CN102819549B - 基于最小二乘距离特征曲线的人体运动序列分割方法 - Google Patents

基于最小二乘距离特征曲线的人体运动序列分割方法 Download PDF

Info

Publication number
CN102819549B
CN102819549B CN201210110802.9A CN201210110802A CN102819549B CN 102819549 B CN102819549 B CN 102819549B CN 201210110802 A CN201210110802 A CN 201210110802A CN 102819549 B CN102819549 B CN 102819549B
Authority
CN
China
Prior art keywords
therbligs
motion
human
human motion
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210110802.9A
Other languages
English (en)
Other versions
CN102819549A (zh
Inventor
张强
刘瑞
魏小鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201210110802.9A priority Critical patent/CN102819549B/zh
Publication of CN102819549A publication Critical patent/CN102819549A/zh
Application granted granted Critical
Publication of CN102819549B publication Critical patent/CN102819549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Or Creating Images (AREA)

Abstract

本发明公开了一种基于最小二乘距离特征曲线的人体运动序列分割方法,该方法在人体运动捕捉数据的基础上,引入人体运动姿态之间的最小二乘距离做为人体运动数据的特征,定义姿态之间的相似度,将人体运动序列简化为一条运动曲线,并通过对人体运动规律的分析将人体运动序列分割为具有特定语义的运动片段。本发明方法定义的人体运动姿态相似度符合人的主观判断,分割效果与手动分割结果基本一致。从而为运动数据的检索与合成等数据重用技术提供数据保障和技术支持。

Description

基于最小二乘距离特征曲线的人体运动序列分割方法
技术领域
本发明涉及一种三维人体捕捉数据智能处理,主要用于运动数据的检索与合成等数据重用技术。
背景技术
随着计算机动画技术的发展,利用运动捕捉数据驱动人物模型生成动画成为3D动画制作中的一项关键技术。近年来,运动捕捉技术发展迅速,运动捕捉设备逐渐普及,随着运动捕捉数据的积累和数据规模的不断扩大,出现了很多商业和非商业的运动捕捉数据库,为用户提供丰富的数据资源。然而由于商业运动捕捉设备比较昂贵,运行维护成本较高且数据采集过程费时费力等原因,造成了数据采集成本较高。同时,对于同一动作进行重复采集也会造成不必要的资源浪费。人体运动捕捉数据重用技术,通过对运动捕捉数据库的检索获取需要的数据,并通过运动编辑与合成生成新的运动序列进行动画制作,这样不仅可以节约动画制作的成本,而且提高了动画制作的效率,因此运动捕捉数据重用技术成为近年来国内外研究的一个热点。
运动数据分割技术作为计算机动画中的一个研究热点,其目的是将包含多个动作的长运动序列分割为具有特定语义的运动片段,这项技术在运动检索、运动合成、运动压缩、运动数据分析与处理等方面具有十分重要的作用和意义。虽然直接对人体运动片段进行捕捉或者通过人工手动对运动序列进行分割可以获取具有固定语义的运动片段,但是由于人体运动复杂多样,而且运动数据量庞大,通过这两种方法获取运动片段不但成本高而且效率低下,在实际应用中很少使用。因此如何设计一种人体运动序列自动分割方法成为计算机动画中亟待解决的一个问题。
发明内容
本发明的目的在于:提出一种人体运动序列自动分割方法,采用最小二乘距离将运动序列简化为一条距离特征曲线,通过提取曲线主要极值点,将运动序列分割为动素单元,最后根据运动的特征将含有多个动作的长运动序列分割为具有特定语义的运动片段(例如:“走”、“跑”、“跳跃”等)。本发明方法定义的人体运动姿态相似度符合人的主观判断,分割效果与手动分割结果基本一致,从而为运动数据的检索与合成等数据重用技术提供数据保障和技术支持。
为了达到上述目的,本发明提供了一种基于最小二乘距离特征曲线的人体运动序列分割方法,包括如下步骤:
S1、获得人体运动序列;
S2、选择人体姿态模板,用作最小二乘距离的比较标准;
S3、利用奇异值分解的方法计算运动序列中每帧数据与模板的最小二乘距离,将人体运动序列简化为二维特征曲线;
S4、利用小波分析的方法对运动特征曲线进行降噪处理;
S5、提取特征曲线中的主要极值顶点,将运动序列分割为动素;
S6、对动素进行相似聚类,获得动素的标号序列;
S7、对运动序列进行语义分割:首先利用人体运动层次化结构特征,根据标号序列中动素变化规律对人体运动序列进行粗略语义分割,然后对语义动作进行边界探测,提高语义分割的准确性;
S8、运动序列分割结果输出。
其中,所述步骤S3的过程为:
首先,对于载入的人体运动序列,根据骨架结构信息选取决定姿态的关节点,并获得关于所述关节点的每帧人体运动数据;
然后,利用奇异值分解的方法计算每帧人体运动数据与S2中人体姿态模板之间的最小二乘距离;
最后,把最小二乘距离作为特征,将人体运动序列简化为一条二维特征曲线。
所述步骤S5的过程为:根据运动曲线变化提取所有局部极值顶点,通过设定阈值过滤相邻且取值相近的顶点,获得主要的极值点;把主要极值顶点作为动素分割点,将运动序列分割为动素。优选方式下,S5中所述阈值选定为:6.5。
此外,步骤S1中人体运动序列可从现有技术的人体运动库中导入数据(例如卡内基梅隆大学的CMU运动捕捉数据库),也可自行获得或建立数据。
步骤S7中在动素分割的基础上对运动序列进行语义分割的方法具体描述为:根据人体运动层次化结构中不同语义动作由不同动素或按照不同顺序组合而成这一特征,首先按照动素变化规律将人体运动序列分割为周期运动和非周期运动,然后对于非周期运动可能含有多个语义动作的情况根据动素幅度变化对非周期运动进行再次分割,最终完成对整个运动序列的分割。具体说,步骤S7的过程为:对于周期运动:根据动素的周期变化提取出所有周期语义运动动作。对于非周期动作,有三种情况:运动序列短,则将其视为两个相邻语义动作之间的过渡动作(运动序列短的实例:包含动素少于两个或动作持续时间小于0.5秒);运动序列长,则通过相邻动素的变化幅度对其进行再次分割;如果相邻动素变化幅度相差过大时,在两动素连接处设置一个分割点;最终,完成对整个运动序列的分割。此外,当两个语义动作之间存在过渡动作时,进行分割点位置校正:通过将过渡动作与语义动作中相应动素进行逐帧相似比较,获得分割点位置。
本发明基于最小二乘距离特征曲线的人体运动序列分割方法,在人体运动捕捉数据的基础上,引入人体运动姿态之间的最小二乘距离做为人体运动数据的特征,定义姿态之间的相似度,将人体运动序列简化为一条运动曲线,并通过对人体运动规律的分析将人体运动序列分割为具有特定语义的运动片段。首先,选取一帧数据作为模板,计算运动序列中每帧数据与模板的最小二乘距离,由于人体运动捕捉数据采样频率很高,将相邻最小二乘距离相连接便形成一条连续变化的曲线;然后通过小波滤波,剔除曲线中的局部噪声,使曲线变得平滑光顺;然后通过提取曲线中的主要极值顶点,所有极值顶点将运动序列分割为动素序列;最后通过对动素进行聚类,根据人体运动的周期规律和幅度变化将人体运动序列分割为具有特定语义的运动片段。该方法定义的人体运动姿态相似度符合人的主观判断,分割效果与手动分割结果基本一致。
本发明与现有技术相比具有以下优点:
1、本发明提出的基于最小二乘距离特征曲线的人体运动序列分割方法实现了人体运动序列的自动分割,分割前无需知道运动序列中含有的运动种类及数量。
2、在本发明中定义的基于最小二乘距离的人体相似度度量方法符合人的主观认知,分割结果与人工手动分割结果基本一致。
附图说明
图1是本发明算法流程图;
图2是人体运动层次结构示意图;
图3是姿态与模板之间的最小二乘距离一个实施例的状态示意图;
图4是以图3所示的最小二乘距离作为特征的人体运动序列曲线示意图;
图5是小波分解示意图;
图6是主要极值点提取示意图;
图7是语义分割结果示意图。
具体实施方式
本发明的技术方案是:首先,计算运动序列中每帧数据与一个固定姿态模板之间的最小二乘距离,将运动序列简化为一条运动特征曲线,使用小波滤波对特征曲线进行降噪处理;然后提取运动曲线中的主要极值点,将相邻极值点之间的部分定义为动素单元,得到一个动素序列;最后,对动素单元进行相似聚类,根据人体运动的层次化结构特征,利用不同的语义动作由不同的动素单元按不同顺序组合而成这一特性,将运动序列分割为具有特定语义特征的运动片段,并对每个语义片段进行边界探测,实现语义动作的精确分割。附图1所示为本发明算法流程图,其具体包括以下技术环节:
1.人体运动层次化结构分析
人体运动是一个高级而且复杂的行为运动过程,而且具有层次化结构特征,根据主观认知的不同可将人体运动分为三个层次结构,即:行为层、语义动作层、动素层。第一层为行为层,在行为层中,运动数据为长运动序列,包含多个语义动作,运动具有主观目的性,为了实现某一目的而将多个动作组合在一起;第二层为语义动作层,在这一层中的动作为具有特定语义的单独动作,例如“走、跑、跳、踢”等;最底层为动素层,这一层中的动作为组成运动的最小基本单位,可将其看做是语义动作的分解,每个动素为部分身体的运动过程,例如“左脚\右脚向前\向后移动”。如附图2所示。
在运动层次化结构里面,低层次的运动按照不同的顺序结构组合成高级的运动,并最终形成完整的人体动作。本发明的目的是在语义动作层将人体运动分割为具有特定语义的动作片段,由于不同的语义动作片段,其包含的动素及动素组合方式都不相同,例如一个“走然后捡东西”的运动序列,其动素组成可表示为{12121234},其中{12}表示一个走的循环序列,{34}表示弯腰然后直立的过程,这种通过动素表示运动序列的方法,不仅简单直观,而且利于运动序列的语义分割。因此本发明的分割思想为通过运动曲线的极值点将人体运动分割为动素,然后通过对动素序列变化规律的分析实现语义动作片段的分割。
2.运动数据格式
本专利所述方法针对人体运动捕捉数据,数据格式采用BVH文件数据格式,BVH格式文件由两部分组成:骨架信息和数据块。骨架信息通过树型结构来表示,人体关节用节点表示,肢体用节点之间的连接表示,整个骨架模型表示为一个球棒模型。
人体运动捕捉数据是对人体运动姿态的连续采集,可将人体运动数据视为在离散时间点采样得到的人体姿态序列,并用下面公式来表示:
M={F(1),F(2),…,F(n)},
其中M是一个具有n帧运动数据的运动序列,F(i)表示运动数据M中的第i帧。由于在本方法中,数据帧之间的最小二乘距离需要由关节点三维空间坐标计算得到,因此将数据帧F(i)如下表示:
F(i)={pi,1,pi,2,…,pi,m}
其中pi,k表示F(i)中第k个关节点的三维坐标,每个关节的三维空间坐标可通过BVH数据中关节的旋转变量以及其父关节的坐标计算得到。
3.最小二乘距离曲线[利用奇异值分解(SVD)的方法]
由于人体运动数据维数较高,在对数据进行处理的过程中容易陷入维数灾难,在本发明中,引入一个姿态模板,通过计算每一帧运动数据与姿态模板的最小二乘距离,从而将运动数据简化为一条二维运动曲线。下面给出最小二乘距离曲线的计算过程。
给定一个姿态模板Q={q1,q2,…qm}以及一帧运动数据F={p1,p2,…,pm},作为相对应的两个三维空间点集具有以下关系:
pi=Rqi+T+Ni,i=1,…,m
这里,R为一个3*3的旋转矩阵,T为平移向量,Ni为噪声向量。那么经仿射变换[R,T]作用之后,姿态F与模板姿态Q之间的距离可以表示为:
d = Σ i = 1 m | | N i | | 2 = Σ i = 1 m | | p i - ( Rq i + T ) | | 2
容易理解,存在一个仿射变换[Rs,Ts]使得距离d最小,即:
d min = Δ Σ i = 1 m | | p i - ( R s q i + T s ) | | 2
其中,
[ R s , T s ] = arg min [ R , T ] Σ i = 1 m | | p i - ( Rq i + T ) | | 2
则dmin即为F与Q之间的最小二乘距离。如附图3所示。
为了计算最小二乘距离,首先需要计算使其达到最小二乘距离的空间仿射变换[Rs,Ts],这里我们采用奇异值分解的方法对以上问题进行求解,具体过程如下:
给定两个相对应的三维点集P={pi},P′={p′i},其最小二乘距离仿射变换[Rs,Ts]可经过以下6步计算得到:
步骤1、分别计算P与P′的质心p,p′;
步骤2、分别计算向量序列qi=pi-p,q′i=p′i-p′;
步骤3、计算3×3矩阵这里表示q′i的转置;
步骤4、对矩阵H进行奇异值分解,H=UΛVt,计算X=VUt
步骤5、计算矩阵X的行列式,如果det(X)=1,旋转矩阵为R=VUt,如果det(X)=-1,令V′=(v1,v2,-v3),旋转矩阵为Rs=V′Ut
步骤6、计算平移向量Ts=p′-Rp;
按照上面的步骤我们可以求得每帧数据与姿态模板之间的最小二乘距离,在引入的数据中包含28个关节点,而人体运动姿态主要由其中19个关节点决定,因此本方法在计算最小二乘距离过程中只考虑这19个主要关节点以减少计算量。然后将相邻运动数据求得的最小二乘距离依次相连便形成了一条二维曲线。如附图4所示。
4.运动序列分割
在运动序列中,运动的极限姿态往往对应于运动曲线中的顶点位置,因此本发明采用的运动序列分割方法的基本思想是从运动曲线中提取主要顶点并作为动素分割的依据,然后通过对动素层次的分析实现在语义层次的运动序列分割。
4.1运动曲线降噪
由于在运动捕捉过程中,受到各种客观原因的影响,捕捉动作会出现微小的跳动,这会造成运动曲线局部出现毛刺现象,进而会影响到极值点的提取。在信号处理中,小波分析是公认的最新时频分析工具,其中小波分析的重要应用之一就是小波降噪,在本发明中,通过小波降噪对运动曲线进行降噪处理。
运动曲线作为一组含有噪声的信号序列具有如下形式:
d(k)=f(k)+ε·e(k),k=1,2,…,n
这里,d(k)为原始信号,f(k)为主信号,e(k)为噪声信号。一般情况下,噪声信号表现为高频信号,而主信号的频率一般低于噪声信号,因此小波降噪过程如下:
步骤1、对信号进行小波分解,随着分解层次的升高,噪声信息的含量变的越来越小。(如附图5所示,图中分解层次为5层)
步骤2、小波分解高频系数的阈值量化,对各个分解尺度下的高频系数选择一个阈值进行软阈值量化处理。
步骤3、小波重构,根据小波分解的最底层低频系数和各层高频系数进行一维小波重构。
4.2动素分割
动素的起始和终止姿态与运动曲线中的极值顶点基本相对应,经过小波降噪之后运动曲线变得相对光滑。首先根据与相邻帧最小二乘距离的比较提取所有局部极值顶点,然而一般情况下仍然会有一些相邻极值点的取值很接近,然后通过比较相邻极值点的变化幅度,设定一个阈值,将比较接近的相邻极值点过滤掉,从而提取运动曲线中主要的极值点。(如附图6所示,图a为所有极值点,图b为提取的主要极值点)。
其中,过滤相近顶点而设定的阈值对动素分割效果有直接的影响,如果阈值过小,则会出现多余的顶点,会导致将一个动素分割为多个动素;相反,如果阈值设定过大,则会将多个动素合并为一个动素。这些都会影响到语义分割的结果,本发明在实验过程中所采用的阈值为经过多次反复实验而得到的最优值。在实验中发现,动素在对应最小二乘距离特征曲线中的变化幅度一般都在10以上,而冗余极值点之间的变化幅度基本都在5以下,因此我们在区间(5,10)之间选择阈值。通过对数据的反复多次实验,这里我们选择的最优阈值为6.5。
相邻极值点之间的部分被看做一个动素,运动序列便转化为一个动素序列。为了找出运动的规律特征,对动素进行相似聚类,相似度比较标准为:(1)运动曲线相似性比较;(2)动素起始与结束姿态相似性。对动素进行相似比较之后,将相似的动素标以相同的类号,然后得到动素的标号序列,如下所示:
[12121213456745898981011121310111415161718151920212223242122232421222526272627]
4.3语义分割
人体运动在语义动作层次上可分为周期性运动和非周期性运动,对动素序列进行观察容易发现,周期性运动所包含的动素变化也具有周期性,因此首先根据动素的周期变化提取出所有周期语义运动动作,对于非周期部分,如果运动序列很短,则将其视为两个相邻语义动作之间的过渡,反之,则通过相邻动素的变化幅度对其进行再次分割,如果相邻动素变化幅度相差过大时,在两动素连接处设置一个分割点。
通过以上步骤,运动序列的主要语义动作已经被分割出来,但分割点的位置都在曲线极值点的位置处,然而当两个相邻语义动作之间存在过渡片段时,过渡片段会包含语义动作中的部分运动,因此这种情况下,分割点的准确位置一般不在极值点位置处。为了得到运动序列准确的分割位置,最后将过渡片段与语义动作中的相应动素进行逐帧相似比较,当相似度大于设定的阈值时,在该处设定分割点取代原来的分割点,最终实现运动序列的准确分割。也就是说,根据动素变化规律对运动序列进行分割,分割点的位置都在特征曲线的极值顶点处,而当两个语义动作之间存在过渡动作时,过渡动作中包含了其相邻语义动作中的一部分,在本发明的分割方法中,对于这种情况进行了分割点位置校正,通过将过渡动作与语义动作中相应动素进行逐帧相似比较获得更加准确的分割点位置,使得由本方法而获得的分割结果更加接近人工手动分割的结果。
下面通过具体的实施方式对本发明的方法做进一步说明。
实验环境为WindowsXP系统,程序语言为Matlab,硬件配置为Intel4核主频2.40GHzCPU,内存为3.25GB。采用的数据为CMU人体运动捕捉标准数据库中的数据,数据格式为BVH。
具体实施步骤为:
步骤1:选取原始数据。原始数据存储格式如下:
上面为BVH文件的数据格式,HIERARCHY定义了人体骨架的信息,MOTION定义了人体的运动信息,包括采样频率和每帧对应的运动数据。
步骤2:选取一帧数据作为模板数据(这里我们选取一帧自然站立的数据作为模板)。
步骤3:载入运动序列数据。
步骤4:载入数据后,计算每帧数据与模板之间的最小二乘距离,将运动序列简化为运动曲线。
步骤5:对运动曲线进行小波降噪。
步骤6:提取运动曲线主要极值点。
步骤7:根据极值点将运动序列分割为动素序列。
步骤8:对动素进行相似比较并聚类。
步骤9:根据动素变化规律对人体运动序列进行语义分割,最后通过对过渡片段的姿态相似比较确定分割点位置,实现运动序列的准确分割。
为了证明本发明中所提方法的有效性,我们选取数据库中具有代表性的两组数据进行分割并列出分割结果,每组数据含有5个以上的语义动作,分割结果如附图7所示,自动分割结果与手动分割结果比较如表一所示。从对比结果可以看出,本发明所提出的基于最小二乘距离特征曲线的人体运动序列分割方法不仅提取出了所有主要语义动作,而且分割点位置与手动分割位置基本一致。
表一:人体运动序列分割结果与手动分割结果对比
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种基于最小二乘距离特征曲线的人体运动序列分割方法,其特征在于,包括如下步骤:
S1、获得人体运动序列;
S2、选择人体姿态模板,用作最小二乘距离的比较标准;
S3、利用奇异值分解的方法计算运动序列中每帧数据与模板的最小二乘距离,将人体运动序列简化为二维特征曲线;
S4、利用小波分析的方法对运动特征曲线进行降噪处理;
S5、提取特征曲线中的主要极值顶点,将运动序列分割为动素;
S6、对动素进行相似聚类,获得动素的标号序列;
S7、对运动序列进行语义分割:首先利用人体运动层次化结构特征,根据标号序列中动素变化规律对人体运动序列进行粗略语义分割,然后对语义动作进行边界探测;
S8、运动序列分割结果输出;
其中,所述步骤S3的过程为:首先,对于载入的人体运动序列,根据骨架结构信息选取决定姿态的关节点,并获得关于这些关节点的每帧人体运动数据;然后,利用奇异值分解的方法计算每帧人体运动数据与S2中人体姿态模板之间的最小二乘距离;最后,把最小二乘距离作为特征,将人体运动序列简化为一条二维特征曲线;
其中,所述步骤S5的过程为:根据运动曲线变化提取所有局部极值顶点,通过设定阈值过滤相邻且取值相近的顶点,获得主要的局部极值顶点;把主要极值顶点作为动素分割点,将运动序列分割为动素;
其中,所述S7的过程为:对于周期运动:根据动素的周期变化提取出所有周期语义运动动作;对于非周期动作:运动序列短,则将其视为两个相邻语义动作之间的过渡动作;运动序列长,则通过相邻动素的变化幅度对其进行再次分割;如果相邻动素变化幅度相差过大时,在两动素连接处设置一个分割点;最终,完成对整个运动序列的分割。
2.根据权利要求1所述基于最小二乘距离特征曲线的人体运动序列分割方法,其特征在于,所述步骤S5中,所述阈值选定为:6.5。
3.根据权利要求2所述基于最小二乘距离特征曲线的人体运动序列分割方法,其特征在于,步骤S1中人体运动序列从现有技术的人体运动库中导入数据。
4.根据权利要求3所述基于最小二乘距离特征曲线的人体运动序列分割方法,其特征在于,所述步骤S7中,当两个语义动作之间存在过渡动作时,进行分割点位置校正:通过将过渡动作与语义动作中相应动素进行逐帧相似比较,获得分割点位置。
CN201210110802.9A 2012-04-16 2012-04-16 基于最小二乘距离特征曲线的人体运动序列分割方法 Active CN102819549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210110802.9A CN102819549B (zh) 2012-04-16 2012-04-16 基于最小二乘距离特征曲线的人体运动序列分割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210110802.9A CN102819549B (zh) 2012-04-16 2012-04-16 基于最小二乘距离特征曲线的人体运动序列分割方法

Publications (2)

Publication Number Publication Date
CN102819549A CN102819549A (zh) 2012-12-12
CN102819549B true CN102819549B (zh) 2016-03-30

Family

ID=47303662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210110802.9A Active CN102819549B (zh) 2012-04-16 2012-04-16 基于最小二乘距离特征曲线的人体运动序列分割方法

Country Status (1)

Country Link
CN (1) CN102819549B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374052B (zh) * 2015-11-13 2018-02-13 大连大学 基于度量mds和改进斜交空间距离的运动捕捉数据分割方法
CN107748892B (zh) * 2017-09-25 2020-11-17 西安理工大学 一种基于马氏距离的人体行为数据分割方法
CN109558793B (zh) * 2018-10-15 2022-10-04 西安理工大学 一种基于运动节奏的人体行为数据分割方法
CN109902755B (zh) * 2019-03-05 2019-10-11 南京航空航天大学 一种用于xct切片的多层信息分享与纠正方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515371A (zh) * 2009-03-26 2009-08-26 浙江大学 人体运动数据片段提取方法
CN101558996A (zh) * 2009-05-15 2009-10-21 天津大学 基于人体运动结构正投影三维重建的步态识别方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515371A (zh) * 2009-03-26 2009-08-26 浙江大学 人体运动数据片段提取方法
CN101558996A (zh) * 2009-05-15 2009-10-21 天津大学 基于人体运动结构正投影三维重建的步态识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
运动捕捉数据智能处理算法研究及应用;刘瑞;《大连理工大学博士学位论文》;20120301;说明书第47-58、61-67、85、99段,图4.17 *

Also Published As

Publication number Publication date
CN102819549A (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
CN102324102B (zh) 一种图像场景空洞区域结构和纹理信息自动填补方法
CN101719140B (zh) 一种图形检索方法
CN100543775C (zh) 基于多目相机的三维人体运动跟踪的方法
CN109657839B (zh) 一种基于深度卷积神经网络的风电功率预测方法
CN103700088B (zh) 一种基于可变形图结构表示的图像集无监督共分割方法
CN102819549B (zh) 基于最小二乘距离特征曲线的人体运动序列分割方法
CN103295197B (zh) 基于字典学习和双边正则的图像超分辨率重建方法
CN102508867B (zh) 一种人体运动的运动图检索方法
CN111767810B (zh) 一种基于D-LinkNet的遥感图像道路提取方法
CN101477529B (zh) 一种三维对象的检索方法和装置
CN107392875A (zh) 一种基于k近邻域划分的点云数据去噪方法
CN102521843A (zh) 一种基于流形学习的三维人体运动分析与合成方法
CN104463788A (zh) 基于运动捕捉数据的人体运动插值方法
CN112508936A (zh) 一种基于深度学习的遥感图像变化检测方法
CN101311966A (zh) 一种基于运行传播和Isomap分析的三维人脸动画编辑与合成方法
CN104504731A (zh) 基于运动图的人体运动合成方法
CN108520250B (zh) 一种人体运动序列关键帧提取方法
CN114419464A (zh) 一种基于深度学习的孪生网络变化检测模型
CN114140601A (zh) 深度学习框架下基于单幅图像的三维网格重建方法及系统
CN102855639B (zh) 一种运动捕捉数据的关键帧提取方法
CN101930452A (zh) 基于智能计算的多粒度图像检索方法
Zhang et al. Multi-scale fusion and global semantic encoding for affordance detection
CN102044077B (zh) 多分辨率多区域变分水平集图像分割方法
CN104751470A (zh) 一种图像快速匹配方法
CN112488117A (zh) 一种基于方向诱导卷积的点云分析方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant