CN102794771A - Mechanical arm correction system and method - Google Patents
Mechanical arm correction system and method Download PDFInfo
- Publication number
- CN102794771A CN102794771A CN2011101368178A CN201110136817A CN102794771A CN 102794771 A CN102794771 A CN 102794771A CN 2011101368178 A CN2011101368178 A CN 2011101368178A CN 201110136817 A CN201110136817 A CN 201110136817A CN 102794771 A CN102794771 A CN 102794771A
- Authority
- CN
- China
- Prior art keywords
- image
- measured
- center
- mechanical arm
- image plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Image Analysis (AREA)
Abstract
一种机械手臂校正系统及方法,该系统用于:获取校正参数;控制机械手臂移动,获取第一影像平面中心a;根据第一待测物件与第二待测物件的距离,控制机械手臂移动,获取第二影像平面中心b;计算第一影像平面中心a到第二影像平面中心b的向量A,并根据向量A与向量Z计算校正角度φ;根据校正角度φ,调整机械手臂的法兰面轴心向量Z,使得机械手臂的法兰面轴心向量Z垂直于第一待测物件和第二待测物件所在的平面。利用本发明可以自动对机械手臂进行校正。
A mechanical arm calibration system and method, the system is used to: obtain calibration parameters; control the movement of the mechanical arm to obtain the center a of the first image plane; control the movement of the mechanical arm according to the distance between the first object to be measured and the second object to be measured , get the center b of the second image plane; calculate the vector A from the center a of the first image plane to the center b of the second image plane, and calculate the correction angle φ according to the vector A and vector Z; adjust the flange of the mechanical arm according to the correction angle φ A surface axis vector Z, such that the flange surface axis vector Z of the mechanical arm is perpendicular to the plane where the first object to be measured and the second object to be measured are located. The invention can automatically correct the mechanical arm.
Description
技术领域 technical field
本发明涉及一种测试系统及方法,尤其是一种机械手臂校正系统及方法。The invention relates to a testing system and method, in particular to a mechanical arm calibration system and method.
背景技术 Background technique
随着电子科学技术的发展,印刷电路板(Printed Circuit Board,PCB)已成为各种电器设备(如计算机)不可缺少的重要组成部分。由于印刷电路板的电路中传递有超高频率的微波信号,若要保证印刷电路板在使用时的可靠性,就必须在出厂时对其零件的物体特性(如阻抗)进行检测。With the development of electronic science and technology, printed circuit boards (Printed Circuit Board, PCB) have become an indispensable and important part of various electrical equipment (such as computers). Since ultra-high frequency microwave signals are transmitted in the circuit of the printed circuit board, in order to ensure the reliability of the printed circuit board in use, it is necessary to detect the physical characteristics (such as impedance) of its parts when leaving the factory.
随着机械手臂设计的不断进步,现在有的测试系统可以利用机械手臂来自动测试印刷电路板上零件的物理特性。但目前利用机械手臂进行自动化测试的系统都无法对机械手臂进行校正,导致测量结果不准确。With the continuous improvement of the design of the mechanical arm, some test systems can now use the mechanical arm to automatically test the physical characteristics of the parts on the printed circuit board. However, the current systems that use robotic arms for automated testing cannot correct the robotic arm, resulting in inaccurate measurement results.
发明内容 Contents of the invention
鉴于以上内容,有必要提供一种机械手臂校正系统,其可自动对机械手臂进行校正,使机械手臂的法兰面轴心向量垂直于待测物平面。In view of the above, it is necessary to provide a mechanical arm calibration system, which can automatically calibrate the mechanical arm so that the axis vector of the flange surface of the mechanical arm is perpendicular to the plane of the object to be measured.
鉴于以上内容,还有必要提供一种机械手臂校正方法,其可自动对机械手臂进行校正,使机械手臂的法兰面轴心向量垂直于待测物平面。In view of the above, it is also necessary to provide a calibration method for the mechanical arm, which can automatically correct the mechanical arm so that the axis vector of the flange surface of the mechanical arm is perpendicular to the plane of the object to be measured.
一种机械手臂校正系统,运行于主控电脑中,该主控电脑通过机械手臂运动控制系统对机械手臂进行控制,该系统包括:A mechanical arm correction system, running in a main control computer, the main control computer controls the mechanical arm through a mechanical arm motion control system, the system includes:
参数获取模块,用于获取机械手臂的影像摄取装置的像距H、机械手臂的法兰面轴心向量Z、第一待测物件与第二待测物件的距离L;The parameter acquisition module is used to acquire the image distance H of the image capture device of the mechanical arm, the axial center vector Z of the flange surface of the mechanical arm, and the distance L between the first object to be measured and the second object to be measured;
第一影像平面中心获取模块,用于控制机械手臂移动,使得影像摄取装置摄取的第一待测物件的影像清晰度最佳化,并获取影像摄取装置当前的影像平面中心,记为第一影像平面中心a;The first image plane center acquisition module is used to control the movement of the mechanical arm to optimize the image clarity of the first object to be measured captured by the image capture device, and obtain the current image plane center of the image capture device, which is recorded as the first image plane center a;
第二影像平面中心获取模块,用于根据第一待测物件与第二待测物件的距离L,控制机械手臂移动,使得影像摄取装置摄取的第二待测物件的影像清晰度最佳化,并获取影像摄取装置当前的影像平面中心,记为第二影像平面中心b;The second image plane center acquisition module is used to control the movement of the mechanical arm according to the distance L between the first object to be measured and the second object to be measured, so as to optimize the image definition of the second object to be measured captured by the image capture device, And obtain the current image plane center of the image capture device, denoted as the second image plane center b;
校正角度计算模块,用于计算第一影像平面中心a到第二影像平面中心b的向量A,并根据向量A与向量Z计算校正角度φ;及The correction angle calculation module is used to calculate the vector A from the center a of the first image plane to the center b of the second image plane, and calculate the correction angle φ according to the vector A and the vector Z; and
机械手臂调整模块,用于根据校正角度φ,调整机械手臂的法兰面轴心向量Z,使得机械手臂的法兰面轴心向量Z垂直于第一待测物件和第二待测物件所在的平面。The mechanical arm adjustment module is used to adjust the axis vector Z of the flange surface of the mechanical arm according to the correction angle φ, so that the axis vector Z of the flange surface of the mechanical arm is perpendicular to the position where the first object to be measured and the second object to be measured are located. flat.
一种机械手臂校正方法,应用于主控电脑中,该主控电脑通过机械手臂运动控制系统对机械手臂进行控制,该方法包括如下步骤:A method for calibrating a mechanical arm is applied to a main control computer, the main control computer controls the mechanical arm through a mechanical arm motion control system, and the method includes the following steps:
参数获取步骤,获取机械手臂的影像摄取装置的像距H、机械手臂的法兰面轴心向量Z、第一待测物件与第二待测物件的距离L;The parameter acquisition step is to obtain the image distance H of the image capture device of the mechanical arm, the axial center vector Z of the flange surface of the mechanical arm, and the distance L between the first object to be measured and the second object to be measured;
第一影像平面中心获取步骤,控制机械手臂移动,使得影像摄取装置摄取的第一待测物件的影像清晰度最佳化,并获取影像摄取装置当前的影像平面中心,记为第一影像平面中心a;The step of obtaining the center of the first image plane is to control the movement of the mechanical arm to optimize the image clarity of the first object to be measured captured by the image capture device, and obtain the current center of the image plane of the image capture device, which is recorded as the center of the first image plane a;
第二影像平面中心获取步骤,根据第一待测物件与第二待测物件的距离L,控制机械手臂移动,使得影像摄取装置摄取的第二待测物件的影像清晰度最佳化,并获取影像摄取装置当前的影像平面中心,记为第二影像平面中心b;The step of obtaining the center of the second image plane is to control the movement of the mechanical arm according to the distance L between the first object to be measured and the second object to be measured, so as to optimize the image definition of the second object to be measured captured by the image capture device, and obtain The current image plane center of the image capture device is denoted as the second image plane center b;
校正角度计算步骤,计算第一影像平面中心a到第二影像平面中心b的向量A,并根据向量A与向量Z计算校正角度φ;及The correction angle calculation step is to calculate the vector A from the center a of the first image plane to the center b of the second image plane, and calculate the correction angle φ according to the vector A and the vector Z; and
机械手臂调整步骤,根据校正角度φ,调整机械手臂的法兰面轴心向量Z,使得机械手臂的法兰面轴心向量Z垂直于第一待测物件和第二待测物件所在的平面。The step of adjusting the mechanical arm is to adjust the axial vector Z of the flange surface of the mechanical arm according to the correction angle φ, so that the axial vector Z of the flange surface of the mechanical arm is perpendicular to the plane where the first object to be measured and the second object to be measured are located.
前述方法可以由电子装置执行,其中该电子装置具有附带了一个或多个处理器、存储器以及保存在存储器中用于执行这些方法的一个或多个模块、程序或指令集。在某些实施例中,该电子装置提供了包括无线通信在内的多种功能。The aforementioned methods may be performed by an electronic device, wherein the electronic device has attached one or more processors, memory, and one or more modules, programs or instruction sets stored in the memory for performing the methods. In some embodiments, the electronic device provides multiple functions including wireless communication.
用于执行前述方法的指令可以包含在被配置成由一个或多个处理器执行的计算机程序产品中。Instructions for performing the foregoing methods may be embodied in a computer program product configured to be executed by one or more processors.
相较于现有技术,所述的机械手臂校正系统及方法,可以自动对机械手臂进行校正,使机械手臂的法兰面轴心向量垂直于待测物平面,避免了机械手臂定位错误的发生,提高了测试的精确度。Compared with the prior art, the manipulator calibration system and method can automatically calibrate the manipulator so that the axis vector of the flange surface of the manipulator is perpendicular to the plane of the object to be measured, avoiding the occurrence of positioning errors of the manipulator , improving the accuracy of the test.
附图说明 Description of drawings
图1是本发明机械手臂校正系统较佳实施例的硬件架构图。FIG. 1 is a hardware architecture diagram of a preferred embodiment of the robotic arm calibration system of the present invention.
图2是图1中主控电脑的结构示意图。Fig. 2 is a schematic structural diagram of the main control computer in Fig. 1 .
图3是图1中所示机械手臂校正系统的功能模块图。FIG. 3 is a functional block diagram of the manipulator calibration system shown in FIG. 1 .
图4A和图4B是本发明机械手臂校正方法较佳实施例的流程图。FIG. 4A and FIG. 4B are flow charts of a preferred embodiment of the method for calibrating the robotic arm of the present invention.
图5是影像摄取装置的影像平面与待测元件之间的位置关系的平面图。FIG. 5 is a plan view of the positional relationship between the image plane of the image capture device and the device under test.
图6是影像摄取装置的影像平面与待测元件之间的位置关系的立体图。6 is a perspective view of the positional relationship between the image plane of the image capturing device and the device under test.
主要元件符号说明Description of main component symbols
如下具体实施方式将结合上述附图进一步说明本发明。The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.
具体实施方式 Detailed ways
如图1所示,是本发明机械手臂校正系统较佳实施例的系统架构图,该机械手臂校正系统21系统运行于主控电脑20中。其中,所述主控电脑20与机械手臂运动控制系统31、数字影像摄取控制系统41连接。该机械手臂运动控制系统31通过机械手臂控制通道32对机械手臂33进行控制,该数字影像摄取控制系统41通过数字影像摄取控制通道42对影像摄取装置43进行控制。该影像摄取装置43通过固定装置34安装于机械手臂33上。其中,所述机械手臂33可以是关节型或非关节型机械手臂。As shown in FIG. 1 , it is a system architecture diagram of a preferred embodiment of the manipulator calibration system of the present invention. The
在本实施例中,该机械手臂控制通道32和数字影像摄取控制通道42可以是通讯电缆,该固定装置34安装于机械手臂33前的法兰面复合机座中。该影像摄取装置43可以是数字摄影机,用于摄取印刷电路板60上的待测物件影像,所述印刷电路板60放置于测试机台70上。可以理解,在其它实施例中,所述印刷电路板60也可以用其它电子设备替代。In this embodiment, the
参阅图2所示,该主控电脑20包括通过数据总线相连的机械手臂校正系统21、显示设备22、存储器23、输入设备24和处理器25。Referring to FIG. 2 , the
所述存储器23用于存储所述机械手臂校正系统21的程序代码等资料。所述显示设备22和输入设备24用做主控电脑20的输入输出设备。The
所述机械手臂校正系统21用于自动对机械手臂33进行校正,使机械手臂33的法兰面轴心向量垂直于待测物平面,具体过程以下描述。The
在本实施例中,所述机械手臂校正系统21可以被分割成一个或多个模块,所述一个或多个模块被存储在所述存储器23中并被配置成由一个或多个处理器(本实施例为一个处理器25)执行,以完成本发明。例如,参阅图3所示,所述机械手臂校正系统21被分割成参数获取模块201、第一影像平面中心获取模块202、第二影像平面中心获取模块203、校正角度计算模块204和机械手臂调整模块205。本发明所称的模块是完成一特定功能的程序段,比程序更适合于描述软件在主控电脑20中的执行过程,以下将结合图4的流程图对各个模块的功能进行描述。In this embodiment, the
如图4A和图4B所示,是本发明机械手臂校正方法较佳实施例的流程图。As shown in FIG. 4A and FIG. 4B , it is a flow chart of a preferred embodiment of the method for calibrating a manipulator of the present invention.
步骤S10,参数获取模块201获取影像摄取装置43的像距H、机械手臂33的法兰面轴心向量Z、印刷电路板60上第一待测物件与第二待测物件的距离L。其中,像距H是指像到影像摄取装置43的透镜中心之间的距离。参阅图5和图6所示,p1代表第一待测物件,p2代表第二代测物件。Step S10 , the
步骤S11,保持向量Z不变,第一影像平面中心获取模块202控制机械手臂33移动,使得第一待测物件p1进入影像摄取装置43的影像平面内。在本实施例中,影像摄取装置43摄取第一待测物件p1的浅景深(Shallow Depth of Field)影像。在其它实施例中,影像摄取装置43也可以摄取第一待测物件p1的其它影像,如大景深(LargeDepth of Field)影像。Step S11 , keeping the vector Z unchanged, the first image plane
步骤S12,第一影像平面中心获取模块202调整机械手臂33使得第一待测物件p1位于影像摄取装置43的景深范围内,并对影像摄取装置43摄取的影像进行对比度直方统计分析使得第一待测物件p1的影像清晰度最佳化。其中,对比度是指画面黑与白的比值,也就是从黑到白的渐变层次。比值越大,从黑到白的渐变层次就越多,从而色彩表现越丰富。对比度对视觉效果的影响非常关键,一般来说对比度越大,图像越清晰醒目,色彩也越鲜明艳丽;而对比度小,则会让整个画面都灰蒙蒙的。Step S12, the first image plane
步骤S13,第一影像平面中心获取模块202对第一待测物件p1进行轮廓边缘分析,获取该第一待测物件p1的影像面积中心p(参阅图5和图6所示)。Step S13 , the first image plane
步骤S14,第一影像平面中心获取模块202依据影像摄取装置43的影像平面方向移动机械手臂33,使得第一待测物件p1的影像面积中心p与影像摄取装置43的影像平面中心重合。Step S14 , the first image plane
步骤S15,第一影像平面中心获取模块202调整机械手臂33,并再一次对影像摄取装置43摄取的影像进行对比度直方统计分析使得第一待测物件p1的影像清晰度最佳化,并获取影像摄取装置43当前的影像平面中心,记为第一影像平面中心a(参阅图5和图6所示)。Step S15, the first image plane
步骤S16,第一影像平面中心获取模块202存储该第一影像平面中心a的位置坐标及第一待测物件p1的影像图档至存储器23。In step S16 , the first image plane
步骤S17,保持向量Z不变,第二影像平面中心获取模块203根据第一待测物件p1与第二待测物件p2的距离L,控制机械手臂33移动,使得第二待测物件p2进入影像摄取装置43的影像平面内。在本实施例中,影像摄取装置43摄取第二待测物件p2的浅景深(Shallow Depth of Field)影像。在其它实施例中,影像摄取装置43也可以摄取第二待测物件p2的其它影像,如大景深(Large Depth ofField)影像。Step S17, keeping the vector Z unchanged, the second image plane
步骤S18,第二影像平面中心获取模块203调整机械手臂33使得第二待测物件p2位于影像摄取装置43的景深范围内,并对影像摄取装置43摄取的影像进行对比度直方统计分析使得第二待测物件p2的影像清晰度最佳化。Step S18, the second image plane
步骤S19,第二影像平面中心获取模块203对第二待测物件p2进行轮廓边缘分析,获取该第二待测物件p2的影像面积中心q(参阅图5和图6所示)。Step S19 , the second image plane
步骤S20,第二影像平面中心获取模块203依据影像摄取装置43的影像平面方向移动机械手臂33,使得第二待测物件p2的影像面积中心q与影像摄取装置43的影像平面中心重合。Step S20 , the second image plane
步骤S21,第二影像平面中心获取模块203调整机械手臂33,并再一次对影像摄取装置43摄取的影像进行对比度直方统计分析使得第二待测物件p2的影像清晰度最佳化,并获取影像摄取装置43当前的影像平面中心,记为第二影像平面中心b(参阅图5和图6所示)。Step S21, the second image plane
步骤S22,第二影像平面中心获取模块203存储该第二影像平面中心b的位置坐标及第二待测物件p2的影像图档至存储器23。Step S22 , the second image plane
步骤S23,校正角度计算模块204计算第一影像平面中心a到第二影像平面中心b的向量A(参阅图5所示)。In step S23 , the correction
步骤S24,校正角度计算模块204根据向量A与向量Z计算校正角度φ,其中,校正角度φ等于90度减去向量A与向量Z之间的夹角(参阅图5所示)。Step S24 , the correction
步骤S25,机械手臂调整模块205根据校正角度φ,调整机械手臂33的法兰面轴心向量Z,使得机械手臂33的法兰面轴心向量Z垂直于第一待测物件p1和第二待测物件p2所在的平面。在本实施例中,第一待测物件p1和第二待测物件p2所在的平面为印刷电路板60的平面。In step S25, the mechanical
具体而言,机械手臂调整模块205将机械手臂33的法兰面轴心向量Z顺时针旋转校正角度φ,使得向量Z平行于第一待测物件p1和第二待测物件p2所在平面的法向量N,从而使得机械手臂33的法兰面轴心向量Z垂直于第一待测物件p1和第二待测物件p2所在的平面。Specifically, the mechanical
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be Modifications or equivalent replacements can be made without departing from the spirit and scope of the technical solutions of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101368178A CN102794771A (en) | 2011-05-24 | 2011-05-24 | Mechanical arm correction system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101368178A CN102794771A (en) | 2011-05-24 | 2011-05-24 | Mechanical arm correction system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102794771A true CN102794771A (en) | 2012-11-28 |
Family
ID=47194197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101368178A Pending CN102794771A (en) | 2011-05-24 | 2011-05-24 | Mechanical arm correction system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102794771A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103192399A (en) * | 2013-03-29 | 2013-07-10 | 中国科学院自动化研究所 | Micro-vision hand-eye calibration method based on target motion |
CN106291206A (en) * | 2016-07-27 | 2017-01-04 | 深圳市拓科智能科技有限公司 | A kind of Apparatus and method for for the test of electronic product multiplex roles |
CN107991638A (en) * | 2017-10-31 | 2018-05-04 | 广东省电子技术研究所 | A kind of calibration method of rotary SMT initial workpiece detecting systems |
CN111143618A (en) * | 2019-08-21 | 2020-05-12 | 紫勋智能科技(北京)有限公司 | Method for calculating object state in video and robot for calculating object state |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2110427A (en) * | 1981-11-20 | 1983-06-15 | Tokico Ltd | Industrial robot |
JPS61296409A (en) * | 1985-06-25 | 1986-12-27 | Fanuc Ltd | Robot control system |
JPH03281182A (en) * | 1990-03-28 | 1991-12-11 | Shinko Electric Co Ltd | Coordinate correcting method for moving robot |
JPH04365585A (en) * | 1991-06-14 | 1992-12-17 | Toyota Autom Loom Works Ltd | Setting method for perpendicularity, distance, and rotation angle of hand eye |
JPH0691571A (en) * | 1990-09-20 | 1994-04-05 | Mazda Motor Corp | Method and apparatus for calibrating picture image guided robot |
CN1486914A (en) * | 2002-08-23 | 2004-04-07 | 发那科株式会社 | Articles transfer device |
-
2011
- 2011-05-24 CN CN2011101368178A patent/CN102794771A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2110427A (en) * | 1981-11-20 | 1983-06-15 | Tokico Ltd | Industrial robot |
JPS61296409A (en) * | 1985-06-25 | 1986-12-27 | Fanuc Ltd | Robot control system |
JPH03281182A (en) * | 1990-03-28 | 1991-12-11 | Shinko Electric Co Ltd | Coordinate correcting method for moving robot |
JPH0691571A (en) * | 1990-09-20 | 1994-04-05 | Mazda Motor Corp | Method and apparatus for calibrating picture image guided robot |
JPH04365585A (en) * | 1991-06-14 | 1992-12-17 | Toyota Autom Loom Works Ltd | Setting method for perpendicularity, distance, and rotation angle of hand eye |
CN1486914A (en) * | 2002-08-23 | 2004-04-07 | 发那科株式会社 | Articles transfer device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103192399A (en) * | 2013-03-29 | 2013-07-10 | 中国科学院自动化研究所 | Micro-vision hand-eye calibration method based on target motion |
CN103192399B (en) * | 2013-03-29 | 2015-12-23 | 中国科学院自动化研究所 | A kind of micro-vision hand and eye calibrating system and method for based target motion |
CN106291206A (en) * | 2016-07-27 | 2017-01-04 | 深圳市拓科智能科技有限公司 | A kind of Apparatus and method for for the test of electronic product multiplex roles |
CN107991638A (en) * | 2017-10-31 | 2018-05-04 | 广东省电子技术研究所 | A kind of calibration method of rotary SMT initial workpiece detecting systems |
CN107991638B (en) * | 2017-10-31 | 2020-09-18 | 广东省电子技术研究所 | Calibration method of rotary SMT first piece detection system |
CN111143618A (en) * | 2019-08-21 | 2020-05-12 | 紫勋智能科技(北京)有限公司 | Method for calculating object state in video and robot for calculating object state |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104581136B (en) | Image calibration system and calibration method for stereo cameras | |
KR102716521B1 (en) | Printed circuit board inspection apparatus and method for inspecting mounting state of component | |
JP2020116734A (en) | System and method for automatic hand-eye calibration of vision system for robot motion | |
CN102901473B (en) | Measure coordinates correction system and method | |
CN109910000B (en) | Calibration and operation of vision-based steering systems | |
CN106197292B (en) | A kind of building displacement monitoring method | |
TWI404609B (en) | Parameters adjustment method of robotic arm system and adjustment apparatus | |
TW201520540A (en) | Inspection apparatus, method, and computer program product for machine vision inspection | |
AU2017229995A1 (en) | Perspective correction for curved display screens | |
CN103153553A (en) | Vision-guided alignment system and method | |
CN104034261B (en) | A kind of curved surface normal direction measurement apparatus and curved surface normal direction measuring method | |
CN111311632A (en) | Object pose tracking method, device and equipment | |
CN108871185B (en) | Method, apparatus, apparatus, and computer-readable storage medium for part inspection | |
CN113172636B (en) | Automatic hand-eye calibration method and device and storage medium | |
CN103029131A (en) | Mechanical arm motion control system and mechanical arm motion control method | |
CN102794771A (en) | Mechanical arm correction system and method | |
TW201320231A (en) | Method and system for positioning round holes of motherboard | |
CN110722558A (en) | Robot origin calibration method, device, controller and storage medium | |
JP6112896B2 (en) | Substrate inspection apparatus and correction information acquisition method | |
CN105865349A (en) | Large-scale building displacement monitoring method | |
CN113473834B (en) | Method, device and system for inserting special-shaped element, electronic equipment and storage medium | |
CN117115233A (en) | Dimension measurement method and device based on machine vision and electronic equipment | |
CN116797661A (en) | A method of pupil positioning and related devices | |
KR20090115537A (en) | Quality inspection robot and method | |
TW201247373A (en) | System and method for adjusting mechanical arm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121128 |