compensation value of each channel signal of the microphone array to perform algorithm iteration again.
本发明要解决的问题是在传统广义旁瓣消除器算法的基础上提供一种带声源方向跟踪功能的麦克风阵列语音增强装置。针对说话人识别、语音识别等麦克风阵列语音增强中说话人可能发生移动的情况,本发明提供一种可调的平行波束形成器组结合旁瓣对消结构来实现对目标声源方向的实时跟踪,将声源方向跟踪功能直接嵌入广义旁瓣消除器结构,可实现声源方向跟踪、语音增强的同时进行,从而可克服算法性能对DOA估计误差的敏感性。The problem to be solved by the present invention is to provide a microphone array speech enhancement device with sound source direction tracking function based on the traditional generalized sidelobe canceller algorithm. For speaker recognition, voice recognition and other situations where the speaker may move during microphone array speech enhancement, the present invention provides an adjustable parallel beamformer group combined with a sidelobe cancellation structure to realize real-time tracking of the direction of the target sound source , the sound source direction tracking function is directly embedded in the generalized sidelobe canceller structure, which can realize sound source direction tracking and speech enhancement at the same time, thereby overcoming the sensitivity of algorithm performance to DOA estimation error.
本发明的技术方案是在传统广义旁瓣消除器的基础上加入声源方向跟踪功能进行语音信号的增强处理。The technical solution of the invention is to add the sound source direction tracking function on the basis of the traditional generalized side lobe canceller to enhance the processing of the voice signal.
本发明提供的带声源方向跟踪功能的麦克风阵列语音增强装置实现带声源方向跟踪麦克风阵列语音增强的具体思路为:首先在旁瓣消除器的非自适应信号支路设置3个平行的波束形成器组成波束形成器组,每个波束形成器依次对准当前声源方向、及当前声源方向的左右偏移方位(左右偏移方向分别通过当前声源方向加减一个方向调整步长得到),计算麦克风阵列波束分别对准上述3个期望声源方向条件下旁瓣消除器自适应滤波器的输出,并在一个观察窗内进行性能比较,根据3个声源方向对应的比较结果选择当前最佳声源方向;在获得当前最佳声源方向后将其设为当前声源方向,并得到新的声源方向左右漂移方向,再次进行平行的波束形成器组的方向迭代;通过上述迭代过程,实现带声源方向跟踪的麦克风阵列语音增强。因此,本发明公开的带声源方向跟踪麦克风阵列语音增强的基本结构实际上是3个平行工作、方向可调整的旁瓣消除器,其中每个旁瓣消除器分别对应当前声源方向及当前声源方向的左右偏移方向,并通过每个旁瓣消除器的输出信号方差进行当前声源方向的迭代优化选择,通过自适应算法在迭代过程中同时进行当前声源方向跟踪和语音增强。The concrete train of thought that the microphone array voice enhancement device with sound source direction tracking function realizes the microphone array voice enhancement with sound source direction tracking function is as follows: first, three parallel beams are set in the non-adaptive signal branch of the side lobe canceller The beamformers form a beamformer group, and each beamformer is sequentially aligned with the current sound source direction and the left and right offset orientation of the current sound source direction (the left and right offset directions are obtained by adjusting the step size by adding or subtracting one direction to the current sound source direction respectively. ), calculate the output of the adaptive filter of the sidelobe canceller under the condition that the microphone array beams are respectively aligned with the above three expected sound source directions, and perform a performance comparison in an observation window, and select The current best sound source direction; after obtaining the current best sound source direction, set it as the current sound source direction, and get the new sound source direction to drift left and right, and perform the direction iteration of the parallel beamformer group again; through the above An iterative process for microphone array speech enhancement with sound source direction tracking. Therefore, the basic structure of the speech enhancement with sound source direction tracking microphone array disclosed in the present invention is actually three sidelobe cancellers working in parallel and with adjustable directions, wherein each sidelobe canceller corresponds to the current sound source direction and the current direction respectively. The left and right offset direction of the sound source direction, and the iterative optimization selection of the current sound source direction through the output signal variance of each sidelobe canceller, and the current sound source direction tracking and speech enhancement are performed simultaneously through the adaptive algorithm in the iterative process.
与现有的麦克风阵列定位与语音增强方法相比,本发明的带声源方位跟踪功能的麦克风阵列语音增强装置有3个突出优点:第一,由于在旁瓣抵消器中嵌入可调的平行波束形成器组,因此可实现声源目标方向跟踪和麦克风阵列语音增强的同时进行,无需依赖额外的麦克风阵列定位算法进行目标声源方向计算;第二,由于在语音信号处理过程中内嵌的平行波束形成器组始终在算法流程中与语音增强同时运行,因此可以保证在进行语音增强的同时对目标声源方向进行实时跟踪,从而可实现对移动目标声源跟踪的快速、实时响应;第三,当获取的声源方向与实际声源方向存在误差时,通过可调平行波束形成器组进行声源方位跟踪,可消除语音信号到达方向(DOA)的失配,从而改善自适应通路中的信号泄漏,提高语音增强性能。Compared with the existing microphone array positioning and speech enhancement methods, the microphone array speech enhancement device with sound source azimuth tracking function of the present invention has three outstanding advantages: first, due to the adjustable parallel Beamformer group, so it can realize sound source target direction tracking and microphone array voice enhancement at the same time, without relying on additional microphone array positioning algorithm for target sound source direction calculation; second, due to the built-in The parallel beamformer group is always running simultaneously with the speech enhancement in the algorithm flow, so it can ensure the real-time tracking of the direction of the target sound source while the speech enhancement is in progress, so as to achieve fast and real-time response to the tracking of the moving target sound source; 3. When there is an error between the acquired sound source direction and the actual sound source direction, the sound source azimuth tracking through the adjustable parallel beamformer group can eliminate the mismatch of the direction of arrival (DOA) of the speech signal, thereby improving the adaptive channel. signal leakage and improve speech enhancement performance.
附图说明 Description of drawings
图1为本发明所述带声源方向跟踪功能的麦克风阵列语音增强装置实施例结构组成框图。FIG. 1 is a block diagram of the structure of an embodiment of a microphone array speech enhancement device with sound source direction tracking function according to the present invention.
图2为本发明实施例的5元麦克风阵列及其与微处理器连接电路图。FIG. 2 is a circuit diagram of a 5-element microphone array and its connection with a microprocessor according to an embodiment of the present invention.
图3为本发明实施例中各信号处理模块的数据流、控制流连接示意图。Fig. 3 is a schematic diagram of data flow and control flow connection of each signal processing module in the embodiment of the present invention.
图4为本发明实施例的可调波束形成器结构示意图。Fig. 4 is a schematic structural diagram of an adjustable beamformer according to an embodiment of the present invention.
图5为本发明实施例的超声波辅助麦克风语音增强各通道时延补偿值的计算原理图。FIG. 5 is a schematic diagram of calculation of time delay compensation values of each channel of ultrasonic-assisted microphone speech enhancement according to an embodiment of the present invention.
具体实施方式 Detailed ways
为了使本发明的技术内容、特征、优点更加明显易懂,以下实施例将结合附图对本发明作进一步的说明。In order to make the technical content, features and advantages of the present invention more comprehensible, the following embodiments will further illustrate the present invention in conjunction with the accompanying drawings.
如图1所示,所述带声源方向跟踪功能的麦克风阵列语音增强装置实施例设有麦克风阵列1、可调平行波束形成器组模块2、固定系数FIR滤波器模块3、固定系数信号阻塞模块4、自适应噪声对消器模块5和声源方向更新模块6。As shown in Figure 1, the embodiment of the microphone array speech enhancement device with sound source direction tracking function is provided with a
麦克风阵列1用于语音信号多通道采集、前置处理和模数转换;可调平行波束形成器组模块2用于通过调整各通道时延进行声源方向的实时跟踪;固定系数FIR滤波器模块3用于在非自适应支路形成预期频率特性得到含噪信号;固定系数信号阻塞模块4用于滤除声源方向所包含的信号得到噪声信号;自适应噪声对消器模块5用于根据自适应噪声对消原理以噪声信号作为参考消除含噪信号中所包含的噪声,输出语音增强信号;声源方向更新模块6用于根据当前预期声源方向及当前预期声源左右偏移方向对应进行旁瓣消除输出的语音增强信号方差选择当前最优声源方向,并将获得的当前最优声源方向输入至可调平行波束形成器组模块更新当前声源方向及当前声源方向的左右偏移方向。
所述麦克风阵列1中各通道语音信号输出端依次经前置放大电路和模数转换器7后,通过数据线直接与可调平行波束形成器组模块2的信号输入端相连接。The voice signal output terminals of each channel in the
所述可调平行波束形成器组模块2设有3个平行可调波束形成器,所述3个平行可调波束形成器分别设有信号输入端和声源方向输入端,各信号输入端接模数转换器的各通道语音信号输出端,各声源方向输入端则与声源方向更新模块6的当前最优声源方向输出端连接;所述3个平行可调波束形成器的经时延调整后的各通道语音信号输出端接固定系数信号阻塞模块4的输入端,时延调整后各通道语音信号的叠加输出则与固定系数FIR滤波器模块3的输入端相连接。The adjustable parallel
所述自适应噪声消除器模块5设有参考噪声输入端和含噪语音输入端,固定系数信号阻塞模块4对输入信号进行阻塞处理后的输出接自适应噪声消除器模块5的参考噪声输入端,固定系数FIR滤波器模块3对输入信号进行滤波处理后的输出接自适应噪声消除器模块5的含噪语音输入端。The adaptive
所述自适应噪声消除器模块5的语音增强信号输出端接声源方向更新模块6以进行当前最优声源方向的选择,自适应噪声消除器模块5设有当前最优声源方向输出端和语音增强信号输出端,当前最优声源方向输出端接可调平行波束形成器组模块2,语音增强信号输出端输出当前最优声源方向对应的语音增强信号。The voice enhancement signal output terminal of the adaptive
所述麦克风阵列1可采用由5元麦克风组成的等间距线阵。The
所述带声源方向跟踪功能的麦克风阵列语音增强装置实施例中麦克风阵列由5个等间距排列的麦克风(m0,m1,…m4)组成麦克风线阵,阵列中各麦克风获得的语音信号送入内嵌3个平行的可调波束形成器组的旁瓣消除器进行声源方向跟踪和语音增强。In the embodiment of the microphone array voice enhancement device with sound source direction tracking function, the microphone array is composed of 5 equidistantly arranged microphones (m0, m1, ... m4) to form a microphone line array, and the voice signals obtained by each microphone in the array are sent into Built-in sidelobe canceller with 3 parallel adjustable beamformer groups for sound source direction tracking and speech enhancement.
麦克风阵列由麦克风及硬件电路组成,其中麦克风阵列由体积小、结构简单、电声性能好的压强式驻极体麦克风mic0,...,mic4,NJM2100运算放大器芯片构成的前置放大电路及MAX118模数转换芯片构成(如图2所示),在本实施例中麦克风间距d=10cm。The microphone array is composed of microphones and hardware circuits. The microphone array is composed of small size, simple structure, and good electroacoustic performance. An analog-to-digital conversion chip is formed (as shown in FIG. 2 ). In this embodiment, the distance between microphones is d=10cm.
可调平行波束形成器组模块、固定系数FIR滤波器模块、固定系数信号阻塞模块、自适应噪声对消器模块、声源方向更新模块等组成模块均属于数字信号处理模块,在本实施例中采用ARM9 S3C2440微处理器进行软件编程实现。The adjustable parallel beamformer group module, the fixed coefficient FIR filter module, the fixed coefficient signal blocking module, the adaptive noise canceller module, the sound source direction update module and other components all belong to the digital signal processing module. ARM9 S3C2440 microprocessor is used for software programming.
麦克风阵列与微处理器的连接方式为:麦克风阵列中5个麦克风输出信号经过图2所示运算放大器构成的2级前置放大电路放大后输入多通道模数转换芯片MAX118,S3C2440微处理器通过IO口GPB2,3,4控制MAX118的输入通道端A1、A2、A3,通过定时器输出脚TOUT0、TOUT1控制MAX118的读出/写入端口WR、RD进行采样频率16ksps的模数转换,通过数据线DATA0至DATA7进行8bit模数转换结果到S3C2440微处理器的传送。The connection between the microphone array and the microprocessor is as follows: the output signals of the five microphones in the microphone array are amplified by the 2-stage pre-amplification circuit composed of the operational amplifier shown in Figure 2, and then input to the multi-channel analog-to-digital conversion chip MAX118, and the S3C2440 microprocessor passes through IO ports GPB2, 3, 4 control the input channel terminals A1, A2, and A3 of MAX118, and control the read/write ports WR, RD of MAX118 through the timer output pins TOUT0, TOUT1 to perform analog-to-digital conversion with a sampling frequency of 16ksps. Lines DATA0 to DATA7 transmit the 8bit analog-to-digital conversion results to the S3C2440 microprocessor.
所述带声源方向跟踪功能的麦克风阵列语音增强装置中多通道语音信号模数转换进入微处理器后,以软件形式运行的各数字信号处理模块间的数据、控制流连接方式如图3所示,具体说明如下:After the multi-channel voice signal analog-to-digital conversion in the microphone array voice enhancement device with sound source direction tracking function enters the microprocessor, the data and control flow connection mode between the digital signal processing modules running in the form of software are shown in Figure 3 , the specific description is as follows:
所述带声源方向跟踪功能的麦克风阵列语音增强装置引入的可调波束形成器组是3个结构相同的平行波束形成器,并可采用两种方法进行装置中可调波束形成器组模块参数的初始化:一是可设置正前方为默认当前声音方向,算法开始跟踪功能后可逐渐收敛到真正的当前声源方向;二是可利用本领域公知的麦克风阵列定位算法获取的声源方向作为当前声源方向,算法开始跟踪功能后对当前声源方向进行跟踪。The adjustable beamformer group introduced by the microphone array speech enhancement device with sound source direction tracking function is 3 parallel beamformers with the same structure, and two methods can be used to carry out the module parameters of the adjustable beamformer group in the device Initialization: First, the front can be set as the default current sound direction, and the algorithm can gradually converge to the real current sound source direction after starting the tracking function; second, the sound source direction obtained by the microphone array positioning algorithm known in the art can be used as the current sound direction. Sound source direction, the algorithm will track the current sound source direction after starting the tracking function.
可调波束形成器组模块在初始化阶段获得当前声源方向信息后,按照设定的声源方向调整步长Δ形成在声源方向左右各偏移Δ的左右偏移方向,3个平行波束形成器分别对准声源方向和左右偏移方向,也即在每个平行波束形成器内根据其对准的是目标声源方向或左右偏移方向相应调整麦克风阵列各通道输入信号xi(k)i=0,1,2,…,5的时延补偿值τi(θj)i=0,1,2,…,5,j=0,1,2,由此获得时延补偿后的各通道信号xi,j(k),其中i代表麦克风阵列各通道号,θj代表3个可调波束形成器分别对应指向的当前声源方向,当前声源左偏移、右偏移方向。在本实施例中,θ1为当前声源方向,θ0,θ2分别为当前声源方向的左、右偏移方向,Δ为波束调整步长。即有:After the adjustable beamformer group module obtains the current sound source direction information in the initialization stage, it adjusts the step size Δ according to the set sound source direction to form a left and right offset direction of the sound source direction with a left and right offset of Δ, and three parallel beams are formed The beamformers are respectively aligned to the sound source direction and the left-right offset direction, that is, in each parallel beamformer, the input signals x i (k )i=0,1,2,…,5 time delay compensation value τ i (θ j )i=0,1,2,…,5, j=0,1,2, thus obtained after delay compensation Each channel signal x i, j (k), where i represents the channel number of the microphone array, θ j represents the current sound source direction of the three adjustable beamformers, and the current sound source is offset left and right direction. In this embodiment, θ 1 is the current sound source direction, θ 0 and θ 2 are respectively the left and right offset directions of the current sound source direction, and Δ is the beam adjustment step size. That is:
θ0=θ1-Δ,θ2=θ1+Δθ 0 =θ 1 -Δ, θ 2 =θ 1 +Δ
经过时延补偿-相加波束成形后,可得到分别对准当前声源方向、左右偏移方向的三路麦克风阵列波束形成信号yj(k)j=0,1,2After delay compensation-addition beamforming, three-way microphone array beamforming signals y j (k)j=0,1,2 respectively aligned to the current sound source direction and the left and right offset directions can be obtained
yj(k)=ATXi,j(k)y j (k) = A T X i,j (k)
在本实施例中,采用简单的时延补偿-相加波束成形,固定系数A=[0.2,0.2,0.2,0.2,0.2]。In this embodiment, simple delay compensation-addition beamforming is adopted, and the fixed coefficient A=[0.2, 0.2, 0.2, 0.2, 0.2].
可调平行波束形成器组模块中3个平行可调波束形成器如图4所示,各设有信号输入、声源方向输入两个输入端,以及时延调整后的各通道语音信号输出、波束形成输出两个输出端。每个可调波束形成器可用于形成语音波束对准输入的声源方向,3个平行的可调波束形成器则可分别对准当前声源方向及其左右偏移方向。The three parallel adjustable beamformers in the adjustable parallel beamformer group module are shown in Figure 4, each of which has two input terminals for signal input and sound source direction input, as well as voice signal output of each channel after delay adjustment, Beamforming outputs two outputs. Each adjustable beamformer can be used to form a voice beam to align with the input sound source direction, and 3 parallel adjustable beamformers can respectively align with the current sound source direction and its left and right offset directions.
如图3所示,3个平行可调波束形成器输出的波束形成信号分别输入3个相同的固定系数FIR滤波器,该FIR滤波器的系数由声源方向预期的频率响应计算获得,用于在当前声源方向、左右偏移方向3个波束对准方向形成需要的频率响应。As shown in Fig. 3, the beamforming signals output by the three parallel adjustable beamformers are respectively input into three same fixed-coefficient FIR filters. The coefficients of the FIR filters are obtained by calculating the expected frequency response in the direction of the sound source. The required frequency response is formed in the three beam alignment directions of the current sound source direction and the left and right offset directions.
y'j(k)=FTY(k)y' j (k) = F T Y (k)
同样如图3所示,3个平行可调波束形成器输出的时延调整后的各通道语音信号分别输入3个相同的信号阻塞矩阵,用于滤除当前声源方向、左右偏移方向3个波束对准方向内包含的语音信号。在本实施例中信号阻塞矩阵B按照下式进行配置:Also as shown in Figure 3, the delay-adjusted speech signals of each channel output by the three parallel adjustable beamformers are respectively input into three identical signal blocking matrices, which are used to filter out the current sound source direction, left and right offset
经过阻塞矩阵处理后,3个波束方向对应的信号阻塞输出为:After being processed by the blocking matrix, the signal blocking output corresponding to the three beam directions is:
Uj(k)=BTXi,j(k)U j (k) = B T X i,j (k)
图3所示的3个自适应噪声消除器模块均设有参考噪声、含噪信号两个输入端,并分别以当前声源方向、左右偏移方向3个波束对应的阻塞矩阵输出信号作为参考噪声输入信号,固定系数FIR滤波器对应3个波束的输出信号作为含噪输入信号,本实施例中采用本领域公知的LMS(最小均方误差算法)自适应算法调整自适应噪声消除器的权系数Wj,k进行自适应噪声消除处理。The three adaptive noise canceller modules shown in Figure 3 are equipped with two input terminals of reference noise and noise-containing signal, and take the output signals of the blocking matrix corresponding to the current sound source direction and the three beams in the left and right offset directions as reference Noise input signal, the output signal of fixed coefficient FIR filter corresponding 3 beams is used as noisy input signal, adopts LMS (minimum mean square error algorithm) adaptive algorithm known in the art to adjust the weight of adaptive noise canceller in the present embodiment The coefficients W j,k are subjected to adaptive noise cancellation processing.
此时,3个波束方向对应的自适应噪声消除器输出为:At this time, the output of the adaptive noise canceller corresponding to the three beam directions is:
nj(k)=Wj,k TUj(k)n j (k)=W j,k T U j (k)
经噪声消除处理后,3个波束方向对应的系统语音增强输出为各波束非自适应支路信号输出与自适应噪声消除器的输出之差:After noise elimination processing, the system speech enhancement output corresponding to the three beam directions is the difference between the non-adaptive branch signal output of each beam and the output of the adaptive noise canceller:
sj(k)=y'j(k)-nj(k)s j (k)=y' j (k)-n j (k)
获取了3个波束方向对应的系统语音增强输出sj(k)后,图3所示的方向更新模块以长度L为观察窗长度比较三各波束方向对应的语音增强输出信号的方差Vj,并选择方差最小的波束方向作为新的当前声源方向进行算法更新以最小化语音信号中的残余噪声,本实施例中L取200,即每200次算法迭代计算一次以输出信号方差表示的代价函数进行一次当前声源方向更新。After obtaining the system speech enhancement output s j (k) corresponding to the three beam directions, the direction update module shown in Figure 3 uses the length L as the observation window length to compare the variance V j of the speech enhancement output signals corresponding to the three beam directions, And select the beam direction with the smallest variance as the new current sound source direction to update the algorithm to minimize the residual noise in the speech signal. In this embodiment, L is 200, that is, the cost represented by the output signal variance is calculated once every 200 algorithm iterations The function performs an update of the current sound source direction.
同时,在方向更新模块可通过最佳声源方向输出本方法的语音增强输出sJ(k),并获得新的当前声源方向θ1new=θJ。At the same time, the direction update module can output the speech enhancement output s J (k) of this method through the best sound source direction, and obtain the new current sound source direction θ 1new =θ J .
如图3所示,在获得新的当前声源方向θ1new后,根据此声源方向及其左右偏移方向θ0new,θ2new更新各通道时延补偿值τi(θjnew)i=0,1,2,…,5,j=0,1,2,继续进行算法迭代。在算法迭代过程中,通过3个对准波束方向的自适应噪声消除运算同时实现了声源方向的跟踪和语音增强。As shown in Figure 3, after obtaining the new current sound source direction θ 1new , update the time delay compensation value τ i (θ jnew )i=0 of each channel according to the sound source direction and its left and right offset directions θ 0new , θ 2new ,1,2,...,5, j=0,1,2, continue algorithm iteration. In the iterative process of the algorithm, the tracking of the sound source direction and the speech enhancement are realized simultaneously through three adaptive noise cancellation operations aligned with the beam direction.
在图3中,可调平行波束形成器组模块由3个平行可调波束形成器组成。其中每个可调波束形成器的具体结构如图4所示,各可调波束形成器均设有信号输入、声源方向输入两个输入端,以及时延调整后的各通道语音信号输出、波束形成输出两个输出端。通道0至4输入的语音数据经过各通道时延调整后,一路直接输出时延调整后的各通道数据,另外一路进行各通道叠加获取波束形成输出。其中3个平行可调波束形成器的各通道调整时延分别由输入声源方向、及输入声源方向加减波束调整步长获取。因此,每个可调波束形成器可用于形成语音波束对准输入的声源方向,3个平行的可调波束形成器则可分别对准当前声源方向及其左右偏移方向。In Figure 3, the adjustable parallel beamformer group module consists of three parallel adjustable beamformers. The specific structure of each adjustable beamformer is shown in Figure 4. Each adjustable beamformer is equipped with two input terminals for signal input and sound source direction input, and output of each channel voice signal after delay adjustment, Beamforming outputs two outputs. After the voice data input from channels 0 to 4 is adjusted by the delay of each channel, one channel directly outputs the delay-adjusted data of each channel, and the other channel is superimposed on each channel to obtain the beamforming output. The channel adjustment delays of the three parallel adjustable beamformers are respectively obtained from the input sound source direction, and the input sound source direction plus or minus the beam adjustment step. Therefore, each adjustable beamformer can be used to form a voice beam to align with the input sound source direction, and the three parallel adjustable beamformers can respectively align with the current sound source direction and its left-right offset direction.
在上述工作过程中,需要根据对准的声源方向θj计算麦克风阵列各通道时延补偿值,下面结合图5对此原理进行描述:In the above working process, it is necessary to calculate the time delay compensation value of each channel of the microphone array according to the aligned sound source direction θj . The principle is described below in conjunction with Figure 5:
如图5所示,在本发明实施例中:以5元麦克风线阵所在水平线为X轴,以线阵中间的麦克风m2位置为坐标原点建立定位坐标系,线阵各阵元间距为d,则在目标方位角为θj时,考虑到实施例中声源a处于远场范围,其发出的语音信号到达麦克风线阵时可以认为是平面入射波,则以本实施例线阵的中心阵元麦克风m2作为基准进行相应的时延补偿值计算,即对m2接收的语音信号不作时延补偿,对线阵中各个通道麦克风接收的语音信号xi可根据方位角θj进行如下时延补偿计算(如图5所示):As shown in Figure 5, in the embodiment of the present invention: the horizontal line where the 5-element microphone line array is located is the X-axis, and the position of the microphone m2 in the middle of the line array is used as the coordinate origin to establish a positioning coordinate system, and the distance between each array element of the line array is d, Then when the target azimuth angle is θj , considering that the sound source a is in the far field range in the embodiment, the voice signal sent by it can be considered as a plane incident wave when it reaches the microphone line array, then the central array of the line array in this embodiment The element microphone m2 is used as a reference to calculate the corresponding delay compensation value, that is, the voice signal received by m2 is not compensated for delay, and the voice signal x i received by each channel microphone in the line array can be compensated as follows according to the azimuth angle θ j Calculation (as shown in Figure 5):
xi,j(k)=xi(k')x i,j (k) = x i (k')
其中i为线阵中各通道的编号,C为空气中的声速(本实施例中取340m/s),θj(j=0,1,2)代表三个可调波束形成器分别对应指向的当前声源方向,当前声源左偏移、右偏移方向,fs为麦克风阵列语音信号的采样频率(单位为Hz,本实施例中为16000Hz),round()代表取整运算。各通道语音信号经过三个波束相对应的时延补偿后进行加权叠加,可实现对准当前声源方向、当前声音的左右偏移方向。Where i is the number of each channel in the line array, C is the speed of sound in the air (340m/s in this example), θ j (j=0,1,2) represents the corresponding direction of the three adjustable beamformers The direction of the current sound source, the direction of the current sound source's left offset and right offset, f s is the sampling frequency of the voice signal of the microphone array (the unit is Hz, 16000Hz in this embodiment), and round() represents the rounding operation. The voice signals of each channel are weighted and superimposed after the delay compensation corresponding to the three beams, which can be aligned with the current sound source direction and the left-right offset direction of the current sound.
本发明公开的带声源方向跟踪的麦克风阵列语音增强装置及其方法最大的特点在于借助3个平行的可调波束形成器结合自适应噪声消除器可在语音增强处理的同时进行声源方向的跟踪,同时允许初始化时输入的声源方位有一定误差,由于具有声源方向的跟踪功能,可避免声源方位(DOA)失配造成的信号泄漏。The biggest feature of the microphone array speech enhancement device with sound source direction tracking and its method disclosed in the present invention is that the sound source direction can be adjusted simultaneously with the speech enhancement processing by means of three parallel adjustable beamformers combined with an adaptive noise canceller. Tracking, while allowing a certain error in the input sound source orientation during initialization, due to the tracking function of the sound source direction, it can avoid signal leakage caused by the mismatch of sound source orientation (DOA).
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103200049A CN102831898B (en) | 2012-08-31 | 2012-08-31 | Microphone array voice enhancement device with sound source direction tracking function and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103200049A CN102831898B (en) | 2012-08-31 | 2012-08-31 | Microphone array voice enhancement device with sound source direction tracking function and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102831898A true CN102831898A (en) | 2012-12-19 |
CN102831898B CN102831898B (en) | 2013-11-13 |
Family
ID=47334997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012103200049A Active CN102831898B (en) | 2012-08-31 | 2012-08-31 | Microphone array voice enhancement device with sound source direction tracking function and method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102831898B (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103124386A (en) * | 2012-12-26 | 2013-05-29 | 山东共达电声股份有限公司 | De-noising, echo-eliminating and acute directional microphone for long-distance speech |
CN103308889A (en) * | 2013-05-13 | 2013-09-18 | 辽宁工业大学 | Passive sound source two-dimensional DOA (direction of arrival) estimation method under complex environment |
CN103529726A (en) * | 2013-09-16 | 2014-01-22 | 四川虹微技术有限公司 | Intelligent switch with voice recognition function |
CN104715758A (en) * | 2015-02-06 | 2015-06-17 | 哈尔滨工业大学深圳研究生院 | Branched processing array type speech positioning and enhancement method |
CN104898091A (en) * | 2015-05-29 | 2015-09-09 | 复旦大学 | Microphone array self-calibration sound source positioning system based on iterative optimization algorithm |
CN104936091A (en) * | 2015-05-14 | 2015-09-23 | 科大讯飞股份有限公司 | Intelligent interaction method and system based on circle microphone array |
CN105451182A (en) * | 2016-01-04 | 2016-03-30 | 北京科技大学 | Object identification tracking system and method |
CN105702261A (en) * | 2016-02-04 | 2016-06-22 | 厦门大学 | Sound focusing microphone array long distance sound pickup device having phase self-correcting function |
CN106170681A (en) * | 2014-03-18 | 2016-11-30 | 罗伯特·博世有限公司 | Adaptive acoustic intensity analysis instrument |
CN106328156A (en) * | 2016-08-22 | 2017-01-11 | 华南理工大学 | Microphone array voice reinforcing system and microphone array voice reinforcing method with combination of audio information and video information |
CN106409306A (en) * | 2016-09-19 | 2017-02-15 | 宁波高新区敦和科技有限公司 | Intelligent system obtaining human voice and obtaining method based on the system |
CN106448693A (en) * | 2016-09-05 | 2017-02-22 | 华为技术有限公司 | Speech signal processing method and apparatus |
CN106531156A (en) * | 2016-10-19 | 2017-03-22 | 兰州交通大学 | Speech signal enhancement technology method based on indoor multi-mobile source real-time processing |
CN106710603A (en) * | 2016-12-23 | 2017-05-24 | 上海语知义信息技术有限公司 | Speech recognition method and system based on linear microphone array |
CN106716526A (en) * | 2014-09-05 | 2017-05-24 | 汤姆逊许可公司 | Method and apparatus for enhancing sound sources |
CN106992010A (en) * | 2017-06-02 | 2017-07-28 | 厦门大学 | Without the microphone array speech enhancement device under the conditions of direct sound wave |
CN107017003A (en) * | 2017-06-02 | 2017-08-04 | 厦门大学 | A kind of microphone array far field speech sound enhancement device |
CN107925821A (en) * | 2015-08-14 | 2018-04-17 | 诺基亚技术有限公司 | Monitoring |
CN108028049A (en) * | 2015-09-14 | 2018-05-11 | 美商楼氏电子有限公司 | Microphone signal merges |
CN108366309A (en) * | 2018-02-07 | 2018-08-03 | 广东小天才科技有限公司 | Sound collection method, sound collection device and electronic equipment |
CN108370470A (en) * | 2015-12-04 | 2018-08-03 | 森海塞尔电子股份有限及两合公司 | Voice acquisition methods in conference system and conference system with microphone array system |
CN108520754A (en) * | 2018-04-09 | 2018-09-11 | 广东思派康电子科技有限公司 | A noise reduction conference machine |
CN108520756A (en) * | 2018-03-20 | 2018-09-11 | 北京时代拓灵科技有限公司 | A kind of method and device of speaker's speech Separation |
CN108877827A (en) * | 2017-05-15 | 2018-11-23 | 福州瑞芯微电子股份有限公司 | Voice-enhanced interaction method and system, storage medium and electronic equipment |
CN109151672A (en) * | 2018-09-19 | 2019-01-04 | 西安交通大学 | Audio source tracking system and its control method based on array microphone |
CN109308908A (en) * | 2017-07-27 | 2019-02-05 | 深圳市冠旭电子股份有限公司 | A kind of voice interactive method and device |
CN109565629A (en) * | 2016-06-20 | 2019-04-02 | 诺基亚技术有限公司 | Distributed audio capture and mixing control |
CN109884591A (en) * | 2019-02-25 | 2019-06-14 | 南京理工大学 | A sound signal enhancement method for multi-rotor UAV based on microphone array |
TWI667926B (en) * | 2017-01-26 | 2019-08-01 | 大陸商芋頭科技(杭州)有限公司 | Pick-up method and system based on microphone array |
CN110197671A (en) * | 2019-06-17 | 2019-09-03 | 深圳壹秘科技有限公司 | Orient sound pick-up method, sound pick-up outfit and storage medium |
CN110495185A (en) * | 2018-03-09 | 2019-11-22 | 深圳市汇顶科技股份有限公司 | Audio signal processing method and device |
WO2020024816A1 (en) * | 2018-07-30 | 2020-02-06 | 阿里巴巴集团控股有限公司 | Audio signal processing method and apparatus, device, and storage medium |
CN110782913A (en) * | 2019-10-30 | 2020-02-11 | 通用微(深圳)科技有限公司 | Implementation of beam forming voice enhancement algorithm based on general MCU |
CN111201784A (en) * | 2017-10-17 | 2020-05-26 | 惠普发展公司,有限责任合伙企业 | Eliminating spatial conflicts due to estimated direction of arrival of speech |
CN111508515A (en) * | 2013-12-18 | 2020-08-07 | 思睿逻辑国际半导体有限公司 | Voice command triggered speech enhancement |
CN111540371A (en) * | 2020-04-22 | 2020-08-14 | 深圳市友杰智新科技有限公司 | Method and device for beamforming microphone array and computer equipment |
CN111755021A (en) * | 2019-04-01 | 2020-10-09 | 北京京东尚科信息技术有限公司 | Speech enhancement method and device based on binary microphone array |
CN111863000A (en) * | 2019-04-30 | 2020-10-30 | 北京嘀嘀无限科技发展有限公司 | Audio processing method and device, electronic equipment and readable storage medium |
CN112669871A (en) * | 2020-12-30 | 2021-04-16 | 西安讯飞超脑信息科技有限公司 | Signal processing method, electronic device and storage device |
CN112839897A (en) * | 2018-09-03 | 2021-05-25 | G·芬克拜纳 | Lift system, method of controlling lift system and control system therefor |
CN112951273A (en) * | 2021-02-02 | 2021-06-11 | 郑州大学 | Digit control machine tool cutter wearing and tearing monitoring device based on microphone array and machine vision |
CN113053408A (en) * | 2021-03-12 | 2021-06-29 | 云知声智能科技股份有限公司 | Sound source separation method and device |
US11064291B2 (en) | 2015-12-04 | 2021-07-13 | Sennheiser Electronic Gmbh & Co. Kg | Microphone array system |
CN113345469A (en) * | 2021-05-24 | 2021-09-03 | 北京小米移动软件有限公司 | Voice signal processing method and device, electronic equipment and storage medium |
CN113447270A (en) * | 2021-07-23 | 2021-09-28 | 上海工程技术大学 | Railway vehicle traction motor bearing acoustic monitoring system and method |
CN113539288A (en) * | 2021-07-22 | 2021-10-22 | 南京华捷艾米软件科技有限公司 | Voice signal denoising method and device |
CN113763981A (en) * | 2020-06-01 | 2021-12-07 | 南京工业大学 | Main lobe directional adjustable differential microphone array beam forming design and system |
WO2022012206A1 (en) * | 2020-07-17 | 2022-01-20 | 腾讯科技(深圳)有限公司 | Audio signal processing method, device, equipment, and storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1743323A1 (en) * | 2004-04-28 | 2007-01-17 | Koninklijke Philips Electronics N.V. | Adaptive beamformer, sidelobe canceller, handsfree speech communication device |
CN1967658A (en) * | 2005-11-14 | 2007-05-23 | 北京大学科技开发部 | Small scale microphone array speech enhancement system and method |
JP2007523514A (en) * | 2003-11-24 | 2007-08-16 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Adaptive beamformer, sidelobe canceller, method, apparatus, and computer program |
CN101088307A (en) * | 2003-12-24 | 2007-12-12 | 诺基亚公司 | Method for generating noise references for generalized sidelobe canceling |
CN101964934A (en) * | 2010-06-08 | 2011-02-02 | 浙江大学 | Binary microphone microarray voice beam forming method |
CN102324237A (en) * | 2011-05-30 | 2012-01-18 | 深圳市华新微声学技术有限公司 | Microphone array voice wave beam formation method, speech signal processing device and system |
-
2012
- 2012-08-31 CN CN2012103200049A patent/CN102831898B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007523514A (en) * | 2003-11-24 | 2007-08-16 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Adaptive beamformer, sidelobe canceller, method, apparatus, and computer program |
CN101088307A (en) * | 2003-12-24 | 2007-12-12 | 诺基亚公司 | Method for generating noise references for generalized sidelobe canceling |
KR100853018B1 (en) * | 2003-12-24 | 2008-08-19 | 노키아 코포레이션 | How to Generate Noise References for Generalized Sidelobe Removal |
EP1743323A1 (en) * | 2004-04-28 | 2007-01-17 | Koninklijke Philips Electronics N.V. | Adaptive beamformer, sidelobe canceller, handsfree speech communication device |
CN1967658A (en) * | 2005-11-14 | 2007-05-23 | 北京大学科技开发部 | Small scale microphone array speech enhancement system and method |
CN101964934A (en) * | 2010-06-08 | 2011-02-02 | 浙江大学 | Binary microphone microarray voice beam forming method |
CN102324237A (en) * | 2011-05-30 | 2012-01-18 | 深圳市华新微声学技术有限公司 | Microphone array voice wave beam formation method, speech signal processing device and system |
Non-Patent Citations (3)
Title |
---|
王冬霞: "麦克风阵列语音增强的若干方法研究", 《中国博士学位论文全文数据库》 * |
胡曙辉: "麦克风阵列语音增强算法研究", 《中国优秀硕士学位论文全文数据库》 * |
金乃高等: "基于分层采样粒子滤波的麦克风阵列说话人跟踪方法", 《电子学报》 * |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103124386A (en) * | 2012-12-26 | 2013-05-29 | 山东共达电声股份有限公司 | De-noising, echo-eliminating and acute directional microphone for long-distance speech |
CN103308889A (en) * | 2013-05-13 | 2013-09-18 | 辽宁工业大学 | Passive sound source two-dimensional DOA (direction of arrival) estimation method under complex environment |
CN103308889B (en) * | 2013-05-13 | 2014-07-02 | 辽宁工业大学 | Passive sound source two-dimensional DOA (direction of arrival) estimation method under complex environment |
CN103529726B (en) * | 2013-09-16 | 2016-06-01 | 四川虹微技术有限公司 | A kind of intelligent switch with speech identifying function |
CN103529726A (en) * | 2013-09-16 | 2014-01-22 | 四川虹微技术有限公司 | Intelligent switch with voice recognition function |
CN111508515A (en) * | 2013-12-18 | 2020-08-07 | 思睿逻辑国际半导体有限公司 | Voice command triggered speech enhancement |
CN106170681A (en) * | 2014-03-18 | 2016-11-30 | 罗伯特·博世有限公司 | Adaptive acoustic intensity analysis instrument |
CN106716526A (en) * | 2014-09-05 | 2017-05-24 | 汤姆逊许可公司 | Method and apparatus for enhancing sound sources |
CN106716526B (en) * | 2014-09-05 | 2021-04-13 | 交互数字麦迪逊专利控股公司 | Method and apparatus for enhancing sound sources |
CN104715758A (en) * | 2015-02-06 | 2015-06-17 | 哈尔滨工业大学深圳研究生院 | Branched processing array type speech positioning and enhancement method |
CN104936091A (en) * | 2015-05-14 | 2015-09-23 | 科大讯飞股份有限公司 | Intelligent interaction method and system based on circle microphone array |
CN104936091B (en) * | 2015-05-14 | 2018-06-15 | 讯飞智元信息科技有限公司 | Intelligent interactive method and system based on circular microphone array |
CN104898091B (en) * | 2015-05-29 | 2017-07-25 | 复旦大学 | Microphone array self-calibration sound source localization system based on iterative optimization algorithm |
CN104898091A (en) * | 2015-05-29 | 2015-09-09 | 复旦大学 | Microphone array self-calibration sound source positioning system based on iterative optimization algorithm |
CN107925821A (en) * | 2015-08-14 | 2018-04-17 | 诺基亚技术有限公司 | Monitoring |
CN107925821B (en) * | 2015-08-14 | 2020-12-11 | 诺基亚技术有限公司 | Monitoring |
CN108028049A (en) * | 2015-09-14 | 2018-05-11 | 美商楼氏电子有限公司 | Microphone signal merges |
CN108370470A (en) * | 2015-12-04 | 2018-08-03 | 森海塞尔电子股份有限及两合公司 | Voice acquisition methods in conference system and conference system with microphone array system |
US10834499B2 (en) | 2015-12-04 | 2020-11-10 | Sennheiser Electronic Gmbh & Co. Kg | Conference system with a microphone array system and a method of speech acquisition in a conference system |
US11064291B2 (en) | 2015-12-04 | 2021-07-13 | Sennheiser Electronic Gmbh & Co. Kg | Microphone array system |
US11765498B2 (en) | 2015-12-04 | 2023-09-19 | Sennheiser Electronic Gmbh & Co. Kg | Microphone array system |
US11509999B2 (en) | 2015-12-04 | 2022-11-22 | Sennheiser Electronic Gmbh & Co. Kg | Microphone array system |
CN108370470B (en) * | 2015-12-04 | 2021-01-12 | 森海塞尔电子股份有限及两合公司 | Conference system and voice acquisition method in conference system |
US11381906B2 (en) | 2015-12-04 | 2022-07-05 | Sennheiser Electronic Gmbh & Co. Kg | Conference system with a microphone array system and a method of speech acquisition in a conference system |
CN105451182A (en) * | 2016-01-04 | 2016-03-30 | 北京科技大学 | Object identification tracking system and method |
CN105451182B (en) * | 2016-01-04 | 2018-11-27 | 北京科技大学 | A kind of target identification tracking system and method |
CN105702261A (en) * | 2016-02-04 | 2016-06-22 | 厦门大学 | Sound focusing microphone array long distance sound pickup device having phase self-correcting function |
CN105702261B (en) * | 2016-02-04 | 2019-08-27 | 厦门大学 | Acoustic focusing microphone array long-distance pickup device with phase self-correction function |
CN109565629B (en) * | 2016-06-20 | 2021-02-26 | 诺基亚技术有限公司 | Method and apparatus for controlling processing of audio signals |
CN109565629A (en) * | 2016-06-20 | 2019-04-02 | 诺基亚技术有限公司 | Distributed audio capture and mixing control |
CN106328156B (en) * | 2016-08-22 | 2020-02-18 | 华南理工大学 | A microphone array speech enhancement system and method for audio and video information fusion |
CN106328156A (en) * | 2016-08-22 | 2017-01-11 | 华南理工大学 | Microphone array voice reinforcing system and microphone array voice reinforcing method with combination of audio information and video information |
CN106448693B (en) * | 2016-09-05 | 2019-11-29 | 华为技术有限公司 | A kind of audio signal processing method and device |
CN106448693A (en) * | 2016-09-05 | 2017-02-22 | 华为技术有限公司 | Speech signal processing method and apparatus |
CN106409306A (en) * | 2016-09-19 | 2017-02-15 | 宁波高新区敦和科技有限公司 | Intelligent system obtaining human voice and obtaining method based on the system |
CN106531156A (en) * | 2016-10-19 | 2017-03-22 | 兰州交通大学 | Speech signal enhancement technology method based on indoor multi-mobile source real-time processing |
CN106710603B (en) * | 2016-12-23 | 2019-08-06 | 云知声(上海)智能科技有限公司 | Utilize the audio recognition method and system of linear microphone array |
CN106710603A (en) * | 2016-12-23 | 2017-05-24 | 上海语知义信息技术有限公司 | Speech recognition method and system based on linear microphone array |
TWI667926B (en) * | 2017-01-26 | 2019-08-01 | 大陸商芋頭科技(杭州)有限公司 | Pick-up method and system based on microphone array |
CN108877827B (en) * | 2017-05-15 | 2021-04-20 | 福州瑞芯微电子股份有限公司 | Voice-enhanced interaction method and system, storage medium and electronic equipment |
CN108877827A (en) * | 2017-05-15 | 2018-11-23 | 福州瑞芯微电子股份有限公司 | Voice-enhanced interaction method and system, storage medium and electronic equipment |
CN107017003A (en) * | 2017-06-02 | 2017-08-04 | 厦门大学 | A kind of microphone array far field speech sound enhancement device |
CN106992010B (en) * | 2017-06-02 | 2020-02-21 | 厦门大学 | Microphone array speech enhancement device without direct sound |
CN106992010A (en) * | 2017-06-02 | 2017-07-28 | 厦门大学 | Without the microphone array speech enhancement device under the conditions of direct sound wave |
CN109308908A (en) * | 2017-07-27 | 2019-02-05 | 深圳市冠旭电子股份有限公司 | A kind of voice interactive method and device |
US11317232B2 (en) | 2017-10-17 | 2022-04-26 | Hewlett-Packard Development Company, L.P. | Eliminating spatial collisions due to estimated directions of arrival of speech |
CN111201784A (en) * | 2017-10-17 | 2020-05-26 | 惠普发展公司,有限责任合伙企业 | Eliminating spatial conflicts due to estimated direction of arrival of speech |
CN111201784B (en) * | 2017-10-17 | 2021-09-07 | 惠普发展公司,有限责任合伙企业 | Communication system, method for communication and video conference system |
CN108366309A (en) * | 2018-02-07 | 2018-08-03 | 广东小天才科技有限公司 | Sound collection method, sound collection device and electronic equipment |
CN110495185A (en) * | 2018-03-09 | 2019-11-22 | 深圳市汇顶科技股份有限公司 | Audio signal processing method and device |
CN110495185B (en) * | 2018-03-09 | 2022-07-01 | 深圳市汇顶科技股份有限公司 | Voice signal processing method and device |
CN108520756A (en) * | 2018-03-20 | 2018-09-11 | 北京时代拓灵科技有限公司 | A kind of method and device of speaker's speech Separation |
CN108520756B (en) * | 2018-03-20 | 2020-09-01 | 北京时代拓灵科技有限公司 | Method and device for separating speaker voice |
CN108520754A (en) * | 2018-04-09 | 2018-09-11 | 广东思派康电子科技有限公司 | A noise reduction conference machine |
WO2020024816A1 (en) * | 2018-07-30 | 2020-02-06 | 阿里巴巴集团控股有限公司 | Audio signal processing method and apparatus, device, and storage medium |
CN112839897A (en) * | 2018-09-03 | 2021-05-25 | G·芬克拜纳 | Lift system, method of controlling lift system and control system therefor |
CN112839897B (en) * | 2018-09-03 | 2023-04-11 | G·芬克拜纳 | Lifting system, method for controlling lifting system and control system for system |
CN109151672A (en) * | 2018-09-19 | 2019-01-04 | 西安交通大学 | Audio source tracking system and its control method based on array microphone |
CN109884591A (en) * | 2019-02-25 | 2019-06-14 | 南京理工大学 | A sound signal enhancement method for multi-rotor UAV based on microphone array |
CN111755021B (en) * | 2019-04-01 | 2023-09-01 | 北京京东尚科信息技术有限公司 | Voice enhancement method and device based on binary microphone array |
CN111755021A (en) * | 2019-04-01 | 2020-10-09 | 北京京东尚科信息技术有限公司 | Speech enhancement method and device based on binary microphone array |
CN111863000A (en) * | 2019-04-30 | 2020-10-30 | 北京嘀嘀无限科技发展有限公司 | Audio processing method and device, electronic equipment and readable storage medium |
CN110197671A (en) * | 2019-06-17 | 2019-09-03 | 深圳壹秘科技有限公司 | Orient sound pick-up method, sound pick-up outfit and storage medium |
CN110782913A (en) * | 2019-10-30 | 2020-02-11 | 通用微(深圳)科技有限公司 | Implementation of beam forming voice enhancement algorithm based on general MCU |
CN111540371A (en) * | 2020-04-22 | 2020-08-14 | 深圳市友杰智新科技有限公司 | Method and device for beamforming microphone array and computer equipment |
CN111540371B (en) * | 2020-04-22 | 2020-11-03 | 深圳市友杰智新科技有限公司 | Method and device for beamforming microphone array and computer equipment |
CN113763981B (en) * | 2020-06-01 | 2024-05-24 | 南京工业大学 | Differential microphone array beam forming design and system with adjustable main lobe direction |
CN113763981A (en) * | 2020-06-01 | 2021-12-07 | 南京工业大学 | Main lobe directional adjustable differential microphone array beam forming design and system |
WO2022012206A1 (en) * | 2020-07-17 | 2022-01-20 | 腾讯科技(深圳)有限公司 | Audio signal processing method, device, equipment, and storage medium |
US12009006B2 (en) | 2020-07-17 | 2024-06-11 | Tencent Technology (Shenzhen) Company Limited | Audio signal processing method, apparatus and device, and storage medium |
CN112669871A (en) * | 2020-12-30 | 2021-04-16 | 西安讯飞超脑信息科技有限公司 | Signal processing method, electronic device and storage device |
CN112951273B (en) * | 2021-02-02 | 2024-03-29 | 郑州大学 | Numerical control machine tool cutter abrasion monitoring device based on microphone array and machine vision |
CN112951273A (en) * | 2021-02-02 | 2021-06-11 | 郑州大学 | Digit control machine tool cutter wearing and tearing monitoring device based on microphone array and machine vision |
CN113053408B (en) * | 2021-03-12 | 2022-06-14 | 云知声智能科技股份有限公司 | Sound source separation method and device |
CN113053408A (en) * | 2021-03-12 | 2021-06-29 | 云知声智能科技股份有限公司 | Sound source separation method and device |
CN113345469A (en) * | 2021-05-24 | 2021-09-03 | 北京小米移动软件有限公司 | Voice signal processing method and device, electronic equipment and storage medium |
CN113539288A (en) * | 2021-07-22 | 2021-10-22 | 南京华捷艾米软件科技有限公司 | Voice signal denoising method and device |
CN113447270A (en) * | 2021-07-23 | 2021-09-28 | 上海工程技术大学 | Railway vehicle traction motor bearing acoustic monitoring system and method |
CN113447270B (en) * | 2021-07-23 | 2023-09-01 | 上海工程技术大学 | Acoustic monitoring system and method for traction motor bearing of railway vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN102831898B (en) | 2013-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102831898A (en) | Microphone array voice enhancement device with sound source direction tracking function and method thereof | |
CN102969002B (en) | Microphone array speech enhancement device capable of suppressing mobile noise | |
CN108694957B (en) | Echo Cancellation Design Method Based on Circular Microphone Array Beamforming | |
CN100535992C (en) | Small scale microphone array speech enhancement system and method | |
CN102324237B (en) | Microphone-array speech-beam forming method as well as speech-signal processing device and system | |
CN107017003B (en) | A microphone array far-field speech enhancement device | |
CN106782590B (en) | Microphone array beamforming method based on reverberation environment | |
US7123727B2 (en) | Adaptive close-talking differential microphone array | |
US20190208318A1 (en) | Microphone array auto-directive adaptive wideband beamforming using orientation information from mems sensors | |
US8204252B1 (en) | System and method for providing close microphone adaptive array processing | |
EP1658751B1 (en) | Audio input system | |
CN100524465C (en) | A method and device for noise elimination | |
CN103544959A (en) | Verbal system and method based on voice enhancement of wireless locating microphone array | |
CN105702261B (en) | Acoustic focusing microphone array long-distance pickup device with phase self-correction function | |
CN109490822B (en) | Voice DOA estimation method based on ResNet | |
CN110085247B (en) | Double-microphone noise reduction method for complex noise environment | |
CN106992010B (en) | Microphone array speech enhancement device without direct sound | |
CN103426440A (en) | Voice endpoint detection device and voice endpoint detection method utilizing energy spectrum entropy spatial information | |
KR20060051582A (en) | Multichannel Adaptive Speech Signal Processing for Noise Reduction | |
CN205139359U (en) | Based on indoor sound localization system of FPGA microphone array | |
CN102664023A (en) | Method for optimizing speech enhancement of microphone array | |
WO2015106401A1 (en) | Speech processing method and speech processing apparatus | |
CN107167770B (en) | A microphone array sound source localization device under reverberation conditions | |
CN110383378B (en) | Differential beam forming method and module, signal processing method and device and chip | |
CN110830870A (en) | Earphone wearer voice activity detection system based on microphone technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |