CN102800200A - 相邻信号交叉口相关性分析方法 - Google Patents

相邻信号交叉口相关性分析方法 Download PDF

Info

Publication number
CN102800200A
CN102800200A CN2012102170648A CN201210217064A CN102800200A CN 102800200 A CN102800200 A CN 102800200A CN 2012102170648 A CN2012102170648 A CN 2012102170648A CN 201210217064 A CN201210217064 A CN 201210217064A CN 102800200 A CN102800200 A CN 102800200A
Authority
CN
China
Prior art keywords
signalized intersections
signalized
crossing
intersections
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102170648A
Other languages
English (en)
Other versions
CN102800200B (zh
Inventor
宋现敏
曲昭伟
王殿海
别一鸣
李志慧
胡宏宇
陈永恒
王琳虹
段宇洲
邢岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201210217064.8A priority Critical patent/CN102800200B/zh
Publication of CN102800200A publication Critical patent/CN102800200A/zh
Application granted granted Critical
Publication of CN102800200B publication Critical patent/CN102800200B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

本发明公开了相邻信号交叉口相关性分析方法,其步骤如下:1.信号机利用感应线圈检测器采集信号交叉口各进口道流量并流量预测;2.人工采集信号交叉口的静态交通数据;3.计算机计算各个信号交叉口单点控制的最佳配时方案;4.计算机确定两个信号交叉口协调控制的协调相位;5.计算机确定两个信号交叉口协调控制的协调方式;6.计算第i个与第i+1个信号交叉口的周期时长关联度;7.计算第i个与第i+1个信号交叉口之间的交叉口间距关联度;8.计算第i个与第i+1个信号交叉口之间的路径流量关联度;9.计算第i个与第i+1个信号交叉口之间的综合关联度;10.确定第i个与第i+1个信号交叉口划入同一子区的综合关联度阈值。

Description

相邻信号交叉口相关性分析方法
技术领域
本发明涉及一种用于城市交通控制系统中交通控制子区动态划分的方法,更确切地说,本发明涉及一种相邻信号交叉口相关性的分析方法。 
背景技术
在对一个包含数百甚至上千个交叉口的路网进行信号控制时,经常将路网划分成若干个相互独立的区域,每个区域包含一个或者相邻的多个信号交叉口,这样的区域叫做“交通控制子区”。交通控制子区划分对于提高交通控制系统的稳定性、确定信号交叉口的最佳控制方式具有重要意义。 
在进行“交通控制子区”划分时需要首先分析相邻信号交叉口之间的相关性,以确定它们是否适合划入同一个“交通控制子区”。现有的分析方法均采用关联度指标来表达交叉口之间的相关性,关联度越大代表相邻交叉口的相关性越大。但是关联度的计算方法依靠交通工程师经验确定、相关性影响因素分析不全面,而且在关联度模型结构、临界阈值确定方面缺乏系统性、科学性,无法准确量化交叉口之间的联系紧密程度,而且无法随交通状态变化而动态改变,难以适应自适应交通控制系统的要求。 
发明内容
本发明所要解决的技术问题是克服了关联度模型结构与临界阈值确定方面缺乏系统性、科学性,无法准确量化交叉口之间的联系紧密程度,难以适应自适应交通控制系统要求的问题,提供了一种相邻信号交叉口相关性的分析方法。 
为解决上述技术问题,本发明是采用如下技术方案实现的:所述的相邻信号交叉口相关性分析方法步骤如下: 
1.信号机利用感应线圈检测器采集信号交叉口各进口道流量并进行流量预测; 
2.人工采集信号交叉口的静态交通数据; 
3.计算机计算各个信号交叉口执行单点控制时的最佳配时方案; 
4.计算机确定两个信号交叉口执行协调控制时的协调相位; 
5.计算机确定两个信号交叉口执行协调控制时的协调方式; 
6.计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口的周期时长关联度CI(T); 
7.计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的交叉口间距关联度CI(L); 
8.计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的路径 流量关联度CI(Pq); 
9.计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的综合关联度CI; 
10.人工确定相邻的第i个信号交叉口与第i+1个信号交叉口划入同一交通控制子区的综合关联度阈值。 
技术方案中所述的计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口的周期时长关联度CI(T)是采用如下公式计算: 
CI(T)=α1·TD+1.0 
式中:α1.代表周期时长差异单位变化对周期时长关联度CI(T)的影响;TD.两个相邻信号交叉口的周期时长差异比例,计算公式为: 
T D = max ( T i , T i + 1 ) - min ( T i , T i + 1 ) max ( T i , T i + 1 )
式中:Ti.第i个信号交叉口执行单点控制时的最佳周期时长,单位.s;Ti+1.第i+1个信号交叉口执行单点控制时的最佳周期时长,单位.s。 
1)当第i个信号交叉口与第i+1个信号交叉口执行双向协调控制时: 
α1=14.916-53.963·x+4.831·λc+36.281·A 
式中:x.关键交叉口的饱和度,设关键交叉口为第i个信号交叉口,包括K个相位,那么饱和度x计算公式为: 
x = Σ k = 1 K q ik S × ( T i - L i ) / T i
式中:qik.第i个信号交叉口相位k对应的关键车道流量,单位.pcu/h;Li.第i个信号交叉口各个相位总绿灯损失时间之和,单位.s;S.第i个信号交叉口所有进口道的饱和流率平均值,单位.pcu/h; 
λc为关键交叉口协调相位的绿信比,计算公式等于: 
λ c = g iw T i
式中:giw.第i个信号交叉口协调相位的绿灯时间,单位.s; 
A为关键交叉口的总流量比,设第i个信号交叉口为关键交叉口,那么其总流量比 A i = Σ k = 1 K q ik S ik .
2)当第i个信号交叉口与第i+1个信号交叉口执行单向协调控制时: 
α1=17.14+24.14·λc-13.1·log(Tc)-6.4·Y 
Tc.第i个信号交叉口与第i+1个信号交叉口执行协调控制时的公共周期,单位.s, 
Tc=max(Ti,Ti+1
式中:Ti.第i个信号交叉口执行单点控制时的最佳周期时长,单位.s;Ti+1.第i+1个信号交叉口执行单点控制时的最佳周期时长,单位.s。 
技术方案中所述的计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的交叉口间距关联度CI(L)的步骤如下: 
1)计算归一化距离Lc: 
L c = L 1500
式中:L.连接第i个信号交叉口与第i+1个信号交叉口的路段长度,单位.m。 
2)当两个信号交叉口执行单向协调控制且归一化距离Lc小于等于1.0时,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度CI(L)计算公式为: 
CI(L)=α2·Lc+1.0 
参数α2代表归一化距离Lc单位变化对关联度CI的影响,其计算公式为: 
α2=2.6-0.08·Ac+1.9·λc-0.14·log(Tc)-1.1·A-3.4·x 
式中:Ac.关键交叉口协调相位的流量比;假设第i个信号交叉口作为关键交叉口,q.第i个信号交叉口的协调相位对应的关键车道的流量,单位.pcu/h,那么: 
A c = q iϵ S ;
3)当两个信号交叉口执行单向协调控制且归一化距离Lc大于1.0,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度CI(L): 
CI(L)=0 
4)当两个信号交叉口执行双向协调控制且归一化距离Lc小于等于1.0时,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度公式为分段线性函数,首先计算 
Figure DEST_PATH_GDA00001939163600033
ceil为取整函数,V为车流在路段上的平均行驶速度,单位.m/s,N代表函数的分段个数; 
计算第n段函数的起点坐标值,0≤n≤N,xn代表横坐标,yn代表纵坐标; 
x n = n · 1 4 T c · V / 1500 0≤n≤N 
下面分段拟合归一化距离Lc与交叉口间距关联度CI(L)的关系式,对于第n段函数: 
CI(L)n=α2·Lc+b2
α 2 = y n - y n - 1 x n - x n - 1 b 2 = ( y n - 1 - y n - y n - 1 x n - x n - 1 · x n - 1 )
5)当两个信号交叉口执行双向协调控制且归一化距离Lc大于1.0,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度CI(L): 
CI(L)=0 
技术方案中所述的计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的路径流量关联度CI(Pq)步骤如下: 
1)计算协调相位流量与历史最大流量的差异比例Pq
仍以第i个信号交叉口与第i+1个信号交叉口为例,第i个信号交叉口至第i+1个信号交叉口方向第i个信号交叉口协调相位对应关键车道的到达流量等于qir,而根据历史数据获得当第i个信号交叉口饱和度小于等于0.9时第i个信号交叉口协调相位到达的流量最大值为qirmax,那么qir与qirmax的差异比例 
Figure DEST_PATH_GDA00001939163600042
等于: 
P q 1 = q ir max - q ir q ir max
同理,第i个信号交叉口至第i+1个信号交叉口方向第i+1个信号交叉口协调相位对应关键车道的到达流量等于q(i+1)j,而根据历史数据获得当第i+1个信号交叉口饱和度小于等于0.9时第i+1个信号交叉口协调相位到达的流量最大值为q(i+1)rmax,那么q(i+1)r与q(i+1)rmax的差异比例 
Figure DEST_PATH_GDA00001939163600044
等于: 
P q 2 = q ( i + 1 ) r max - q ( i + 1 ) r q ( i + 1 ) r max
当第i个信号交叉口与第i+1个信号交叉口执行双向协调控制时,Pq等于: 
P q = P q 1 + P q 2 2
当第i个信号交叉口与第i+1个信号交叉口执行单向协调控制时,Pq等于协调方向的上游交叉口协调相位到达流量与历史上该交叉口饱和度小于等于0.90时的协调相位到达流量最大值的差异比例。 
2)当第i个信号交叉口与第i+1个信号交叉口执行单向协调控制时,它们之间的路径流量关联度CI(Pq)计算公式为: 
CI(Pq)=α3·Pq+1.0 
式中:α3.代表差异比例Pq单位变化对关联度CI的影响,其计算公式为: 
α3=0.88-3.88·Ac+0.81·λc-1.46·x-0.75·log(Tc)-0.14·A 
式中:Ac.关键交叉口协调相位的流量比;x.关键交叉口的饱和度;Tc.第i个信号交叉口与第i+1个信号交叉口执行协调控制时的公共周期,单位.s;A.关键交叉口的流量比。 
3)当第i个信号交叉口与第i+1个信号交叉口执行双向协调控制时,它们之间的路径流量关联度CI(Pq)计算公式为: 
CI(Pq)=α3·Pq+1.0 
式中:α3=ln(5.946-2.664·log(Tc)+0.140·Au-0.049·λc
Au.关键交叉口非协调相位的流量比之和,计算公式为:Au=A-Ac。 
技术方案中所述的计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的综合关联度CI如下: 
CI=1-[(1-CI(TD))+(1-CI(Lc))+(1-CI(Pq))] 
=CI(TD)+CI(Lc)+CI(Pq)-2 
技术方案中所述的人工确定相邻的第i个信号交叉口与第i+1个信号交叉口划入同一交通控制子区的综合关联度阈值是指: 
以0作为两个信号交叉口划入同一交通控制子区的关联度阈值,当第i个信号交叉口与第i+1个信号交叉口之间的综合关联度CI大于0时,它们可以划入同一交通控制子区,否则划入到不同的交通控制子区中。 
与现有技术相比本发明的有益效果是: 
1.本发明建立了一个综合关联度指标来表达相邻信号交叉口之间的相关性,提出了影响综合关联度的周期时长差异、交叉口间距、路径流量等三个关键影响因素,以协调相位协调车流效益为主要分析对象,对于建立科学、全面的相关性分析方法具有重要意义。 
2.本发明所述的相邻信号交叉口相关性的分析方法中的参数能够随路网交通状态的变化而变化,摆脱了以往相关性分析对专家经验的依赖,这对于动态分析两个相邻信号交叉口之间相关性、实现交通控制子区动态划分具有重要意义。 
3.本发明所述的相邻信号交叉口相关性的分析方法科学确定了两个相邻信号交叉口可以划入同一交通控制子区的综合关联度阈值,能够实现交通控制子区的精确划分,摆脱了以往根据专家经验界定相邻信号交叉口相关性大小的方法。 
附图说明
下面结合附图对本发明作进一步的说明: 
图1是本发明所述的相邻信号交叉口相关性的分析方法中所涉及的交叉口进口道感应线圈检测器布设位置示意图; 
图2是本发明所述的相邻信号交叉口相关性的分析方法中所涉及的相邻的 第i个信号交叉口与第i+1个信号交叉口所组成的路网结构示意图; 
图3是本发明所述的相邻信号交叉口相关性分析方法的流程框图; 
图4是应用本发明所述的相邻信号交叉口相关性分析方法的实施例中福州市五一路与福新路信号交叉口和五一路与津泰路信号交叉口的渠化图; 
图5-a是实施例中福州市五一路与福新路信号交叉口和五一路与津泰路信号交叉口相位1控制的车流运行图; 
图5-b是实施例中福州市五一路与福新路信号交叉口和五一路与津泰路信号交叉口相位2控制的车流运行图; 
图5-c是实施例中福州市五一路与福新路信号交叉口和五一路与津泰路信号交叉口相位3控制的车流运行图。 
具体实施方式
下面结合附图对本发明作详细的描述: 
相邻信号交叉口相关性分析方法的实施步骤如下: 
1.信号机利用感应线圈检测器采集信号交叉口各进口道流量并进行流量预测: 
1)参阅图1,在信号交叉口每个进口道停车线后40m位置处布设一个感应线圈检测器,并通过电缆将感应线圈检测器与交通信号机相连接。 
2)信号机实时采集经过感应线圈检测器的每一辆车所产生的脉冲信号,然后以5分钟为统计间隔,统计过去5分钟经过感应线圈检测器的车辆数。 
3)将经过感应线圈检测器的5分钟车辆数转换为流率,计算公式为: 
q ij n = Q ij n × 12
式中: -第i个信号交叉口第j条进口道在第n个统计间隔内到达的车辆数,单位,pcu; 
Figure DEST_PATH_GDA00001939163600063
-第i个信号交叉口第j条进口道在第n个统计间隔内的交通流率,单位,pcu/h; 
4)预测第n+1个统计间隔内第i个信号交叉口各条进口道的交通流率,预测公式为: 
q ^ ij n + 1 = ( q ij n + q ij n - 1 + q ij n - 2 ) / 3
式中: 
Figure DEST_PATH_GDA00001939163600065
-第i个信号交叉口第j条进口道在第n+1个统计间隔内的交通流率预测值,单位,pcu/h。 
2.人工采集信号交叉口的静态交通数据: 
1)采用测距测量工具,人工采集相邻两个信号交叉口之间的距离。 
2)人工测量信号交叉口每条进口道的饱和交通流率。 
3)人工采集信号交叉口的相位相序与每个相位的绿灯损失时间。 
3.计算机计算各个信号交叉口执行单点控制时的最佳配时方案: 
1)计算第i个信号交叉口执行单点信号控制时的最佳周期时长,采用下述公式: 
T i = 1.5 L i + 5 1 - A i
式中:Ti-第i个信号交叉口执行单点控制时的最佳周期时长,单位.s; 
Li-第i个信号交叉口各个相位总绿灯损失时间之和,单位.s; 
Ai-第i个信号交叉口各个相位对应的关键车道的流量比之和; 
其中: 
L i = Σ k = 1 K l ik
式中:K-第i个信号交叉口的相位数; 
lik-第i信号交叉口相位k的绿灯损失时间,单位.s; 
A i = Σ k = 1 K a ik = Σ k = 1 K q ik S ik
式中:aik-第i个信号交叉口相位k的流量比; 
qik-第i个信号交叉口相位k对应的关键车道流量,单位.pcu/h; 
Sik-第i个信号交叉口相位k对应的关键车道的饱和流率,单位.pcu/h; 
2)计算信号交叉口执行单点控制时各个相位的绿灯时间,采用下述公式: 
g ik = ( T i - L i ) × a ik A i
式中:gik-第i个信号交叉口相位k的绿灯时间,单位.s。 
4.计算机确定两个信号交叉口执行协调控制时的协调相位: 
两个信号交叉口之间的协调控制其实协调的是两个信号交叉口协调相位的车流,只有在确定了协调相位之后才能进行相关性分析。在进行协调控制时,一般遵循“协调重交通流方向”的原则,即协调两个信号交叉口之间交通流量最大的一股交通流。 
参阅图2,以图中的第i个信号交叉口与第i+1个信号交叉口为例,设第i个至第i+1个信号交叉口有n1股车流,每股车流流量为qij(j=1,2,…n1),单位.pcu/h;与之关联的第i+1个信号交叉口西进口道有n2股车流,每股车流流量为q(i+1)j(j=1,2,…n2),单位.pcu/h。 
设mA=Pmax(qi1,qi2,…qin1,),mB=Pmax(q(i+1)1,q(i+1)2,…q(i+1)n2),其中函数P max的功能为取各股车流中流量最大的车流所在的相位标识。如qi2在各股车 流中流量最大,且其所在的相位为相位2,那么mA就等于2。根据“协调重交通流方向”的原则,从西至东方向协调第i个信号交叉口mA相位和第i+1个信号交叉口mB相位。mA相位和mB相位被设为协调相位。而从东至西的方向,也采用类似的方法确定协调相位。 
5.计算机确定两个信号交叉口执行协调控制时的协调方式: 
设第i个信号交叉口至第i+1个信号交叉口方向的协调相位为mA、mB,而第i+1个信号交叉口至第i个信号交叉口方向的协调相位为m′A、m′B。当mA=m′A,mB=m′B时,两个方向的协调相位相同,那么此时这两个交叉口就以mA和mB为协调相位执行双向协调控制。 
当mA≠m′A或者mB≠m′B,此时协调相位确定方法如下: 
1)计算由第i个信号交叉口至第i+1个信号交叉口运行方向两个协调相位对应的流量之和,即 
sum 1 = max ( q i 1 , q i 2 , . . . q in 1 ) + max ( q ( i + 1 ) 1 , q ( i + 1 ) 2 , . . . q ( i + 1 ) n 1 )
2)计算由第i+1个信号交叉口至第i个信号交叉口运行方向两个协调相位对应的流量之和,即 
sum 2 = max ( q i 1 ′ , q i 2 ′ , . . . , q in 2 ′ ) + max ( q ( i + 1 ) 1 ′ , q ( i + 1 ) 2 ′ , . . . q ( i + 1 ) n 2 ′ )
式中:q′i1.第i+1个信号交叉口至第i个信号交叉口运行方向,第i个交叉口协调相位对应的第1条车道的流量,单位.pcu/h;q′(i+1)1.第i+1个信号交叉口至第i个信号交叉口运行方向,第i+1个交叉口协调相位对应的第1条车道的流量,单位.pcu/h; 
3)比较sum1与sum2的大小,数值较大者对应的运行方向设置为协调方向,其对应的相位设置为协调相位,并执行双向协调控制; 
但是在一些特殊情况下,第i个信号交叉口与相邻的第i+1个信号交叉口采用单向协调控制方式,如: 
(1)第i个信号交叉口与第i+1个信号交叉口之间连接的路段为单向通行; 
(2)第i个信号交叉口与第i+1个信号交叉口之间连接的路段为双向通行,但是sum1/sum2或者sum2/sum1大于1.5; 
(3)第i个信号交叉口与第i+1个信号交叉口之间连接的路段为双向通行,且一个方向的路段发生了排队上溯,而另一个方向的路段未发生排队上溯。 
6.计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口的周期时长关联度CI(T): 
本发明提出了综合关联度CI来表达相邻两个信号交叉口之间的相关性,综合关联度CI与相关性成正比。综合关联度CI受两个信号交叉口之间的周期时 长、交叉口间距、路径流量等因素的影响。首先建立综合关联度CI与三个因素之间的关系模型,然后建立计算综合关联度CI的模型。 
两个相邻信号交叉口之间的周期时长关联度CI(T)采用如下公式计算: 
CI(T)=α1·TD+1.0 
式中:α1.代表周期时长差异的单位变化对周期时长关联度CI(T)的影响;TD.两个相邻信号交叉口的周期时长差异比例,其计算公式为: 
T D = max ( T i , T i + 1 ) - min ( T i , T i + 1 ) max ( T i , T i + 1 )
式中:Ti.第i个信号交叉口执行单点控制时的最佳周期时长,单位.s;Ti+1.第i+1个信号交叉口执行单点控制时的最佳周期时长,单位.s; 
1)当第i个信号交叉口与第i+1个信号交叉口执行双向协调控制时: 
α1=14.916-53.963·x+4.831·λc+36.281·A 
式中:x.关键交叉口的饱和度;将第i个信号交叉口与第i+1个信号交叉口当中周期时长最大者定为关键交叉口,如果两个交叉口的周期时长相等,那么设定任意一个交叉口为关键交叉口,设关键交叉口为第i个信号交叉口,共包括K个信号相位,那么饱和度x计算公式为: 
x = Σ k = 1 K q ik S × ( T i - L i ) / T i
λc.关键交叉口协调相位的绿信比,设第i个信号交叉口的第w个相位为协调相位,那么λc计算公式等于: 
λ c = g iw T i
式中:giw.第i个信号交叉口协调相位的绿灯时间,单位.s; 
A为关键交叉口的总流量比,设第i个信号交叉口为关键交叉口,那么其总流量比 A i = Σ k = 1 K q ik S ik ;
2)当第i个信号交叉口与第i+1个信号交叉口执行单向协调控制时: 
α1=17.14+24.14·λc-13.1·log(Tc)-6.4·Y 
Tc.第i个信号交叉口与第i+1个信号交叉口执行协调控制时的公共周期,单位.s, 
Tc=max(Ti,Ti+1
式中:Ti.第i个信号交叉口执行单点控制时的最佳周期时长,单位.s;Ti+1.第i+1个信号交叉口执行单点控制时的最佳周期时长,单位.s; 
7.计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的交叉口间距关联度CI(L): 
1)计算归一化距离Lc,计算公式为: 
L c = L 1500
式中:L.连接第i个信号交叉口与第i+1个信号交叉口的路段长度,单位.m, 
2)当两个信号交叉口执行单向协调控制且归一化距离Lc小于等于1.0时,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度CI(L)计算公式为: 
CI(L)=α2·Lc+1.0 
参数α2代表归一化距离Lc的单位变化对关联度CI的影响,其计算公式为: 
α2=2.6-0.08·Ac+1.9·λc-0.14·log(Tc)-1.1·A-3.4·x 
式中:Ac.关键交叉口协调相位的流量比;假设第i个信号交叉口作为关键交叉口,q.第i个信号交叉口的协调相位对应的关键车道的流量,单位.pcu/h,那么: 
A c = q iϵ S ;
3)当两个信号交叉口执行单向协调控制且归一化距离Lc大于1.0,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度CI(L): 
CI(L)=0 
4)当两个信号交叉口执行双向协调控制且归一化距离Lc小于等于1.0时,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度计算公式为分段线性函数。首先计算 
Figure DEST_PATH_GDA00001939163600103
ceil为取整函数,如将5.1、5.8等含小数的数值全部取整为6;V为车流在路段上的平均行驶速度,单位.m/s;N代表函数的分段个数; 
计算第n(0≤n≤N)段函数的起点坐标值,xn代表横坐标,yn代表纵坐标: 
x n = n · 1 4 T c · V / 1500 0≤n≤N 
Figure DEST_PATH_GDA00001939163600105
下面分段拟合归一化距离Lc与交叉口间距关联度CI(L)的关系式,对于第n段函数: 
CI(L)n=α2·Lc+b2
α 2 = y n - y n - 1 x n - x n - 1 b 2 = ( y n - 1 - y n - y n - 1 x n - x n - 1 · x n - 1 )
5)当两个信号交叉口执行双向协调控制且归一化距离Lc大于1.0,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度CI(L): 
CI(L)=0 
8.计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的路径流量关联度CI(Pq): 
1)计算协调相位的当前流量与其历史最大流量的差异比例Pq
仍以第i个信号交叉口与第i+1个信号交叉口为例,第i个信号交叉口至第i+1个信号交叉口方向第i个信号交叉口协调相位对应关键车道的到达流量等于qir,而根据历史数据获得当第i个信号交叉口饱和度小于等于0.9时第i个信号交叉口协调相位到达的流量最大值为qirmax,那么qir与qirmax的差异比例 
Figure DEST_PATH_GDA00001939163600112
等于: 
P q 1 = q ir max - q ir q ir max
同理,第i个信号交叉口至第i+1个信号交叉口方向第i+1个信号交叉口协调相位对应关键车道的到达流量等于q(i+1)r,而根据历史数据获得当第i+1个信号交叉口饱和度小于等于0.9时第i+1个信号交叉口协调相位到达的流量最大值为q(i+1)rmax,那么q(i+1)r与q(i+1)rmax的差异比例 
Figure DEST_PATH_GDA00001939163600114
等于: 
P q 2 = q ( i + 1 ) r max - q ( i + 1 ) r q ( i + 1 ) r max
当第i个信号交叉口与第i+1个信号交叉口执行双向协调控制时,Pq等于: 
P q = P q 1 + P q 2 2
当第i个信号交叉口与第i+1个信号交叉口执行单向协调控制时,Pq等于协调方向的上游交叉口协调相位到达流量与历史上该交叉口饱和度小于等于0.90时的协调相位到达流量最大值的差异比例。 
2)当第i个信号交叉口与第i+1个信号交叉口执行单向协调控制时,它们之间的路径流量关联度CI(Pq)计算公式为: 
CI(Pq)=α3·Pq+1.0 
式中:α3.代表差异比例Pq单位变化对关联度CI的影响,其计算公式为: 
α3=0.88-3.88·Ac+0.81·λc-1.46·x-0.75·log(Tc)-0.14·A 
式中:Ac.关键交叉口协调相位的流量比;x.关键交叉口的饱和度;Tc.第i 个信号交叉口与第i+1个信号交叉口执行协调控制时的公共周期,单位.s;A.关键交叉口的流量比; 
3)当第i个信号交叉口与第i+1个信号交叉口执行双向协调控制时,它们之间的路径流量关联度CI(Pq)计算公式为: 
CI(Pq)=α3·Pq+1.0 
式中:α3=ln(5.946-2.664·log(Tc)+0.140·Au-0.049·λc
Au.关键交叉口非协调相位的流量比之和,计算公式为:Au=A-Ac。 
9.计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的综合关联度CI: 
计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的综合关联度模型如下: 
CI=1-[(1-CI(TD))+(1-CI(Lc))+(1-CI(Pq))] 
=CI(TD)+CI(Lc)+CI(Pq)-2 
10.人工确定相邻的第i个信号交叉口与第i+1个信号交叉口可以划入同一交通控制子区的综合关联度阈值: 
以0作为两个信号交叉口划入同一交通控制子区的综合关联度阈值,当第i个信号交叉口与第i+1个信号交叉口之间的综合关联度CI大于0时,它们可以划入同一交通控制子区,否则划入到不同的交通控制子区中。 
实施例: 
参阅图4,下面以福州市五一路与福新路信号交叉口、五一路与津泰路信号交叉口为例对本发明的具体实施过程进行介绍。两个信号交叉口为相邻的信号交叉口,渠化如图中所示。 
1.信号机利用感应线圈检测器采集信号交叉口各进口道流量并进行流量预测 
为了表达简便,将五一路与津泰路信号交叉口标记为信号交叉口1、五一路与福新路信号交叉口标记为信号交叉口2.两个信号交叉口各有10条进口道。 
在每条进口道停车线后40m处布设感应线圈检测器,并采用电缆将感应线圈与信号机相连。信号机每隔5分钟统计一次经过感应线圈检测器的车辆数,并转化为流率;基于过去3个连续统计时段的流率预测未来5分钟每条进口道的流率。具体如表1所示。 
表1五一路与福新路、津泰路信号交叉口进口道预测流率 
Figure DEST_PATH_GDA00001939163600121
Figure DEST_PATH_GDA00001939163600131
2.人工采集信号交叉口的静态交通数据: 
1)采用测距测量工具,测量信号交叉口1与信号交叉口2之间的距离为440米。 
2)测量两个信号交叉口每条进口道的饱和交通流率均为1600pcu/h。 
3)两个信号交叉口均执行三相位控制,每个相位的绿灯损失时间为3秒,运行的相位相序如图5所示。 
3.计算机计算信号交叉口1和2执行单点控制时的最佳配时方案 
信号交叉口1和信号交叉口2的周期时长、各相位绿灯时间等参数计算结果如表2所示。 
表2两个信号交叉口单点配时方案 
Figure DEST_PATH_GDA00001939163600132
g1、g2、g3分别代表相位1、相位2、相位3的绿灯时间。 
4.计算机确定信号交叉口1和2执行协调控制时的协调相位: 
由南向北方向,mA=2、mB=2;而由北向南方向,m′A=2、m′B=2。所以交叉口1和交叉口2执行协调控制时,将相位2设置为协调相位。 
5.计算机确定信号交叉口1和2执行协调控制时的协调方式: 
由于mA=m′A、mB=m′B,所以交叉口1和交叉口2执行南北方向的双向协调控制。 
6.计算机计算信号交叉口1和2的周期时长关联度CI(T): 
信号交叉口1和信号交叉口2的周期时长分别等于85s、75s,那么两个交叉口的周期时长差异比例TD等于: 
TD=(85-75)/85=0.117 
由于交叉口1和交叉口2执行双向协调控制,采用下式计算权重系数α1: 
α1=14.916-53.963×x+4.831×λc+36.281×A 
上式中各个参数取值分别为:x=0.874、λc=0.45、A=0.78。那么α1=-1.77。 
7.计算机计算信号交叉口1和2之间的交叉口间距关联度CI(L): 
1)计算归一化距离Lc,等于: 
L c = 440 1500 = 0.293
2)信号交叉口1和信号交叉口2执行双向协调控制且归一化距离Lc小于等于1.0,它们的交叉口间距关联度公式为分段线性函数。 
Tc=max(T1,T2)=85s,V=12m/s 
N = ceil ( 1500 / ( 1 4 × 85 × 12 ) ) = 6
3)N等于6代表关联度计算分为6段线性函数,每255m(即 
Figure DEST_PATH_GDA00001939163600143
)为一段。信号交叉口1和2之间的距离L等于440m,位于第2段。那么: 
α 2 = y 2 - y 1 x 2 - x 1 = 1.865 , b2=0.366 
4)交叉口间距关联度CI(L)=α2×Lc+b2=0.91。 
8.计算机计算信号交叉口1和2之间的路径流量关联度CI(Pq
1)计算协调相位的当前流量与其历史最大流量的差异比例Pq
在饱和度小于等于0.9时,交叉口1由南至北方向协调相位对应的进口道3流量最大,最大值q13max等于732pcu/h,而当前由南至北方向信号交叉口1至信号交叉口2的路径流量为582pcu/h,那么差异比例 
Figure DEST_PATH_GDA00001939163600145
等于: 
P q 1 = 732 - 582 731 = 0.205
而在饱和度小于等于0.9时,信号交叉口2由北至南方向协调相位对应的进口道7流量最大,最大值q13max等于552pcu/h,而当前由北至南方向信号交叉口2至信号交叉口1的路径流量为434pcu/h,那么差异比例 
Figure DEST_PATH_GDA00001939163600147
等于: 
P q 2 = 552 - 432 552 = 0.214
由于信号交叉口1和信号交叉口2执行双向协调控制,那么Pq等于: 
P q = P q 1 + P q 2 2 = 0.21
2)信号交叉口1和信号交叉口2执行双向协调控制,它们之间的路径流量关联度CI(Pq)计算公式为: 
CI(Pq)=α3×Pq+1.0 
其中:α3=ln(5.946-2.664×log(Tc)+0.140×Au-0.049×λc
Au=0.39,那么CI(Pq)=0.88。 
9.计算机计算相邻信号交叉口1和2之间的综合关联度CI 
CI=CI(TD)+CI(Lc)+CI(Pq)-2=0.59 
10.判断相邻信号交叉口1和2是否适合划入同一交通控制子区 
本发明以0作为综合关联度阈值。当综合关联度CI大于0时,表明两个相邻的信号交叉口相关性比较大,可以划入同一个交通控制子区,否则不能划入同一交通控制子区。由于信号交叉口1和信号交叉口2的综合关联度等于0.59,大于0,所以它们的相关性较大,可以划入同一个交通控制子区。 

Claims (6)

1.一种相邻信号交叉口相关性分析方法,其特征在于,所述的相邻信号交叉口相关性分析方法步骤如下:
1)信号机利用感应线圈检测器采集信号交叉口各进口道流量并进行流量预测;
2)人工采集信号交叉口的静态交通数据;
3)计算机计算各个信号交叉口执行单点控制时的最佳配时方案;
4)计算机确定两个信号交叉口执行协调控制时的协调相位;
5)计算机确定两个信号交叉口执行协调控制时的协调方式;
6)计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口的周期时长关联度CI(T);
7)计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的交叉口间距关联度CI(L);
8)计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的路径流量关联度CI(Pq);
9)计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的综合关联度CI;
10)人工确定相邻的第i个信号交叉口与第i+1个信号交叉口划入同一交通控制子区的综合关联度阈值。
2.按照权利要求1所述的相邻信号交叉口相关性分析方法,其特征在于,所述的计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口的周期时长关联度CI(T)是采用如下公式计算:
CI(T)=α1·TD+1.0
式中:α1.代表周期时长差异单位变化对周期时长关联度CI(T)的影响;TD.两个相邻信号交叉口的周期时长差异比例,计算公式为:
Figure 454449DEST_PATH_FDA00001939163500011
式中:Ti.第i个信号交叉口执行单点控制时的最佳周期时长,单位.s;Ti+1.第i+1个信号交叉口执行单点控制时的最佳周期时长,单位.s;
1)当第i个信号交叉口与第i+1个信号交叉口执行双向协调控制时:
α1=14.916-53.963·x+4.831·λc+36.281·A
式中:x.关键交叉口的饱和度,设关键交叉口为第i个信号交叉口,包括K个相位,那么饱和度x计算公式为: 
Figure 371589DEST_PATH_FDA00001939163500021
式中:qik.第i个信号交叉口相位k对应的关键车道流量,单位.pcu/h;Li.第i个信号交叉口各个相位总绿灯损失时间之和,单位.s;S.第i个信号交叉口所有进口道的饱和流率平均值,单位.pcu/h;
λc为关键交叉口协调相位的绿信比,计算公式等于:
Figure 151326DEST_PATH_FDA00001939163500022
式中:giw.第i个信号交叉口协调相位的绿灯时间,单位.s;
A为关键交叉口的总流量比,设第i个信号交叉口为关键交叉口,那么其总流量比
2)当第i个信号交叉口与第i+1个信号交叉口执行单向协调控制时:
α1=17.14+24.14·λc-13.1·log(Tc)-6.4·Y
Tc.第i个信号交叉口与第i+1个信号交叉口执行协调控制时的公共周期,单位.s,
Tc=max(Ti,Ti+1)
式中:Ti.第i个信号交叉口执行单点控制时的最佳周期时长,单位.s;Ti+1.第i+1个信号交叉口执行单点控制时的最佳周期时长,单位.s。
3.按照权利要求1所述的相邻信号交叉口相关性分析方法,其特征在于,所述的计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的交叉口间距关联度CI(L)的步骤如下:
1)计算归一化距离Lc
式中:L.连接第i个信号交叉口与第i+1个信号交叉口的路段长度,单位.m,
2)当两个信号交叉口执行单向协调控制且归一化距离Lc小于等于1.0时,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度CI(L)计算公式为:
CI(L)=α2·Lc+1.0
参数α2代表归一化距离Lc单位变化对关联度CI的影响,其计算公式为:
α2=2.6-0.08·Ac+1.9·λc-0.14·log(Tc)-1.1·A-3.4·x
式中:Ac.关键交叉口协调相位的流量比;假设第i个信号交叉口作为关键交叉口,q.第i个信号交叉口的协调相位对应的关键车道的流量,单位.pcu/h,那么:
Figure 245687DEST_PATH_FDA00001939163500025
3)当两个信号交叉口执行单向协调控制且归一化距离Lc大于1.0,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度CI(L):
CI(L)=0
4)当两个信号交叉口执行双向协调控制且归一化距离Lc小于等于1.0时,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度公式为分段线性函数,首先计算 
Figure 512721DEST_PATH_FDA00001939163500031
ceil为取整函数,V为车流在路段上的平均行驶速度,单位.m/s,N代表函数的分段个数;
计算第n段函数的起点坐标值,0≤n≤N,xn代表横坐标,yn代表纵坐标;
Figure 711621DEST_PATH_FDA00001939163500032
0≤n≤N
Figure 380500DEST_PATH_FDA00001939163500033
下面分段拟合归一化距离Lc与交叉口间距关联度CI(L)的关系式,对于第n段函数:
CI(L)n=α2·Lc+b2
Figure 373863DEST_PATH_FDA00001939163500034
5)当两个信号交叉口执行双向协调控制且归一化距离Lc大于1.0,第i个信号交叉口与第i+1个信号交叉口的交叉口间距关联度CI(L):
CI(L)=0。
4.按照权利要求1所述的相邻信号交叉口相关性分析方法,其特征在于,所述的计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的路径流量关联度CI(Pq)步骤如下:
1)计算协调相位流量与历史最大流量的差异比例Pq
仍以第i个信号交叉口与第i+1个信号交叉口为例,第i个信号交叉口至第i+1个信号交叉口方向第i个信号交叉口协调相位对应关键车道的到达流量等于qir,而根据历史数据获得当第i个信号交叉口饱和度小于等于0.9时第i个信号交叉口协调相位到达的流量最大值为qirmax,那么qir与qirmax的差异比例 
Figure 941242DEST_PATH_FDA00001939163500035
等于: 
Figure 678254DEST_PATH_FDA00001939163500041
同理,第i个信号交叉口至第i+1个信号交叉口方向第i+1个信号交叉口协调相位对应关键车道的到达流量等于q(i+1)j,而根据历史数据获得当第i+1个信号交叉口饱和度小于等于0.9时第i+1个信号交叉口协调相位到达的流量最大值为q(i+1)r max,那么q(i+1)r与q(i+1)rmax的差异比例 
Figure 201639DEST_PATH_FDA00001939163500042
等于:
Figure 631483DEST_PATH_FDA00001939163500043
当第i个信号交叉口与第i+1个信号交叉口执行双向协调控制时,Pq等于:
Figure 873109DEST_PATH_FDA00001939163500044
当第i个信号交叉口与第i+1个信号交叉口执行单向协调控制时,Pq等于协调方向的上游交叉口协调相位到达流量与历史上该交叉口饱和度小于等于0.90时的协调相位到达流量最大值的差异比例;
2)当第i个信号交叉口与第i+1个信号交叉口执行单向协调控制时,它们之间的路径流量关联度CI(Pq)计算公式为:
CI(Pq)=α3·Pq+1.0
式中:α3.代表差异比例Pq单位变化对关联度CI的影响,其计算公式为:
α3=0.88-3.88·Ac+0.81·λc-1.46·x-0.75·log(Tc)-0.14·A
式中:Ac.关键交叉口协调相位的流量比;x.关键交叉口的饱和度;Tc.第i个信号交叉口与第i+1个信号交叉口执行协调控制时的公共周期,单位.s;A.关键交叉口的流量比;
3)当第i个信号交叉口与第i+1个信号交叉口执行双向协调控制时,它们之间的路径流量关联度CI(Pq)计算公式为:
CI(Pq)=α3·Pq+1.0
式中:α3=ln(5.946-2.664·log(Tc)+0.140·Au-0.049·λc)
Au.关键交叉口非协调相位的流量比之和,计算公式为:Au=A-Ac
5.按照权利要求1所述的相邻信号交叉口相关性分析方法,其特征在于,所述的计算机计算相邻的第i个信号交叉口与第i+1个信号交叉口之间的综合关联度CI如下:
CI=1-[(1-CI(TD))+(1-CI(Lc))+(1-CI(Pq))]
=CI(TD)+CI(Lc)+CI(Pq)-2。
6.按照权利要求1所述的相邻信号交叉口相关性分析方法,其特征在于,所述的人工确定相邻的第i个信号交叉口与第i+1个信号交叉口划入同一交通控制子区的综合关联度阈值是指: 
以0作为两个信号交叉口划入同一交通控制子区的关联度阈值,当第i个信号交叉口与第i+1个信号交叉口之间的综合关联度CI大于0时,它们可以划入同一交通控制子区,否则划入到不同的交通控制子区中。 
CN201210217064.8A 2012-06-28 2012-06-28 相邻信号交叉口相关性分析方法 Expired - Fee Related CN102800200B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210217064.8A CN102800200B (zh) 2012-06-28 2012-06-28 相邻信号交叉口相关性分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210217064.8A CN102800200B (zh) 2012-06-28 2012-06-28 相邻信号交叉口相关性分析方法

Publications (2)

Publication Number Publication Date
CN102800200A true CN102800200A (zh) 2012-11-28
CN102800200B CN102800200B (zh) 2014-12-17

Family

ID=47199293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210217064.8A Expired - Fee Related CN102800200B (zh) 2012-06-28 2012-06-28 相邻信号交叉口相关性分析方法

Country Status (1)

Country Link
CN (1) CN102800200B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247184A (zh) * 2013-04-11 2013-08-14 浙江大学 一种相邻交叉口双向协调控制效益的快速评估方法
CN103544841A (zh) * 2013-10-22 2014-01-29 银江股份有限公司 交通控制区域动态划分方法
CN105225503A (zh) * 2015-11-09 2016-01-06 中山大学 交通控制子区优化与自适应调整方法
CN105654741A (zh) * 2016-01-26 2016-06-08 浙江大学 一种面向单点瓶颈的上游区域信号控制参数优化方法
CN105825690A (zh) * 2016-06-15 2016-08-03 北京航空航天大学 一种面向可协调控制的干线交叉口关联性分析及划分方法
CN106683450A (zh) * 2017-01-25 2017-05-17 东南大学 一种城市信号控制交叉口群关键路径识别方法
CN106710220A (zh) * 2017-03-14 2017-05-24 河南理工大学 一种城市道路分层动态协调控制算法及控制方法
CN106856049A (zh) * 2017-01-20 2017-06-16 东南大学 基于卡口号牌识别数据的关键交叉口需求集聚分析方法
CN107170254A (zh) * 2015-06-16 2017-09-15 青岛海信网络科技股份有限公司 一种交通信号灯自适应控制方法及装置
CN108257382A (zh) * 2018-01-11 2018-07-06 上海应用技术大学 基于关联度分析的交叉口拥堵关键点寻找方法及系统
CN108806287A (zh) * 2018-06-27 2018-11-13 沈阳理工大学 一种基于协同优化的交通信号配时方法
CN109191842A (zh) * 2018-09-18 2019-01-11 银江股份有限公司 基于实时通行能力的拥堵调控策略推荐方法及系统
CN110111567A (zh) * 2019-04-23 2019-08-09 刘畅 一种基于模块度评估的交通控制子区划分方法及系统
CN111210625A (zh) * 2020-01-10 2020-05-29 阿里巴巴集团控股有限公司 一种交通控制方法、装置及电子设备
CN111341131A (zh) * 2020-03-05 2020-06-26 星觅(上海)科技有限公司 道路信息发送方法、装置、设备及存储介质
CN111564047A (zh) * 2019-02-14 2020-08-21 阿里巴巴集团控股有限公司 一种信号控制区域的分割方法、装置、及电子设备
CN113129614A (zh) * 2020-01-10 2021-07-16 阿里巴巴集团控股有限公司 一种交通控制方法、装置及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070008173A1 (en) * 2005-06-16 2007-01-11 Schwartz Mark A Traffic preemption system with headway management
CN100501795C (zh) * 2007-07-11 2009-06-17 山东省计算中心 一种路口关联路段动态路况采集方法
CN101639978B (zh) * 2009-08-28 2011-04-27 华南理工大学 一种动态划分交通控制子区的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070008173A1 (en) * 2005-06-16 2007-01-11 Schwartz Mark A Traffic preemption system with headway management
CN100501795C (zh) * 2007-07-11 2009-06-17 山东省计算中心 一种路口关联路段动态路况采集方法
CN101639978B (zh) * 2009-08-28 2011-04-27 华南理工大学 一种动态划分交通控制子区的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
卢凯,徐建闽,郑淑鉴: "相邻交叉口关联度分析及其应用", 《华南理工大学学报(自然科学版)》, vol. 37, no. 11, 15 November 2009 (2009-11-15), pages 37 - 41 *
杨庆,陈 林: "交通控制子区动态划分方法", 《吉林大学学报(工学版)》, vol. 36, 30 December 2006 (2006-12-30), pages 139 - 142 *
谢军,马万经: "信号控制交叉口间的关联性研究", 《2008第四届中国智能交通年会论文集》, 1 September 2008 (2008-09-01), pages 309 - 315 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247184B (zh) * 2013-04-11 2015-03-11 浙江大学 一种相邻交叉口双向协调控制效益的快速评估方法
CN103247184A (zh) * 2013-04-11 2013-08-14 浙江大学 一种相邻交叉口双向协调控制效益的快速评估方法
CN103544841A (zh) * 2013-10-22 2014-01-29 银江股份有限公司 交通控制区域动态划分方法
CN103544841B (zh) * 2013-10-22 2015-10-21 银江股份有限公司 交通控制区域动态划分方法
CN107170254A (zh) * 2015-06-16 2017-09-15 青岛海信网络科技股份有限公司 一种交通信号灯自适应控制方法及装置
CN107170254B (zh) * 2015-06-16 2019-09-17 青岛海信网络科技股份有限公司 一种交通信号灯自适应控制方法及装置
CN105225503A (zh) * 2015-11-09 2016-01-06 中山大学 交通控制子区优化与自适应调整方法
CN105225503B (zh) * 2015-11-09 2017-10-24 中山大学 交通控制子区优化与自适应调整方法
CN105654741A (zh) * 2016-01-26 2016-06-08 浙江大学 一种面向单点瓶颈的上游区域信号控制参数优化方法
CN105654741B (zh) * 2016-01-26 2018-07-17 浙江大学 一种面向单点瓶颈的上游区域信号控制参数优化方法
CN105825690A (zh) * 2016-06-15 2016-08-03 北京航空航天大学 一种面向可协调控制的干线交叉口关联性分析及划分方法
CN106856049A (zh) * 2017-01-20 2017-06-16 东南大学 基于卡口号牌识别数据的关键交叉口需求集聚分析方法
CN106683450A (zh) * 2017-01-25 2017-05-17 东南大学 一种城市信号控制交叉口群关键路径识别方法
CN106683450B (zh) * 2017-01-25 2019-06-04 东南大学 一种城市信号控制交叉口群关键路径识别方法
CN106710220B (zh) * 2017-03-14 2019-08-16 河南理工大学 一种城市道路分层动态协调控制算法及控制方法
CN106710220A (zh) * 2017-03-14 2017-05-24 河南理工大学 一种城市道路分层动态协调控制算法及控制方法
CN108257382A (zh) * 2018-01-11 2018-07-06 上海应用技术大学 基于关联度分析的交叉口拥堵关键点寻找方法及系统
CN108806287A (zh) * 2018-06-27 2018-11-13 沈阳理工大学 一种基于协同优化的交通信号配时方法
CN109191842A (zh) * 2018-09-18 2019-01-11 银江股份有限公司 基于实时通行能力的拥堵调控策略推荐方法及系统
CN111564047A (zh) * 2019-02-14 2020-08-21 阿里巴巴集团控股有限公司 一种信号控制区域的分割方法、装置、及电子设备
CN110111567A (zh) * 2019-04-23 2019-08-09 刘畅 一种基于模块度评估的交通控制子区划分方法及系统
CN110111567B (zh) * 2019-04-23 2021-05-18 刘畅 一种基于模块度评估的交通控制子区划分方法及系统
CN111210625A (zh) * 2020-01-10 2020-05-29 阿里巴巴集团控股有限公司 一种交通控制方法、装置及电子设备
CN113129614A (zh) * 2020-01-10 2021-07-16 阿里巴巴集团控股有限公司 一种交通控制方法、装置及电子设备
CN111341131A (zh) * 2020-03-05 2020-06-26 星觅(上海)科技有限公司 道路信息发送方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN102800200B (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
CN102800200A (zh) 相邻信号交叉口相关性分析方法
CN109410606B (zh) 一种基于视频的主干路协同信号机控制方法
CN102722986B (zh) 城市路网交通控制子区动态划分方法
CN102629418B (zh) 基于模糊卡尔曼滤波的交通流预测方法
CN104575051B (zh) 一种基于阵列雷达的高架匝道智能信号控制方法及装置
CN103593976B (zh) 基于检测器确定道路交通状态的方法及系统
CN103985250B (zh) 轻量级的全息道路交通状态视觉检测装置
CN102521965B (zh) 基于车牌识别数据的交通需求管理措施效果评价方法
CN103730008A (zh) 基于公交gps和ic卡实时数据的公交拥挤度分析方法
CN108417055B (zh) 一种基于雷达检测器的主干路协同信号机控制方法
CN102034353B (zh) 基于固定检测器的城市道路交通事故排队长度测算方法
CN104680789B (zh) 一种快速道路拥堵指数估算及预测方法
CN104835335A (zh) 路网交通优化控制系统和方法
CN104575036A (zh) 基于动态od流量预测与仿真优化的区域信号控制方法
Xinghao et al. Predicting bus real-time travel time basing on both GPS and RFID data
CN102930718A (zh) 基于浮动车数据和线圈流量融合的间断流路段行程时间估计方法
CN106971535B (zh) 一种基于浮动车gps实时数据的城市交通拥堵指数计算平台
CN101739822B (zh) 区域交通状态获取的传感器网络配置方法
CN103489316A (zh) 一种基于路网拓扑关系的网络交通流量检测器布设方法
CN108665178A (zh) 一种基于afc的地铁站内楼扶梯客流量预测方法
CN106156890B (zh) 一种城市轨道交通通道内客流检测和预测方法及其系统
CN105139670A (zh) 一种基于视频的区域自优化信号控制方法及装置
CN105070073A (zh) 一种基于地磁的区域自优化信号控制方法及装置
CN105118310A (zh) 一种基于视频的单点自优化信号控制方法及装置
CN108417056B (zh) 一种基于雷达检测器的十字路口信号机控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141217

Termination date: 20180628