CN102788597A - Error suppressing method of rotary strap-down inertial navigation system based on space stabilization - Google Patents

Error suppressing method of rotary strap-down inertial navigation system based on space stabilization Download PDF

Info

Publication number
CN102788597A
CN102788597A CN2012103052085A CN201210305208A CN102788597A CN 102788597 A CN102788597 A CN 102788597A CN 2012103052085 A CN2012103052085 A CN 2012103052085A CN 201210305208 A CN201210305208 A CN 201210305208A CN 102788597 A CN102788597 A CN 102788597A
Authority
CN
China
Prior art keywords
mtd
mrow
mtr
msubsup
omega
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103052085A
Other languages
Chinese (zh)
Other versions
CN102788597B (en
Inventor
孙伟
徐爱功
徐宗秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Technical University
Original Assignee
Liaoning Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Technical University filed Critical Liaoning Technical University
Priority to CN201210305208.5A priority Critical patent/CN102788597B/en
Publication of CN102788597A publication Critical patent/CN102788597A/en
Application granted granted Critical
Publication of CN102788597B publication Critical patent/CN102788597B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

The invention provides an error suppressing method of a rotary strap-down inertial navigation system based on space stabilization. The error suppressing method comprises the following steps: determining an initial position parameter of a carrier through a GPS (global positioning system) and binding the initial position parameter of the carrier in a navigation computer; preparing to preheat a strap-down inertial navigation system, collecting data output by a fiber-optic gyroscope and a quartz accelerometer and processing the data; rotating an IMU (inertial measurement unit) and then converting the data generated by the fiber-optic gyroscope and the quartz accelerometer to be in a navigation coordinate system to obtain modulation format of constant deviation of an inertial unit; analyzing calibration factor error and installment error of the gyroscope in a modulation type inertial navigation system with steady space; and calculating attitude error caused by the calibration factor error and the installment error of the gyroscope during a conversion progress between a coordinate system of the IMU and the inertial system. With the adoption of the error suppressing method disclosed by the invention, constant deviation of inertial units in three-axis directions is modulated, and al the calibration factor error and the mounting error are also prevented from being coupled with the rotational angular velocity of the earth, consequently, the system has better stabilization, and navigation positioning precision is improved.

Description

Error suppression method for rotary strapdown inertial navigation system based on space stability
(I) technical field
The invention relates to a measuring method, in particular to a method for suppressing errors of a rotary strapdown inertial navigation system based on space stability.
(II) background of the invention
The spatially stable inertial navigation system is also called an analytic inertial navigation system. The gyroscope is a space-stabilized inertial platform which is stable relative to an inertial space and is realized by three sets of follow-up systems by utilizing the fixed axis property of the gyroscope in the inertial space, wherein the direction of the gyroscope is kept unchanged. Three mutually perpendicular accelerometers are arranged on the stable platform. Because the inertial platform has no rotational angular velocity relative to the inertial space, the accelerometer output signal does not have to eliminate the effect of harmful acceleration. Because the platform is stabilized in the inertial space, the components of the earth gravity field vector in the inertial system change under different positions, so that the gravity acceleration component appears in the output signal of the accelerometer, and the speed and position information of the carrier is obtained through the integral action after the gravity acceleration component is compensated.
High-precision strapdown inertial navigation systems require the use of high-performance inertial sensors and advanced system technology. Due to the limitations of the processing technology and the manufacturing level in China, the difficulty in manufacturing the high-performance inertial device is high, and meanwhile, the cost of the whole strapdown inertial navigation system is increased due to the high-performance inertial device, so that the advanced system technology is always a research hotspot of the strapdown inertial navigation system. The photoelectric devices related to the fiber-optic gyroscope cannot meet the overall requirements of gyroscope design technically and quantitatively, the development of the fiber-optic gyroscope is limited, and the precision of the existing fiber-optic gyroscope cannot meet the requirements of long endurance and high precision, so that the method for improving the navigation precision under the precision condition of the existing gyroscope is important to find.
The error modulation technique is a technique for automatic compensation of inertial device errors based on a rotating Inertial Measurement Unit (IMU). The error of the inertial measurement unit is the main determinant of the inertial navigation system error. The difficulty of manufacturing a high-performance inertial device is high due to the limitation of the process manufacturing level, and the cost of the whole strapdown inertial navigation system can be increased by developing the high-performance inertial device, so that the advanced system technology is a research hotspot of the strapdown inertial navigation system all the time. The rotational error modulation technique is an advanced system technique, which is to add a rotation and control mechanism outside the inertial element or IMU and then use the rotation to average out the influence of the drift of the inertial element on the navigation performance.
Disclosure of the invention
The technical problem to be solved by the invention is as follows: the method overcomes the defects of the prior art and provides a method for suppressing the error of the rotary strapdown inertial navigation system based on space stability.
The technical solution of the invention is as follows: a method for suppressing errors of a rotary strapdown inertial navigation system based on space stability is characterized in that an inertial measurement unit is stabilized in an equatorial plane, a four-ring structure is adopted to isolate the influence of angular motion of a carrier and the rotational angular velocity of the earth on the error modulation effect of the rotary modulation type strapdown inertial navigation system, the coupling of scale factor errors and installation errors of a gyroscope and the rotational angular velocity of the earth is avoided, the system has better stability, and the system position errors tend to zero gradually. The method comprises the following specific steps:
(1) determining initial position parameters of the carrier through a GPS, and binding the initial position parameters into a navigation computer;
(2) preheating preparation is carried out by the strapdown inertial navigation system, and data output by the optical fiber gyroscope and the quartz accelerometer are collected and processed;
(3) converting data generated by the fiber optic gyroscope and the quartz accelerometer after the IMU rotates into a navigation coordinate system to obtain a modulation form of constant deviation of the inertial device;
ox of inertial measurement unit coordinate systemsysPlane parallel to the equatorial plane of the earth, ozsThe axis is parallel to the rotation axis of the earth and points to be consistent with the rotation angular velocity direction of the earth (as shown in the attached figure 3), and the conversion relation between the IMU coordinate system and the navigation coordinate system is determined:
C s n = C e n C i e C s i
the attitude updating process of the modulation type strapdown system based on the space stability can be summarized as a pair matrix
Figure BSA00000768635600022
Andobtaining the target value. Wherein,a transformation matrix between a navigation coordinate system and a terrestrial coordinate system;
Figure BSA00000768635600025
the transformation matrix between the terrestrial coordinate system and the inertial system can be determined by the longitude lambda, the latitude L and the time interval t of the position of the carrier.
<math> <mrow> <msubsup> <mi>C</mi> <mi>e</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>L</mi> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>sin</mi> <mi>L</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
<math> <mrow> <msubsup> <mi>C</mi> <mi>i</mi> <mi>e</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
Setting the initial time IMU coordinate system to coincide with the inertial coordinate system, and then enabling the IMU to wind oz of the inertial coordinate system at a constant angular velocity omegaiThe shaft rotates continuously, and the relative position relationship of the two coordinate systems is as follows:
<math> <mrow> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
when the inertial measurement unit continuously rotates around the inertial system, the projection form of the constant drift of the gyroscope on the navigation system can be obtained:
<math> <mrow> <msup> <mi>&epsiv;</mi> <mi>n</mi> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>n</mi> </msubsup> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>e</mi> <mi>n</mi> </msubsup> <msubsup> <mi>C</mi> <mi>i</mi> <mi>e</mi> </msubsup> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>n</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>n</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>n</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein,
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;</mi> <mi>t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>-</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> </mrow> </math>
<math> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>cos</mi> <mi>L</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>sin</mi> <mi>L</mi> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&lambda;</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>L</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&lambda;</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi>L</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
the component of the constant deviation of the horizontal gyroscope on the navigation coordinate system is completely modulated after the inertia measurement unit rotates relative to the inertia space, and the effect is zero after the integral of the whole period; and the constant deviation of the gyroscope on the azimuth axis is coupled with the latitude of the position of the carrier, so that the constant deviation is generated on the azimuth axis of the navigation coordinate system.
(4) And analyzing the scale factor error and the installation error of the gyroscope in the modulation type inertial navigation system with stable space, and calculating the attitude error caused by the scale factor error and the installation error of the gyroscope in the conversion process of the IMU coordinate system and the inertial system.
1) During the continuous rotation in the forward direction of the inertial measurement unit, the attitude error due to the presence of the scale factor error is converted into an inertial coordinate system:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
the same principle can be obtained that in the reverse rotation of the inertial measurement unit, the component of the attitude error caused by the gyroscope scale factor error in the inertial system is as follows:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
assuming that in the continuous positive and negative rotation scheme, a rotation period is T' 2T, the projection of the attitude error angle generated by integrating the output error caused by the gyroscope scale factor error in a complete positive and negative continuous rotation period on the inertial system is:
<math> <mrow> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mi>is</mi> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>+</mo> <msubsup> <mo>&Integral;</mo> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
the inertial measurement unit is adopted to continuously rotate forward and backward, the scale factor error coupled with the rotation angular velocity is cancelled positively and negatively, and the spatial stability method relative to the equatorial plane is adopted, namely the spatial stability type inertial navigation system with the four-frame structure does not have the coupling of the earth rotation angular velocity and the gyroscope scale factor error, and the attitude error of the navigation system carrier obtained by the attitude error under the inertial system through the conversion process is zero.
2) In the continuous positive rotation process of the inertial measurement unit relative to the inertial space, the component of the gyroscope output error caused by the gyroscope installation error on an inertial coordinate system is as follows:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxy</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gyx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gyz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gzx</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gzy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>sin</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the same way, the output of the gyroscope caused by the installation error in the continuous reverse rotation process of the inertial measurement unit can be obtained:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxy</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gyx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gyz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gzx</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gzy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>sin</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>&omega;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
and a continuous forward and reverse rotation scheme with 360-degree rotation angles in both forward and reverse directions is adopted, and the consumed time of one complete rotation period is T' 2T, wherein T represents the period of one-way complete rotation. The attitude angle error due to the gyro mounting error is:
<math> <mrow> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mi>is</mi> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>+</mo> <msubsup> <mo>&Integral;</mo> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the scheme of continuous forward and reverse rotation of the inertial measurement unit relative to the inertial space, the installation error of the gyroscope does not cause the attitude error of the carrier.
Compared with the prior art, the invention has the advantages that: the invention breaks through the defects that the traditional rotation modulation method can not effectively isolate the motion of a carrier and the rotation angle motion of the earth and can not avoid the self-locking phenomenon of the system, and provides an error rotation modulation scheme for stabilizing an inertial measurement unit in an equatorial plane. The method can modulate the constant deviation of the inertial device in the three-axis direction, and effectively improve the navigation positioning precision.
The beneficial effects of the present invention are illustrated as follows:
under the VC + + simulation condition, carrying out a simulation experiment on the method:
the carrier is in a static state, and based on the error model parameters of the spatial stable IMU continuous forward and reverse rotation scheme:
the time consumed by one-way forward and reverse rotation for one week is as follows: t is 12 seconds;
in each positive and negative rotation conversion process, the acceleration and deceleration time is 4 seconds respectively;
initial position of carrier: the north latitude is 42.0124 degrees, and the east longitude is 121.6481 degrees;
initial attitude error angle: the three initial attitude error angles are all zero;
equatorial radius: re6378393.0 meters;
the degree of ellipsoid: e-3.367 e-3;
earth surface gravitational acceleration available by gravity: g0=9.78049;
Rotational angular velocity of the earth (radians/sec): 7.2921158 e-5;
constant drift of gyroscope: 0.01 degree/hour;
zero offset of the accelerometer: 10-4g0
Constant: pi-3.1415926;
the error curve of the position of the carrier obtained by the method of the invention is shown in figure 4. The result shows that under the condition of forward and reverse continuous rotation of the IMU based on stable space, the method can obtain higher positioning precision.
(IV) description of the drawings
FIG. 1 is a flow chart of an error suppression method for a rotary strapdown inertial navigation system based on space stabilization according to the present invention;
FIG. 2 is a schematic diagram of a rotary strapdown inertial navigation system based on space stabilization according to the present invention;
FIG. 3 is a diagram of the relative position of the coordinate system of the rotating strapdown inertial navigation system based on space stabilization according to the present invention;
fig. 4 is a comparative experimental curve of the position error of the carrier based on the spatial stable IMU forward and reverse rotation scheme and the positioning error of the carrier in the IMU static state.
(V) detailed description of the preferred embodiments
The following detailed description of embodiments of the invention refers to the accompanying drawings in which:
(1) determining initial position parameters of the carrier through a GPS, and binding the initial position parameters into a navigation computer;
(2) preheating preparation is carried out by the strapdown inertial navigation system, and data output by the optical fiber gyroscope and the quartz accelerometer are collected and processed;
(3) converting data generated by the fiber optic gyroscope and the quartz accelerometer after the IMU rotates into a navigation coordinate system to obtain a modulation form of constant deviation of the inertial device;
ox of inertial measurement unit coordinate systemsysPlane parallel to the equatorial plane of the earth, ozsThe axis is parallel to the rotation axis of the earth and points to be consistent with the rotation angular velocity direction of the earth (as shown in the attached figure 3), and the conversion relation between the IMU coordinate system and the navigation coordinate system is determined:
C s n = C e n C i e C s i - - - ( 1 )
the attitude updating process of the modulation type strapdown system based on the space stability can be summarized as a pair matrixAnd
Figure BSA00000768635600053
obtaining the target value. Wherein,
Figure BSA00000768635600054
a transformation matrix between a navigation coordinate system and a terrestrial coordinate system;
Figure BSA00000768635600055
the transformation matrix between the terrestrial coordinate system and the inertial system can be determined by the longitude lambda, the latitude L and the time interval t of the position of the carrier.
<math> <mrow> <msubsup> <mi>C</mi> <mi>e</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>L</mi> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>sin</mi> <mi>L</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>C</mi> <mi>i</mi> <mi>e</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
Setting the initial time IMU coordinate system to coincide with the inertial coordinate system, and then enabling the IMU to wind oz of the inertial coordinate system at a constant angular velocity omegaiThe shaft rotates continuously, and the relative position relationship of the two coordinate systems is as follows:
<math> <mrow> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
when the inertial measurement unit continuously rotates around the inertial system, the projection form of the constant drift of the gyroscope on the navigation system can be obtained:
<math> <mrow> <msup> <mi>&epsiv;</mi> <mi>n</mi> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>n</mi> </msubsup> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>e</mi> <mi>n</mi> </msubsup> <msubsup> <mi>C</mi> <mi>i</mi> <mi>e</mi> </msubsup> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>n</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>n</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>n</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi></mi> <mi>&lambda;&omega;t</mi> <mi>sin</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> </mrow> </math>
( 7 )
<math> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>cos</mi> <mi>L</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>sin</mi> <mi>L</mi> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
( 8 )
<math> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&lambda;</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>L</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&lambda;</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi>L</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
the component of the constant deviation of the horizontal gyroscope on the navigation coordinate system is completely modulated after the inertia measurement unit rotates relative to the inertia space, and the effect is zero after the integral of the whole period; and the constant deviation of the gyroscope on the azimuth axis is coupled with the latitude of the position of the carrier, so that the constant deviation is generated on the azimuth axis of the navigation coordinate system.
(4) And analyzing the scale factor error and the installation error of the gyroscope in the modulation type inertial navigation system with stable space, and calculating the attitude error caused by the scale factor error and the installation error of the gyroscope in the conversion process of the IMU coordinate system and the inertial system.
1) During the continuous rotation in the forward direction of the inertial measurement unit, the attitude error due to the presence of the scale factor error is converted into an inertial coordinate system:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
the same principle can be obtained that in the reverse rotation of the inertial measurement unit, the component of the attitude error caused by the gyroscope scale factor error in the inertial system is as follows:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
assuming that in the continuous positive and negative rotation scheme, a rotation period is T' 2T, the projection of the attitude error angle generated by integrating the output error caused by the gyroscope scale factor error in a complete positive and negative continuous rotation period on the inertial system is:
<math> <mrow> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mi>is</mi> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>+</mo> <msubsup> <mo>&Integral;</mo> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
the inertial measurement unit is adopted to continuously rotate forward and backward, the scale factor error coupled with the rotation angular velocity is cancelled positively and negatively, and the spatial stability method relative to the equatorial plane is adopted, namely the spatial stability type inertial navigation system with the four-frame structure does not have the coupling of the earth rotation angular velocity and the gyroscope scale factor error, and the attitude error of the navigation system carrier obtained by the attitude error under the inertial system through the conversion process is zero.
2) In the continuous positive rotation process of the inertial measurement unit relative to the inertial space, the component of the gyroscope output error caused by the gyroscope installation error on an inertial coordinate system is as follows:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxy</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gyx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gyz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gzx</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gzy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>sin</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
in the same way, the output of the gyroscope caused by the installation error in the continuous reverse rotation process of the inertial measurement unit can be obtained:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxy</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gyx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gyz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gzx</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gzy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>sin</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>&omega;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
and a continuous forward and reverse rotation scheme with 360-degree rotation angles in both forward and reverse directions is adopted, and the consumed time of one complete rotation period is T' 2T, wherein T represents the period of one-way complete rotation. The attitude angle error due to the gyro mounting error is:
<math> <mrow> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mi>is</mi> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>+</mo> <msubsup> <mo>&Integral;</mo> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
in the scheme of continuous forward and reverse rotation of the inertial measurement unit relative to the inertial space, the installation error of the gyroscope does not cause the attitude error of the carrier.

Claims (3)

1. A method for suppressing errors of a rotary strapdown inertial navigation system based on space stability is characterized by comprising the following steps:
(1) determining initial position parameters of the carrier through a GPS, and binding the initial position parameters into a navigation computer;
(2) preheating preparation is carried out by the strapdown inertial navigation system, and data output by the optical fiber gyroscope and the quartz accelerometer are collected and processed;
(3) converting data generated by the fiber optic gyroscope and the quartz accelerometer after the IMU rotates into a navigation coordinate system to obtain a modulation form of constant deviation of the inertial device;
ox of inertial measurement unit coordinate systemsysPlane parallel to the equatorial plane of the earth, ozsThe axis is parallel to the rotation axis of the earth and points to be consistent with the rotation angular velocity direction of the earth (as shown in the attached figure 3), and the conversion relation between the IMU coordinate system and the navigation coordinate system is determined:
C s n = C e n C i e C s i
the attitude updating process of the modulation type strapdown system based on the space stability can be summarized as a pair matrix
Figure FSA00000768635500012
And
Figure FSA00000768635500013
obtaining the target value. Wherein,
Figure FSA00000768635500014
a transformation matrix between a navigation coordinate system and a terrestrial coordinate system;
Figure FSA00000768635500015
the transformation matrix between the terrestrial coordinate system and the inertial system can be determined by the longitude lambda, the latitude L and the time interval t of the position of the carrier.
<math> <mrow> <msubsup> <mi>C</mi> <mi>e</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>L</mi> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>sin</mi> <mi>L</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
<math> <mrow> <msubsup> <mi>C</mi> <mi>i</mi> <mi>e</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
Setting the initial time IMU coordinate system to coincide with the inertial coordinate system, and then enabling the IMU to wind oz of the inertial coordinate system at a constant angular velocity omegaiThe shaft rotates continuously, and the relative position relationship of the two coordinate systems is as follows:
<math> <mrow> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
when the inertial measurement unit continuously rotates around the inertial system, the projection form of the constant drift of the gyroscope on the navigation system can be obtained:
<math> <mrow> <msup> <mi>&epsiv;</mi> <mi>n</mi> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>n</mi> </msubsup> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>e</mi> <mi>n</mi> </msubsup> <msubsup> <mi>C</mi> <mi>i</mi> <mi>e</mi> </msubsup> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>n</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>n</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>n</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein,
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi></mi> <mi>&lambda;&omega;t</mi> <mi>sin</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>-</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> </mrow> </math>
<math> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>cos</mi> <mi>L</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>sin</mi> <mi>L</mi> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&lambda;</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>L</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&lambda;</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi>L</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
the component of the constant deviation of the horizontal gyroscope on the navigation coordinate system is completely modulated after the inertia measurement unit rotates relative to the inertia space, and the effect is zero after the integral of the whole period; and the constant deviation of the gyroscope on the azimuth axis is coupled with the latitude of the position of the carrier, so that the constant deviation is generated on the azimuth axis of the navigation coordinate system.
(4) And analyzing the scale factor error and the installation error of the gyroscope in the modulation type inertial navigation system with stable space, and calculating the attitude error caused by the scale factor error and the installation error of the gyroscope in the conversion process of the IMU coordinate system and the inertial system.
1) During the continuous rotation in the forward direction of the inertial measurement unit, the attitude error due to the presence of the scale factor error is converted into an inertial coordinate system:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
the same principle can be obtained that in the reverse rotation of the inertial measurement unit, the component of the attitude error caused by the gyroscope scale factor error in the inertial system is as follows:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
assuming that in the continuous positive and negative rotation scheme, a rotation period is T' 2T, the projection of the attitude error angle generated by integrating the output error caused by the gyroscope scale factor error in a complete positive and negative continuous rotation period on the inertial system is:
<math> <mrow> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mi>is</mi> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>+</mo> <msubsup> <mo>&Integral;</mo> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
the inertial measurement unit is adopted to continuously rotate forward and backward, the scale factor error coupled with the rotation angular velocity is cancelled positively and negatively, and the spatial stability method relative to the equatorial plane is adopted, namely the spatial stability type inertial navigation system with the four-frame structure does not have the coupling of the earth rotation angular velocity and the gyroscope scale factor error, and the attitude error of the navigation system carrier obtained by the attitude error under the inertial system through the conversion process is zero.
2) In the continuous positive rotation process of the inertial measurement unit relative to the inertial space, the component of the gyroscope output error caused by the gyroscope installation error on an inertial coordinate system is as follows:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxy</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gyx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gyz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gzx</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gzy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>sin</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the same way, the output of the gyroscope caused by the installation error in the continuous reverse rotation process of the inertial measurement unit can be obtained:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxy</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gyx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mi>gyz</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gzx</mi> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mi>gzy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>sin</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>gxz</mi> </msub> <mi>&omega;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>gyz</mi> </msub> <mi>&omega;</mi> <mi>cos</mi> <mi>&omega;t</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
and a continuous forward and reverse rotation scheme with 360-degree rotation angles in both forward and reverse directions is adopted, and the consumed time of one complete rotation period is T' 2T, wherein T represents the period of one-way complete rotation. The attitude angle error due to the gyro mounting error is:
<math> <mrow> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mi>is</mi> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>+</mo> <msubsup> <mo>&Integral;</mo> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the scheme of continuous forward and reverse rotation of the inertial measurement unit relative to the inertial space, the installation error of the gyroscope does not cause the attitude error of the carrier.
2. The method for suppressing the error of the rotary strapdown inertial navigation system based on the space stabilization as claimed in claim 1, wherein the data generated by the fiber optic gyroscope and the quartz accelerometer after the rotation of the IMU is converted into the navigation coordinate system, so as to obtain the modulation form of the constant value deviation of the inertial device, specifically comprising the following steps:
ox of inertial measurement unit coordinate systemsysPlane parallel to the equatorial plane of the earth, ozsThe axis is parallel to the rotation axis of the earth and points to be consistent with the rotation angular velocity direction of the earth (as shown in the attached figure 3), and the conversion relation between the IMU coordinate system and the navigation coordinate system is determined:
C s n = C e n C i e C s i
the attitude updating process of the modulation type strapdown system based on the space stability can be summarized as a pair matrixAnd
Figure FSA00000768635500036
obtaining the target value. Wherein,
Figure FSA00000768635500037
a transformation matrix between a navigation coordinate system and a terrestrial coordinate system;
Figure FSA00000768635500038
the transformation matrix between the terrestrial coordinate system and the inertial system can be determined by the longitude lambda, the latitude L and the time interval t of the position of the carrier.
<math> <mrow> <msubsup> <mi>C</mi> <mi>e</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>cos</mi> <mi>L</mi> <mi>sin</mi> <mi>&lambda;</mi> </mtd> <mtd> <mi>sin</mi> <mi>L</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
<math> <mrow> <msubsup> <mi>C</mi> <mi>i</mi> <mi>e</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
Setting the initial time IMU coordinate system to coincide with the inertial coordinate system, and then enabling the IMU to wind oz of the inertial coordinate system at a constant angular velocity omegaiThe shaft rotates continuously, and the relative position relationship of the two coordinate systems is as follows:
<math> <mrow> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
when the inertial measurement unit continuously rotates around the inertial system, the projection form of the constant drift of the gyroscope on the navigation system can be obtained:
<math> <mrow> <msup> <mi>&epsiv;</mi> <mi>n</mi> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>n</mi> </msubsup> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>e</mi> <mi>n</mi> </msubsup> <msubsup> <mi>C</mi> <mi>i</mi> <mi>e</mi> </msubsup> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>n</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>n</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>n</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein,
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi></mi> <mi>&lambda;&omega;t</mi> <mi>sin</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>-</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> </mrow> </math>
<math> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>cos</mi> <mi>L</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> <mi>sin</mi> <mi>L</mi> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi></mi> <mi>&lambda;</mi> <mi>cos</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mi></mi> <mi>&lambda;</mi> <mi>sin</mi> <mi>&omega;t</mi> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&lambda;</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>L</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>-</mo> <mi>sin</mi> <mi>L</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> <mo>+</mo> </mrow> </math>
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&lambda;</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>L</mi> <mi>cos</mi> <mi>&omega;t</mi> <mo>+</mo> <mi>sin</mi> <mi>L</mi> <mi>sin</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>s</mi> </msubsup> </mrow> </math>
the component of the constant deviation of the horizontal gyroscope on the navigation coordinate system is completely modulated after the inertia measurement unit rotates relative to the inertia space, and the effect is zero after the integral of the whole period; and the constant deviation of the gyroscope on the azimuth axis is coupled with the latitude of the position of the carrier, so that the constant deviation is generated on the azimuth axis of the navigation coordinate system.
3. The method for suppressing the error of the rotary strapdown inertial navigation system based on the spatial stability as claimed in claim 1, wherein the gyroscope scale factor error and the installation error in the modulation type inertial navigation system based on the spatial stability are analyzed, and the attitude error caused by the gyroscope scale factor error and the installation error in the process of converting the IMU coordinate system and the inertial system is calculated, comprising the following steps:
1) during the continuous rotation in the forward direction of the inertial measurement unit, the attitude error due to the presence of the scale factor error is converted into an inertial coordinate system:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
the same principle can be obtained that in the reverse rotation of the inertial measurement unit, the component of the attitude error caused by the gyroscope scale factor error in the inertial system is as follows:
<math> <mrow> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>i</mi> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>s</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gx</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&delta;</mi> <msub> <mi>K</mi> <mi>gz</mi> </msub> <mi>&omega;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
assuming that in the continuous positive and negative rotation scheme, a rotation period is T' 2T, the projection of the attitude error angle generated by integrating the output error caused by the gyroscope scale factor error in a complete positive and negative continuous rotation period on the inertial system is:
<math> <mrow> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mi>is</mi> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>+</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>+</mo> <msubsup> <mo>&Integral;</mo> <mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> <mo>/</mo> <mn>2</mn> </mrow> <msup> <mi>T</mi> <mo>&prime;</mo> </msup> </msubsup> <mi>&delta;</mi> <msup> <msubsup> <mi>&omega;</mi> <mrow> <mi>is</mi> <mo>-</mo> </mrow> <mi>i</mi> </msubsup> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mi>dt</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
the inertial measurement unit is adopted to continuously rotate forward and backward, the scale factor error coupled with the rotation angular velocity is cancelled positively and negatively, and the spatial stability method relative to the equatorial plane is adopted, namely the spatial stability type inertial navigation system with the four-frame structure does not have the coupling of the earth rotation angular velocity and the gyroscope scale factor error, and the attitude error of the navigation system carrier obtained by the attitude error under the inertial system through the conversion process is zero.
CN201210305208.5A 2012-08-16 2012-08-16 Error suppressing method of rotary strap-down inertial navigation system based on space stabilization Expired - Fee Related CN102788597B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210305208.5A CN102788597B (en) 2012-08-16 2012-08-16 Error suppressing method of rotary strap-down inertial navigation system based on space stabilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210305208.5A CN102788597B (en) 2012-08-16 2012-08-16 Error suppressing method of rotary strap-down inertial navigation system based on space stabilization

Publications (2)

Publication Number Publication Date
CN102788597A true CN102788597A (en) 2012-11-21
CN102788597B CN102788597B (en) 2014-10-29

Family

ID=47154073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210305208.5A Expired - Fee Related CN102788597B (en) 2012-08-16 2012-08-16 Error suppressing method of rotary strap-down inertial navigation system based on space stabilization

Country Status (1)

Country Link
CN (1) CN102788597B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292811A (en) * 2013-06-20 2013-09-11 哈尔滨工程大学 Strapdown inertial navigation method for calculating speeds under virtual rotation geographical coordinates
CN103323023A (en) * 2013-04-26 2013-09-25 哈尔滨工程大学 Real time correction method for ship electromagnetic log scale factor
CN103900571A (en) * 2014-03-28 2014-07-02 哈尔滨工程大学 Carrier attitude measurement method based on inertial coordinate system rotary type strapdown inertial navigation system
CN106840195A (en) * 2016-12-19 2017-06-13 中北大学 A kind of rotary half strapdown micro-inertial measuring system error inhibition method
CN110736483A (en) * 2019-10-22 2020-01-31 中国人民解放军战略支援部队航天工程大学 Deflection modulation zero-offset compensation method for gyroscope in inertial measurement units
CN111765906A (en) * 2020-07-29 2020-10-13 三一机器人科技有限公司 Error calibration method and device
CN113418536A (en) * 2021-06-28 2021-09-21 北京控制工程研究所 Gyroscope on-orbit precision evaluation method and system based on correlated signal cancellation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186676A1 (en) * 2003-03-17 2004-09-23 Liu G. Kevin Method for measuring force-dependent gyroscope sensitivity
WO2006060576A1 (en) * 2004-12-03 2006-06-08 Honeywell International Inc. Precise, no-contact, position sensing using imaging
CN101514899A (en) * 2009-04-08 2009-08-26 哈尔滨工程大学 Optical fibre gyro strapdown inertial navigation system error inhibiting method based on single-shaft rotation
CN101571394A (en) * 2009-05-22 2009-11-04 哈尔滨工程大学 Method for determining initial attitude of fiber strapdown inertial navigation system based on rotating mechanism
CN101629826A (en) * 2009-07-01 2010-01-20 哈尔滨工程大学 Coarse alignment method for fiber optic gyro strapdown inertial navigation system based on single axis rotation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186676A1 (en) * 2003-03-17 2004-09-23 Liu G. Kevin Method for measuring force-dependent gyroscope sensitivity
WO2006060576A1 (en) * 2004-12-03 2006-06-08 Honeywell International Inc. Precise, no-contact, position sensing using imaging
CN101514899A (en) * 2009-04-08 2009-08-26 哈尔滨工程大学 Optical fibre gyro strapdown inertial navigation system error inhibiting method based on single-shaft rotation
CN101571394A (en) * 2009-05-22 2009-11-04 哈尔滨工程大学 Method for determining initial attitude of fiber strapdown inertial navigation system based on rotating mechanism
CN101629826A (en) * 2009-07-01 2010-01-20 哈尔滨工程大学 Coarse alignment method for fiber optic gyro strapdown inertial navigation system based on single axis rotation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ISHIBASHI,S.ET AL: "The Rotation Control System to Improve the Accuracy of an Inertial Navigation System Installed in an Autonomous Underwater Vehicle", 《IEEE》 *
孙伟等: "基于单轴旋转的捷联系统误差特性分析", 《弹箭与制导学报》 *
孙枫等: "旋转自动补偿捷联惯导系统技术研究", 《系统工程与电子技术》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323023A (en) * 2013-04-26 2013-09-25 哈尔滨工程大学 Real time correction method for ship electromagnetic log scale factor
CN103292811A (en) * 2013-06-20 2013-09-11 哈尔滨工程大学 Strapdown inertial navigation method for calculating speeds under virtual rotation geographical coordinates
CN103900571A (en) * 2014-03-28 2014-07-02 哈尔滨工程大学 Carrier attitude measurement method based on inertial coordinate system rotary type strapdown inertial navigation system
CN103900571B (en) * 2014-03-28 2017-06-20 哈尔滨工程大学 A kind of carrier posture measuring method based on the rotary-type SINS of inertial coodinate system
CN106840195A (en) * 2016-12-19 2017-06-13 中北大学 A kind of rotary half strapdown micro-inertial measuring system error inhibition method
CN106840195B (en) * 2016-12-19 2019-01-29 中北大学 A kind of rotary half strapdown micro-inertial measuring system error inhibition method
CN110736483A (en) * 2019-10-22 2020-01-31 中国人民解放军战略支援部队航天工程大学 Deflection modulation zero-offset compensation method for gyroscope in inertial measurement units
CN110736483B (en) * 2019-10-22 2021-04-02 中国人民解放军战略支援部队航天工程大学 Deflection modulation zero-offset compensation method for gyroscope in inertial measurement unit
CN111765906A (en) * 2020-07-29 2020-10-13 三一机器人科技有限公司 Error calibration method and device
CN111765906B (en) * 2020-07-29 2022-06-14 三一机器人科技有限公司 Error calibration method and device
CN113418536A (en) * 2021-06-28 2021-09-21 北京控制工程研究所 Gyroscope on-orbit precision evaluation method and system based on correlated signal cancellation
CN113418536B (en) * 2021-06-28 2022-08-12 北京控制工程研究所 Gyroscope on-orbit precision evaluation method and system based on correlated signal cancellation

Also Published As

Publication number Publication date
CN102788597B (en) 2014-10-29

Similar Documents

Publication Publication Date Title
CN102788597B (en) Error suppressing method of rotary strap-down inertial navigation system based on space stabilization
CN101718560B (en) Strapdown system error inhibition method based on uniaxial four-position rotation and stop scheme
CN101514900B (en) Method for initial alignment of a single-axis rotation strap-down inertial navigation system (SINS)
CN101514899B (en) Optical fibre gyro strapdown inertial navigation system error inhibiting method based on single-shaft rotation
CN102564452B (en) On-line self-calibrating method based on inertial navigation system
CN101672649B (en) Mooring alignment method of optical fiber strapdown system for ship based on digital low-pass filtering
CN101793523B (en) Combined navigation and photoelectric detection integrative system
CN101629826A (en) Coarse alignment method for fiber optic gyro strapdown inertial navigation system based on single axis rotation
CN101571394A (en) Method for determining initial attitude of fiber strapdown inertial navigation system based on rotating mechanism
CN108731674B (en) Inertial astronomical integrated navigation system based on single-axis rotation modulation and calculation method
CN102788598B (en) Error suppressing method of fiber strap-down inertial navigation system based on three-axis rotation
CN111102993A (en) Initial alignment method for shaking base of rotary modulation type strapdown inertial navigation system
CN101963512A (en) Initial alignment method for marine rotary fiber-optic gyroscope strapdown inertial navigation system
CN102749079A (en) Optical fiber strapdown inertial navigation double-shaft rotation modulation method and double-shaft rotation mechanism
CN102798399A (en) SINS error inhibiting method based on biaxial rotation scheme
CN103453917A (en) Initial alignment and self-calibration method of double-shaft rotation type strapdown inertial navigation system
CN103292809A (en) Single-shaft rotary type inertial navigation system and special error self-compensation method thereof
CN101701824A (en) High-precision uniaxial rotation attitude measuring system based on laser gyro
CN107202578B (en) MEMS technology-based strapdown vertical gyroscope resolving method
CN103925930B (en) A kind of compensation method of gravimeter biax gyrostabilized platform course error effect
CN103256943A (en) Compensation method for scale factor error in single-axial rotating strapdown inertial navigation system
CN112179340B (en) Redundant configuration inertia measurement unit double-axis rotation modulation method
CN110926447B (en) Single-axis fiber-optic gyroscope north-seeking method with autonomous navigation function and attitude navigation method
CN103630146A (en) Laser gyroscope IMU (inertial measurement unit) calibration method combining discrete analysis and Kalman filtration
CN103900607A (en) Rotation type strapdown inertial navigation system transposition method based on inertial system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141029

Termination date: 20150816

EXPY Termination of patent right or utility model