CN102806010A - Variable-flow-direction flue gas catalytic-reduction denitration reactor and denitration method - Google Patents
Variable-flow-direction flue gas catalytic-reduction denitration reactor and denitration method Download PDFInfo
- Publication number
- CN102806010A CN102806010A CN2012102816763A CN201210281676A CN102806010A CN 102806010 A CN102806010 A CN 102806010A CN 2012102816763 A CN2012102816763 A CN 2012102816763A CN 201210281676 A CN201210281676 A CN 201210281676A CN 102806010 A CN102806010 A CN 102806010A
- Authority
- CN
- China
- Prior art keywords
- catalyst bed
- reactor
- channel
- switch door
- flue gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 239000003546 flue gas Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000010531 catalytic reduction reaction Methods 0.000 title claims abstract description 17
- 239000003054 catalyst Substances 0.000 claims abstract description 121
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 38
- 239000000428 dust Substances 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- 230000003197 catalytic effect Effects 0.000 claims abstract description 23
- 239000012530 fluid Substances 0.000 claims abstract description 16
- 239000007789 gas Substances 0.000 claims abstract description 6
- 239000000779 smoke Substances 0.000 claims description 11
- 239000004071 soot Substances 0.000 claims description 11
- 230000002441 reversible effect Effects 0.000 claims description 9
- 230000008929 regeneration Effects 0.000 claims description 7
- 238000011069 regeneration method Methods 0.000 claims description 7
- 238000005192 partition Methods 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 3
- 230000009467 reduction Effects 0.000 abstract description 3
- 238000006722 reduction reaction Methods 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 2
- 230000001276 controlling effect Effects 0.000 abstract 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 25
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 229910052815 sulfur oxide Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- AQGDXJQRVOCUQX-UHFFFAOYSA-N N.[S] Chemical compound N.[S] AQGDXJQRVOCUQX-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
技术领域 technical field
本发明涉及空气污染治理的环保领域,尤其适用于煤转化和石油炼制等能源领域气相污染物的治理。The invention relates to the environmental protection field of air pollution control, and is especially suitable for the control of gas phase pollutants in energy fields such as coal conversion and petroleum refining.
背景技术 Background technique
氮氧化物(简称NOx)是空气主要污染物之一,与硫氧化物构成酸雨的祸首,不仅危害自然环境,而且严重影响人类的健康。对它们的治理已逐渐纳入各国的环境保护规划中。Nitrogen oxides (NOx for short) are one of the main pollutants in the air. Together with sulfur oxides, they constitute the culprit of acid rain, which not only endangers the natural environment, but also seriously affects human health. Their governance has been gradually incorporated into the environmental protection planning of various countries.
各种燃煤锅炉、催化裂化装置等产生、并随烟气排放的NOx,每年可达数千万吨。若不加以治理,将给地球带来极大的灾害。The NOx produced by various coal-fired boilers and catalytic cracking units and emitted with flue gas can reach tens of millions of tons per year. If it is not managed, it will bring great disasters to the earth.
概括而言,烟气脱硝分为湿法和干法两大类,除物理吸附之外,其余皆为化学转化的方法。因此,反应器就显得十分重要。脱硝工艺还可以细分为:选择性催化还原法(SCR),选择性非催化还原法,光、电催化氧化法,炽热碳还原法,湿式络合吸收法,等离子体法和生物法等。其中,选择性催化还原法以其高效、低能耗的技术优势,在商业化市场中占据了重要的位置。In a nutshell, flue gas denitrification is divided into two categories: wet method and dry method. Except for physical adsorption, the rest are chemical conversion methods. Therefore, the reactor is very important. The denitrification process can also be subdivided into: selective catalytic reduction method (SCR), selective non-catalytic reduction method, photocatalytic oxidation method, red hot carbon reduction method, wet complexation absorption method, plasma method and biological method, etc. Among them, the selective catalytic reduction method occupies an important position in the commercial market due to its technical advantages of high efficiency and low energy consumption.
SCR技术是以各种还原剂,如氨气、一氧化碳、氢气或烃类化合物,在中低温条件下,将NOx选择性催化还原成氮气。Englehard Corporation公司于上世纪50年代中期,发明了氨法SCR脱硝工艺;约20年后,日本开发出具有高活性的钛基五氧化二钒SCR催化剂,并获得商业应用;至今,SCR烟气脱硝技术已在发达国家广泛采用。SCR technology uses various reducing agents, such as ammonia, carbon monoxide, hydrogen or hydrocarbons, to selectively catalytically reduce NOx to nitrogen under medium and low temperature conditions. Englehard Corporation invented the ammonia-based SCR denitrification process in the mid-1950s; about 20 years later, Japan developed a highly active titanium-based vanadium pentoxide SCR catalyst and obtained commercial applications; so far, SCR flue gas denitrification The technology has been widely adopted in developed countries.
以氨法SCR先脱硝为例,注入的氨气在反应器中与NOx和SOx会发生如图1所示的放热反应。在绝热操作的条件下,催化剂床层将产生10℃以上的温升。具体温升数值视NOx和SOx含量,及转化率而定。对中低温脱硝过程,利用温升加快反应,是减少设备投资和降低运行成本的有效手段。Taking ammonia-based SCR denitrification first as an example, the injected ammonia will react exothermicly with NOx and SOx in the reactor as shown in Figure 1. Under the condition of adiabatic operation, the catalyst bed will produce a temperature rise of more than 10°C. The specific temperature rise value depends on the NOx and SOx content, and the conversion rate. For the medium and low temperature denitrification process, using temperature rise to speed up the reaction is an effective means to reduce equipment investment and reduce operating costs.
为了提高烟气脱硝的效率,在设计反应器时,应考虑以下因素:In order to improve the efficiency of flue gas denitrification, the following factors should be considered when designing the reactor:
1、催化剂床层的温度和气体流速分布尽可能均匀;1. The temperature and gas velocity distribution of the catalyst bed should be as uniform as possible;
2、还原剂与烟气的混合尽可能充分;2. The reducing agent and the flue gas are mixed as fully as possible;
3、NOx的转化率尽可能高;3. The conversion rate of NOx should be as high as possible;
4、脱硝装置的压力降尽可能小;4. The pressure drop of the denitration device should be as small as possible;
5、NH3的逃逸量尽可能少;5. The escape amount of NH3 is as small as possible;
6、运行周期尽可能长。6. The operating cycle should be as long as possible.
只有兼顾了上述内容,才能防止氨气在爆炸限内操作,解决粉尘和硫氨附着在催化剂表面引起的催化剂失活和再生的问题。Only when the above content is taken into account can the operation of ammonia gas within the explosion limit be prevented, and the problem of catalyst deactivation and regeneration caused by dust and sulfur ammonia attached to the surface of the catalyst can be solved.
SCR脱硝反应器的主要类型分为固定床和流化床。其中,CN100348301C设计了悬吊式固定床反应器,便于失活催化剂的拆装;WO2007040308A1采用了整体式的催化剂型式,它是固定床催化剂的主流类型;US6146605,US7943097B2,CN201772471U提供了脱硝反应器与烟气管道的连接方式;US2011194986A1,CN101219329B,CN202212106U,CN201572607U,CN202212104U在反应器内或外设置了去除烟气中颗粒物的部件;CN100425325C,CN201543395U,CN201244436Y,CN201454414U,CN201543370U,CN202212105U,CN102068904A,CN201807307U,CN201596465U,CN201669060U,CN102309920A设计了反应器的常规结构单元;CN202036922U构造了催化剂的安装结构;CN101574624B提出了蓄热式的反应器,CN102120129A给出了氨气的喷射与混合装置;CN102389838A描述了用于催化剂再生的在线清洗装置。而CN1201852C、CN102233232A,CN102026703A,CN102068906A则设计出了流化床脱硝反应器。相关的专利不胜枚举。The main types of SCR denitration reactors are divided into fixed bed and fluidized bed. Among them, CN100348301C designed a suspended fixed-bed reactor to facilitate the disassembly and assembly of deactivated catalysts; WO2007040308A1 adopted a monolithic catalyst type, which is the mainstream type of fixed-bed catalyst;烟气管道的连接方式;US2011194986A1,CN101219329B,CN202212106U,CN201572607U,CN202212104U在反应器内或外设置了去除烟气中颗粒物的部件;CN100425325C,CN201543395U,CN201244436Y,CN201454414U,CN201543370U,CN202212105U,CN102068904A,CN201807307U,CN201596465U, CN201669060U, CN102309920A designed the conventional structural unit of the reactor; CN202036922U constructed the installation structure of the catalyst; CN101574624B proposed a regenerative reactor, and CN102120129A provided an ammonia injection and mixing device; CN102389838A described a catalyst regeneration Online cleaning device. However, CN1201852C, CN102233232A, CN102026703A, and CN102068906A have designed fluidized bed denitrification reactors. Related patents are numerous.
Davide Fissore等人(Experimental investigation of the SCR of NOx in asimulated moving bed reactor.AIChE Journal,2006,52(9):3146-3154)实验研究了模拟移动床中的SCR脱硝反应。结果表明,模拟移动床可使反应器内的温度分布均匀,脱硝效果明显改善。CN2757903Y设计了可改变流向的蓄热式SCR脱硝反应器,其中蓄热陶瓷部分与催化剂床层分开设置,使催化剂床层维持相对较高的温度。CN201899983U设计了“C”型回转流的反应器结构,用于实现催化剂清洗和除尘的目的。Davide Fissore et al. (Experimental investigation of the SCR of NOx in simulated moving bed reactor. AIChE Journal, 2006, 52(9): 3146-3154) experimentally studied the SCR denitration reaction in the simulated moving bed. The results show that the simulated moving bed can make the temperature distribution in the reactor uniform, and the denitrification effect is obviously improved. CN2757903Y designed a regenerative SCR denitrification reactor that can change the flow direction, in which the regenerative ceramic part is set separately from the catalyst bed, so that the catalyst bed maintains a relatively high temperature. CN201899983U designed the reactor structure of "C" type rotary flow, which is used to realize the purpose of catalyst cleaning and dust removal.
发明内容 Contents of the invention
本发明在综合了上述论文和专利思想的基础之上,只设置催化剂床层,以减少压降,且在反应器内部设计了开关式调节门(简称开关门),由外部驱动结构操控,通过固定床反应器的变流向周期操作,实现催化剂床层内更加均匀的温度分布。该设计不同于模拟移动床的三段式结构,更适用于高通量的烟气脱硝反应。On the basis of synthesizing the above papers and patent ideas, the present invention only sets the catalyst bed to reduce the pressure drop, and designs a switch-type regulating door (referred to as the switch door) inside the reactor, which is controlled by an external drive structure. The periodic operation of variable flow direction of the fixed bed reactor achieves a more uniform temperature distribution in the catalyst bed. This design is different from the three-stage structure of the simulated moving bed, and is more suitable for high-throughput flue gas denitration reactions.
本发明的变流向烟气催化还原脱硝反应器技术方案如下:The technical scheme of the variable flow direction flue gas catalytic reduction denitrification reactor of the present invention is as follows:
一种变流向烟气催化还原脱硝反应器1000,分别由进气通道100,流向控制通道200,前置催化反应器300,倒向区400,灰尘捕集与还原剂辅助加入区500,以及后置催化反应器600六部分组成。反应器1000包括三段催化剂床层,分别是第一段催化剂床层7、第二段催化剂床层12和第三段催化剂床层18,其特征是在第一段催化剂床层7和第二段催化剂床层12上设置有流向控制通道200,通过两个开关门3和13的同步调节,控制气体流向;同时,组合了流体倒向区400和灰尘捕集与还原剂辅助加入区500。A variable flow direction flue gas catalytic
其中,流向控制通道200由垂直开关门3,水平开关门13,右侧通道4和左侧通道15组成。垂直开关门3控制流向控制通道200顶部的两个通道入口,水平开关门13控制流向控制通道200前部的两个通道出口5和14。Wherein, the
所述的垂直开关门3和水平开关门13是由整板构成或是百叶窗结构。The
所述的催化反应器300内设置有并排的第一段催化剂床层7和第二段催化剂床层12,在两个催化剂床层上方设置有吹灰器6。The
所述的倒向区400内设有折流挡板9;折流挡板与第一段催化剂床层7和第二段催化剂床层12的分界线在同一平面上。The
所述的灰尘捕集与还原剂辅助加入区500为梯台形,其内设置有两个集尘挡板10,两个集尘挡板10之间设有还原剂辅助加入口11,同时还原剂辅助加入口11设置在梯台形底部的中心位置。The dust collection and reducing agent auxiliary adding
所说的后置催化反应器600内设置有末端整流空间16和第三段催化剂床层18,且末端整流空间16与流向控制通道200的出口5和出口14相连。The post
利用本发明的反应器进行变流向烟气催化还原脱硝方法为,右侧通道4上面的通道垂直开关门3和左侧通道15前方的水平开关门13的同步调节,实现流向控制;当垂直开关门3关闭右侧通道4的上部时,水平开关门13同步关闭左侧通道15的前部,烟气进入左侧通道15;垂直开关门3关闭左侧通道15的上部时,水平开关门13同步关闭右侧通道4的前部,烟气将进入右侧通道4。Utilizing the reactor of the present invention to carry out variable flow direction flue gas catalytic reduction denitrification method is that the channel
流体的分布分别在四处整流通道内完成,包括右侧通道4、倒向区400、末端整流空间16和左侧通道15;累积在第一段催化剂床层7,第二段催化剂床层12和第三段催化剂床层18的灰尘和反应后形成的无机盐,定期由吹灰器6实现除尘和催化剂再生;还原剂分两部分注入,其一在烟道1内,其二则通过还原剂辅助加入口11。The distribution of the fluid is completed in four rectification passages, including the
当垂直开关门3倒向右侧通道4的上部,且水平开关门13同步关闭左侧通道15的前部时,烟气进入左侧通道15;在左侧通道15的导向作用下,完成流向调整,并由上至下直接进入前置催化反应器300中的第二段催化剂床层12;经此一段反应后的烟气,流入倒向区400,随后,折返进入前置催化反应器300中的第一段催化剂床层7,再由出口5流入末端整流空间16;此时,流体再次转变主体运动方向,进入后置催化反应器600内的第三段催化剂床层18,最终由出口通道17流出反应器1000;When the
垂直开关门3倒向左侧通道15的上部时,水平开关门13同步关闭右侧通道4的前部,烟气将进入右侧通道4;穿过右侧通道4内设置的导向区后,进入第一段催化剂床层7,反应后的烟气流入倒向区400,折返进入第二段催化剂床层12,再由出口14流入末端整流空间16;随后,流体再次转变主体运动方向,进入第三段催化剂床层18,最终由出口通道17流出反应器1000。When the
一种适合于烟气脱硝的变流向选择性催化还原(SCR)反应器1000,其主体结构如图2所示。分别由进气通道100,流向控制通道200,前置催化反应器300,倒向区400,灰尘捕集与还原剂辅助加入区500,以及后置催化反应器600六部分组装而成。A variable-flow selective catalytic reduction (SCR)
图3给出了主体结构图2所示六个部分拆开后各自的结构图。进气通道100包括烟道1和扩大段2;流向控制通道200由垂直开关门3,水平开关门13,右侧通道4、左侧通道15,以及由垂直开关门3控制开与关的,置于200顶部的两个通道入口,和由水平开关门13控制开与关的,置于200前部的两个通道出口组成;前置催化反应器300内含有第一段催化剂床层7和第二段催化剂床层12,以及置于其上方的吹灰器6;倒向区400内设有折流挡板9;灰尘捕集与还原剂辅助加入区500为梯台形,内设集尘挡板10和还原剂辅助加入口11;后置催化反应器600内包括末端整流空间16和第三段催化剂床层18,且与流向控制通道200相连。按功能又可将反应器1000划分为:三段催化剂床层用于SCR反应,分别是第一段催化剂床层7、第二段催化剂床层12和第三段催化剂床层18,其中7和12两段催化剂床层的结构和尺寸相同,且由隔板8分开后平行排列;流向控制则由右侧通道4上面的通道垂直开关门3,和左侧通道15前方的水平开关门13,同步调节加以实现;流体的分布分别在四处整流通道内完成,包括右侧通道4、倒向区400、末端整流空间16和左侧通道15;累积在催化剂孔道内的灰尘和反应形成的无机盐,定期由吹灰器6实现除尘和催化剂再生;还原剂分两部分注入,其一在烟道1内,其二则通过还原剂辅助加入口11。其特征在于:通过两个通道开关门的同步动作,实现催化剂床层8和17的周期变流向操作。Figure 3 shows the disassembled structural diagrams of the six parts shown in Figure 2 of the main structure. The
使用说明:Instructions for use:
图3中,催化剂床层分为三段,其中第一段催化剂床层7与第二段催化剂床层12并排,且由隔板挡板8分开。源自进气通道100的包含还原剂的烟气,在流入流向控制通道200前,可以有两个流向选择,并由垂直开关门3和水平开关门13分别操纵。当垂直开关门3倒向右侧通道4的上部,且水平开关门13同步关闭左侧通道15的前部时,烟气只能进入左侧通道15。在左侧通道15的导向作用下,完成流向调整,并按实心箭头所指方向直接进入前置催化反应器300中的第二段催化剂床层12。经此一段反应后的烟气,流入倒向区400,随后,折返进入前置催化反应器300中的第一段催化剂床层7,再由出口5流入末端整流空间16。此时,流体再次转变主体运动方向,进入后置催化反应器600内的第三段催化剂床层18,最终由出口通道17流出SCR反应器1000。另外一个选择则与前面描述的第一和第二段催化剂床层中的烟气流向相反,即按照图3中空心箭头的指向流动。此时,垂直开关门3倒向左侧通道15的上部,且水平开关门13同步关闭右侧通道4的前部,烟气将进入右侧通道4。穿过右侧通道4内设置的导向区后,进入第一段催化剂床层7。反应后的烟气流入倒向区400,折返进入第二段催化剂床层12,再由出口14流入末端整流空间16。随后,流体再次转变主体运动方向,进入第三段催化剂床层18,最终由出口通道17流出反应器1000。流向切换的周期可根据反应器出口脱硝结果加以调整。In FIG. 3 , the catalyst bed is divided into three sections, wherein the
倒向区400的上部和灰尘捕集与还原剂辅助加入区500的底部分别设有折流挡板9和集尘挡板10,以满足整流和氨气分散的目的。The upper part of the
还原剂氨气分为两部分,分别由烟道1和单独设置的氨气辅助注入口11进入反应器1000中。其中,氨气辅助注入口11的氨气注入量与反应器出口17在线监测NOx含量构成调节回路,以便及时调整脱硝效果,控制氨气的逃逸量。The reducing agent ammonia gas is divided into two parts, which enter into the
为清扫催化剂表面的覆盖物,特在第一段催化剂床层7和第二段催化剂床层12的上方设置了吹灰器6,用于催化剂的除尘和再生。In order to clean the covering on the surface of the catalyst, a
操纵开关门的传动机构由电机轴21,主动齿轮19和从动齿轮20构成,其放大的构造示意如图4。为了防止金属间的撞击和保证开关门的密封效果,在垂直开关门3和水平开关门13以及与之配合的右侧通道4和左侧通道15的上端和正面均设有非金属密封圈22。The transmission mechanism for manipulating the switch door is composed of
本发明的目的是设计一种用于烟气脱硫前先脱硝的变流向选择性催化还原反应器。采用分段固定床的反应器型式,通过改变反应器入口烟气的流向,从而改善反应器内的温度分布,使低浓度的烟气组分在更均匀且更高的还原温度下进行催化反应。不仅能使各段催化剂床层的催化活性得以充分发挥,还能提高烟气脱硝的效率。The object of the invention is to design a selective catalytic reduction reactor with variable flow direction for denitrification before flue gas desulfurization. The reactor type of segmented fixed bed is adopted, and the temperature distribution in the reactor is improved by changing the flow direction of the flue gas at the reactor inlet, so that the low-concentration flue gas components can be catalytically reacted at a more uniform and higher reduction temperature . Not only can the catalytic activity of each stage of the catalyst bed be brought into full play, but also the efficiency of flue gas denitrification can be improved.
本发明与现有的单一流向的固定床反应器相比,由于床层温度均匀,反应速率提高,催化剂用量会减少。与此同时,变流向反应器的结构和增加了还原剂辅助注入口的设计,使除尘和吹灰方式简化,且自动调节的响应时间缩短。更好地满足了烟气脱硝的基本要求。Compared with the existing fixed-bed reactor with single flow direction, the present invention has the advantages of uniform bed layer temperature, high reaction rate and reduced catalyst consumption. At the same time, the structure of the reactor with variable flow direction and the design of the auxiliary injection port of the reducing agent are added, which simplifies the dust removal and soot blowing methods, and shortens the response time of automatic adjustment. Better meet the basic requirements of flue gas denitrification.
附图说明 Description of drawings
图1:反应及焓变图;Figure 1: Reaction and enthalpy diagram;
图2:反应器主体结构图;Figure 2: The main structure of the reactor;
图3:图2所对应的反应器各部分的结构图;Fig. 3: the structural diagram of each part of the reactor corresponding to Fig. 2;
图4:图3中传动机构I的局部放大图。Figure 4: A partial enlarged view of the transmission mechanism I in Figure 3.
具体实施方式 Detailed ways
根据附图对本发明做进一步的详细说明:The present invention is described in further detail according to the accompanying drawings:
一种适合于烟气脱硝的变流向选择性催化还原(SCR)反应器,其主体结构如图2所示,分别由进气通道100,流向控制通道200,前置催化反应器300,倒向区400,灰尘捕集与还原剂辅助加入区500,以及后置催化反应器600六部分组装而成。A variable flow direction selective catalytic reduction (SCR) reactor suitable for flue gas denitrification, its main structure is shown in Figure 2, which consists of an
图3给出了主体结构图2所示六个部分拆开后各自的结构图。进气通道100包括烟道1和扩大段2;流向控制通道200由垂直开关门3,水平开关门13,右侧通道4、左侧通道15,以及由垂直开关门3控制开与关的,置于200顶部的两个通道入口,和由水平开关门13控制开与关的,置于200前部的两个通道出口组成;前置催化反应器300内含有第一段催化剂床层7,第二段催化剂床层12和两者间的隔板8,以及置于其上方的吹灰器6;倒向区400内设有折流挡板9;灰尘捕集与还原剂辅助加入区500为梯台形,内设集尘挡板10和还原剂辅助加入口11;后置催化反应器600内包括末端整流空间16和第三段催化剂床层18,且与流向控制通道200相连。按功能又可划分为:三段催化剂床层用于SCR反应,分别是第一段催化剂床层7、第二段催化剂床层12和第三段催化剂床层18,其中7和12两段催化剂床层的结构和尺寸相同,且由隔板8分开后平行排列;流向控制则由右侧通道4上面的通道垂直开关门3,和左侧通道15前方的水平开关门13,同步调节加以实现;流体的分布分别在四处整流通道内完成,包括右侧通道4、倒向区400、末端整流空间16和左侧通道15;累积在催化剂孔道内的灰尘和反应形成的无机盐,定期由吹灰器6进行除尘和催化剂再生;还原剂分两部分注入,其一在烟道1内,其二则通过还原剂辅助加入口11。通过两个通道开关门的同步动作,实现催化剂床层7和12的周期变流向操作。Figure 3 shows the disassembled structural diagrams of the six parts shown in Figure 2 of the main structure. The
使用说明:Instructions for use:
图3中,催化剂床层分为三段,其中第一段催化剂床层7与第二段催化剂床层12并排,且由隔板挡板8分开。源自进气通道100的包含还原剂的烟气,在流入流向控制通道200前,可以有两个流向选择,并由垂直开关门3和水平开关门13分别操纵。当垂直开关门3倒向右侧通道4的上部,且水平开关门13同步关闭左侧通道15的前部时,烟气只能进入左侧通道15。在左侧通道15的导向作用下,完成流向调整,并按实心箭头所指从上到下的方向直接进入前置催化反应器300中的第二段催化剂床层12。经此一段反应后的烟气,流入倒向区400,随后,折返进入前置催化反应器300中的第一段催化剂床层7,再由出口5流入最后整流空间16。此时,流体再次转变主体运动方向,进入后置催化反应器600内的第三段催化剂床层18,最终由出口通道17流出SCR反应器1000。In FIG. 3 , the catalyst bed is divided into three sections, wherein the
另外一个选择则与前面描述的第一和第二段催化剂床层中的烟气流向相反,即按照图3中空心箭头的指向流动。此时,垂直开关门3倒向左侧通道15的上部,且水平开关门13同步关闭右侧通道4的前部,烟气将进入右侧通道4。穿过右侧通道4内设置的导向区后,进入第一段催化剂床层7。反应后的烟气流入倒向区400,折返进入第二段催化剂床层12,再由出口14流入末端整流空间16。随后,流体再次转变主体运动方向,进入第三段催化剂床层18,最终由出口通道17流出反应器1000。流向切换的周期可根据反应器出口脱硝结果加以调整。Another option is to reverse the flow direction of the flue gas in the first and second catalyst beds described above, that is, follow the directions of the hollow arrows in FIG. 3 . At this time, the vertical opening and closing
倒向区400的上部和灰尘捕集与还原剂辅助加入区500的底部分别设有折流挡板9和集尘挡板10,以满足整流和氨气分散的目的。The upper part of the
还原剂氨气分为两部分,分别由烟道1和单独设置的还原剂辅助注入口11进入反应器1000中。其中,还原剂辅助注入口11的氨气注入量与反应器出口17在线监测NOx含量构成调节回路,以便及时调整脱硝效果,控制氨气的逃逸量。The reductant ammonia gas is divided into two parts, which enter into the
为清扫催化剂表面的覆盖物,特在第一段催化剂床层7和第二段催化剂床层12的上方设置了吹灰器6,用于催化剂的除尘和再生。In order to clean the covering on the surface of the catalyst, a
操纵开关门的传动机构由电机轴21,主动齿轮19和从动齿轮20构成,其放大的构造示意见图4。为了防止金属间的撞击和保证开关门的密封效果,在垂直开关门3和水平开关门13以及与之配合的右侧通道4和左侧通道15的上端和正面均设有非金属密封圈22。The transmission mechanism of manipulating the switch door is made of
本发明采用变流向的周期操作,与单一流向的固定床反应器相比,催化剂床层的温度分布更加均匀;由于设置了四处整流通道,还原剂与烟气的混合更加充分;从而实现了相同催化剂用量下,NOx转化率更高的目标;还原剂的分段加入,不仅提高了自控的灵敏度,而且减少了NH3的逃逸量;吹灰器的设置有利于反应器的长周期运行。因此,本发明设计出的反应器达到了烟气选择性催化还原脱硝的要求。The present invention adopts periodic operation with variable flow direction. Compared with a fixed-bed reactor with a single flow direction, the temperature distribution of the catalyst bed is more uniform; due to the arrangement of four rectification channels, the mixing of the reducing agent and the flue gas is more sufficient; thereby achieving the same Under the catalyst dosage, the goal of higher NOx conversion rate; the staged addition of the reducing agent not only improves the sensitivity of the self-control, but also reduces the escape of NH 3 ; the setting of the soot blower is conducive to the long-term operation of the reactor. Therefore, the reactor designed by the present invention meets the requirement of flue gas selective catalytic reduction and denitrification.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210281676.3A CN102806010B (en) | 2012-08-08 | 2012-08-08 | Variable-flow-direction flue gas catalytic-reduction denitration reactor and denitration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210281676.3A CN102806010B (en) | 2012-08-08 | 2012-08-08 | Variable-flow-direction flue gas catalytic-reduction denitration reactor and denitration method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102806010A true CN102806010A (en) | 2012-12-05 |
CN102806010B CN102806010B (en) | 2014-06-18 |
Family
ID=47229986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210281676.3A Active CN102806010B (en) | 2012-08-08 | 2012-08-08 | Variable-flow-direction flue gas catalytic-reduction denitration reactor and denitration method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102806010B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108310972A (en) * | 2018-03-21 | 2018-07-24 | 中冶京诚工程技术有限公司 | Multifunctional catalytic reactor for coupling CO catalytic oxidation and SCR denitration and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000279751A (en) * | 1999-03-29 | 2000-10-10 | Electric Power Dev Co Ltd | Denitration method and denitration apparatus for pressurized fluidized-bed boiler |
CN101721903A (en) * | 2010-01-22 | 2010-06-09 | 中电投远达环保工程有限公司 | Flue gas mixing element and flue gas denitration system using flue gas mixing element |
CN201899983U (en) * | 2010-12-18 | 2011-07-20 | 李勇成 | SCR denitration reactor |
CN102614758A (en) * | 2012-04-20 | 2012-08-01 | 湖南安普诺环保科技有限公司 | Urea-solution-based SCR (selective catalytic reduction) flue gas denitration process and device |
-
2012
- 2012-08-08 CN CN201210281676.3A patent/CN102806010B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000279751A (en) * | 1999-03-29 | 2000-10-10 | Electric Power Dev Co Ltd | Denitration method and denitration apparatus for pressurized fluidized-bed boiler |
CN101721903A (en) * | 2010-01-22 | 2010-06-09 | 中电投远达环保工程有限公司 | Flue gas mixing element and flue gas denitration system using flue gas mixing element |
CN201899983U (en) * | 2010-12-18 | 2011-07-20 | 李勇成 | SCR denitration reactor |
CN102614758A (en) * | 2012-04-20 | 2012-08-01 | 湖南安普诺环保科技有限公司 | Urea-solution-based SCR (selective catalytic reduction) flue gas denitration process and device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108310972A (en) * | 2018-03-21 | 2018-07-24 | 中冶京诚工程技术有限公司 | Multifunctional catalytic reactor for coupling CO catalytic oxidation and SCR denitration and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102806010B (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Chemical looping combustion of coal in China: Comprehensive progress, remaining challenges, and potential opportunities | |
AU2008283781B2 (en) | A low-temperature, moving bed catalytic reactor for control of NOx emissions from coal combustion | |
CA2283092C (en) | Apparatus for removing contaminants from gaseous stream | |
CN105413326B (en) | A kind of activated coke flue gas purification system | |
CN111659249A (en) | Low ammonia escape desulfurization denitration dust collector | |
CN108579369A (en) | Coke oven flue gas multi-pollutant cooperative treatment system and method | |
CN103349892A (en) | Cross-flow type two-stage moving bed active coke waste gas integrated purification tower | |
CN103007680B (en) | Activated carbon desulphurization regeneration system capable of using afterheat of ring cooler | |
CN215027580U (en) | Flue gas pretreatment device for capturing carbon dioxide in glass kiln | |
CN109433007A (en) | A kind of coke oven flue gas low temperature SCR denitration device | |
WO2022105008A1 (en) | Modular desulfurization, denitration, voc removal, and dust removal integrated system | |
CN112646614A (en) | Moving bed type blast furnace gas desulfurization device and desulfurization method thereof | |
CN102865669B (en) | Device and method for switching-type chemical-looping combustion | |
CN108211791A (en) | A kind of dual chamber modularization alternating denitrating system and method for denitration | |
CN103768930B (en) | The dust-proof Benitration reactor of FCC regenerated flue gas | |
CN102806010A (en) | Variable-flow-direction flue gas catalytic-reduction denitration reactor and denitration method | |
CN101036850A (en) | Low-temperature smoke air SCR of boiler combined adsorption / desorption catalyzing bed for preventing the escaping of ammonia | |
Shin et al. | Particulate removal characteristics of commercial-scale DeNOx catalyst cartridge coupled filter bags | |
CN207221629U (en) | A kind of low temperature charcoal base combined desulfurization and denitration flue gas system | |
CN111701446B (en) | Method and device for denitration and heat recovery of industrial furnace flue gas | |
CN203315990U (en) | Cross flow type twin-stage moving bed active coke exhaust gas integration purifying tower | |
CN103768937B (en) | The dust-proof Benitration reactor of a kind of FCC regenerated flue gas | |
CN208482234U (en) | A kind of flue gas wet denitration device | |
CN211462737U (en) | Denitration reactor for desulfurization and denitration system | |
CN212309298U (en) | Smoke treatment device for chain grate coal-fired boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |