CN102780522A - Antenna array as well as communication system and communication method based on antenna array - Google Patents
Antenna array as well as communication system and communication method based on antenna array Download PDFInfo
- Publication number
- CN102780522A CN102780522A CN2011101223253A CN201110122325A CN102780522A CN 102780522 A CN102780522 A CN 102780522A CN 2011101223253 A CN2011101223253 A CN 2011101223253A CN 201110122325 A CN201110122325 A CN 201110122325A CN 102780522 A CN102780522 A CN 102780522A
- Authority
- CN
- China
- Prior art keywords
- antenna
- antenna array
- signal
- bay
- polarization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006854 communication Effects 0.000 title claims abstract description 43
- 238000004891 communication Methods 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000010287 polarization Effects 0.000 claims abstract description 74
- 230000009977 dual effect Effects 0.000 claims abstract description 5
- 238000005516 engineering process Methods 0.000 claims description 53
- 238000003491 array Methods 0.000 abstract description 8
- 230000005540 biological transmission Effects 0.000 abstract description 7
- 230000008878 coupling Effects 0.000 description 24
- 238000010168 coupling process Methods 0.000 description 24
- 238000005859 coupling reaction Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000010295 mobile communication Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
技术领域 technical field
本发明涉及通信技术领域,尤其涉及一种天线阵列、基于该天线阵列的通信系统以及通信方法。The present invention relates to the technical field of communication, and in particular to an antenna array, a communication system and a communication method based on the antenna array.
背景技术 Background technique
现有的智能天线阵列主要分为全向智能天线阵和定向智能天线阵,定向智能天线因其单阵元增益较大,业务波束更尖锐,更容易分扇区组网等优势而得到更广泛的应用。同时为了得到更好的赋形效果,尽量保证天线阵元之间信号的相关性,天线阵元之间的距离一般控制在1/2发射信号波长左右。Existing smart antenna arrays are mainly divided into omnidirectional smart antenna arrays and directional smart antenna arrays. Directional smart antennas are widely used because of their advantages such as large single-array gain, sharper service beams, and easier sector-based networking. Applications. At the same time, in order to obtain a better shaping effect and try to ensure the correlation of the signals between the antenna elements, the distance between the antenna elements is generally controlled at about 1/2 the wavelength of the transmitted signal.
而MIMO(Multiple-Input Multiple-Out-put,多输入多输出)技术是长期演进(LTE)及后向系统的关键技术,通过使用独立的空间信道,最大可能地提高系统的容量。由于MIMO技术要求各天线阵元信号之间无相关性,因此,天线阵元之间的间距应尽可能地大,保证各天线阵元信号的独立性。The MIMO (Multiple-Input Multiple-Out-put) technology is the key technology of the long-term evolution (LTE) and backward systems. By using independent spatial channels, the capacity of the system can be improved to the greatest extent possible. Since the MIMO technology requires that there is no correlation between the signals of the antenna elements, the distance between the antenna elements should be as large as possible to ensure the independence of the signals of each antenna element.
MIMO技术的核心是空时信号处理,也就是利用在空间中分布的多个时间域和空间域结合起来进行信号处理。因此,MIMO技术可以看作是智能天线的扩展。智能天线通常也被称作自适应天线,主要用于完成空间滤波和定位。从本质上看,智能天线利用了天线阵列中各单元之间的位置关系,即利用了信号的相位关系,这是它与传统分集技术的本质区别。The core of MIMO technology is space-time signal processing, that is, the combination of multiple time domains and space domains distributed in space is used for signal processing. Therefore, MIMO technology can be seen as an extension of smart antennas. Smart antennas are also commonly referred to as adaptive antennas, and are mainly used to complete spatial filtering and positioning. In essence, the smart antenna utilizes the positional relationship between the units in the antenna array, that is, the phase relationship of the signal, which is the essential difference between it and the traditional diversity technology.
基于以上分析,比较这两种技术的异同点可以看出,MIMO和智能天线技术共存的主要障碍是天线结构:智能天线要求天线间距取1/2信号波长;而MIMO要求天线阵元之间的间距应尽可能地大,并且只用于MIMO系统。而MIMO技术是未来通信系统发展的方向,应该考虑智能天线系统向该技术的演进问题,天线属于通信系统的一部分,天线技术必须服从系统演进和发展的方向。MIMO技术可以大大增加无线通信系统的容量,并有效改善无线通信系统的性能,非常适合未来移动通信系统中对高速率业务的要求。Based on the above analysis, comparing the similarities and differences between the two technologies, it can be seen that the main obstacle to the coexistence of MIMO and smart antenna technology is the antenna structure: smart antennas require that the antenna spacing be 1/2 the signal wavelength; The spacing should be as large as possible and only used for MIMO systems. As MIMO technology is the development direction of future communication systems, the evolution of smart antenna systems to this technology should be considered. Antennas are part of the communication system, and antenna technology must obey the direction of system evolution and development. MIMO technology can greatly increase the capacity of wireless communication systems and effectively improve the performance of wireless communication systems, which is very suitable for the requirements of high-speed services in future mobile communication systems.
发明内容 Contents of the invention
有鉴于此,本发明实施例提供一种天线阵列、基于该天线阵列的通信系统以及通信方法,采用该技术方案,能够同时支持MIMO技术及智能天线技术,从而提高通信系统的数据传输效率及系统容量。In view of this, an embodiment of the present invention provides an antenna array, a communication system based on the antenna array, and a communication method. By adopting the technical solution, MIMO technology and smart antenna technology can be supported at the same time, thereby improving the data transmission efficiency of the communication system and the system capacity.
本发明实施例通过如下技术方案实现:Embodiments of the present invention are realized through the following technical solutions:
根据本发明实施例的一个方面,提供了一种天线阵列,包括:According to an aspect of an embodiment of the present invention, an antenna array is provided, including:
两个天线阵元组,其中,每个天线阵元组分别包括构成等边三角形位置关系的三个天线阵元、且各天线阵元之间的间距小于一个信号波长;Two antenna element groups, wherein each antenna element group includes three antenna elements forming an equilateral triangle position relationship, and the distance between the antenna elements is less than one signal wavelength;
所述两个天线阵元组内的每个天线阵元分别采用双极化方式进行极化,且同一个天线阵元组内的天线阵元采用相同的极化方式进行极化,不同天线阵元组内的天线阵元采用正交极化方式进行极化。Each antenna element in the two antenna element groups is polarized in a dual-polarization manner, and the antenna elements in the same antenna element group are polarized in the same polarization manner. The antenna elements in the tuple are polarized in an orthogonal polarization manner.
根据本发明实施例的另一个方面,还提供了一种通信系统,包括上述的天线阵列。According to another aspect of the embodiments of the present invention, a communication system is further provided, including the above-mentioned antenna array.
根据本发明实施例的另一个方面,还提供了一种通信方法,应用于上述通信系统,包括:According to another aspect of the embodiments of the present invention, there is also provided a communication method applied to the above communication system, including:
天线阵列包括的第一天线阵元组内的每个天线阵元分别接收采用第一极化方式进行极化处理后的信号;以及Each antenna element in the first antenna element group included in the antenna array respectively receives signals after polarization processing using the first polarization mode; and
所述天线阵列包括的第二天线阵元组内的每个天线阵元分别接收采用第二极化方式进行极化处理后的信号,所述第二极化方式与所述第一极化方式为正交极化方式;Each antenna element in the second antenna element group included in the antenna array respectively receives a signal after polarization processing using a second polarization method, and the second polarization method is different from the first polarization method For orthogonal polarization;
所述第一天线阵元组内的每个天线阵元以及所述第二天线阵元组内的每个天线阵元分别采用智能天线技术发射接收的所述信号。Each antenna element in the first antenna element group and each antenna element in the second antenna element group respectively transmit and receive the signal using a smart antenna technology.
通过本发明实施例提供的天线阵列,将天线阵元分为两个天线阵元组,每个天线阵元组分别包括构成等边三角形位置关系的三个天线阵元、且各天线阵元之间的间距小于一个信号波长,以满足智能天线技术对天线阵元之间信号的相关性的要求;并且,两个天线阵元组内的每个天线阵元采用相同的极化方式进行极化,不同天线阵元组内的天线阵元采用正交极化方式进行极化,从而通过组间正交极化方式进行极化,以满足MIMO对天线阵元信号之间无相关性的要求,从而能够支持MIMO技术及智能天线技术。Through the antenna array provided by the embodiment of the present invention, the antenna array elements are divided into two antenna array element groups, and each antenna array element group includes three antenna array elements forming an equilateral triangle position relationship, and each antenna array element The distance between them is less than one signal wavelength to meet the requirements of smart antenna technology for the correlation of signals between antenna elements; and, each antenna element in the two antenna element groups uses the same polarization method for polarization , the antenna elements in different antenna element groups are polarized by orthogonal polarization, and thus polarized by orthogonal polarization between groups to meet the requirement of MIMO for no correlation between antenna element signals, Thus, MIMO technology and smart antenna technology can be supported.
通过本发明实施例提供的基于上述结构的天线阵列实现的通信系统以及通信方法,由于该智能天线能够支持MIMO技术及智能天线技术,因此兼并了MIMO技术以及智能天线技术的优点,提高了通信系统的数据传输效率及系统容量,并且适应于未来移动通信系统中对高速率业务的要求。Through the communication system and communication method realized by the antenna array based on the above-mentioned structure provided by the embodiment of the present invention, since the smart antenna can support MIMO technology and smart antenna technology, it combines the advantages of MIMO technology and smart antenna technology, and improves the communication system. High data transmission efficiency and system capacity, and adapt to the requirements of high-speed services in future mobile communication systems.
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
附图说明 Description of drawings
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the description, and are used together with the embodiments of the present invention to explain the present invention, and do not constitute a limitation to the present invention. In the attached picture:
图1为本发明实施例一提供的天线阵列的结构示意图一;FIG. 1 is a first structural schematic diagram of an antenna array provided by Embodiment 1 of the present invention;
图2为本发明实施例一提供的天线阵列的结构示意图二;FIG. 2 is a second structural schematic diagram of the antenna array provided by Embodiment 1 of the present invention;
图3为本发明实施例一提供的天线阵列的结构示意图三;FIG. 3 is a schematic structural diagram III of the antenna array provided by Embodiment 1 of the present invention;
图4为本发明实施例二提供的基于图1所示的天线阵列实现通信的流程示意图;FIG. 4 is a schematic flow diagram of implementing communication based on the antenna array shown in FIG. 1 according to Embodiment 2 of the present invention;
图5为本发明实施例二提供的基于图3所示的天线阵列实现通信的流程示意图。FIG. 5 is a schematic flow diagram of implementing communication based on the antenna array shown in FIG. 3 according to Embodiment 2 of the present invention.
具体实施方式 Detailed ways
为了给出同时支持MIMO技术及智能天线技术的实现方案,本发明实施例提供了一种天线阵列、基于该天线阵列的通信系统以及通信方法,采用该技术方案,能够同时支持MIMO技术及智能天线技术,从而提高通信系统的数据传输效率及系统容量。In order to provide an implementation scheme supporting MIMO technology and smart antenna technology at the same time, an embodiment of the present invention provides an antenna array, a communication system based on the antenna array, and a communication method. The technical solution can support MIMO technology and smart antenna at the same time. technology, thereby improving the data transmission efficiency and system capacity of the communication system.
以下结合说明书附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。并且在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。The preferred embodiments of the present invention will be described below in conjunction with the accompanying drawings. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention. And in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other.
实施例一Embodiment one
本发明实施例一提供了一种天线阵列,该天线阵列能够同时支持MIMO技术及智能天线技术。Embodiment 1 of the present invention provides an antenna array, and the antenna array can support MIMO technology and smart antenna technology at the same time.
图1示出了本发明实施例一提供的天线阵列的结构示意图。如图1所示,该天线阵列包括第一天线阵元组101以及第二天线阵元组102,该第一天线阵元组101以及第二天线阵元组102的结构相同,即每个天线阵元组分别包括构成等边三角形位置关系的三个天线阵元。具体地,且各天线阵元之间的间距为智能天线技术要求的间距,即小于一个信号波长,例如,优选地,可以选取该间距大于三分之一信号波长小于三分之二信号波长,需要根据具体的天线阵列情况而定,天线阵元间距过大,会降低信号之间的相关性,天线阵元之间的间距过小,将在方向图引起不必要的波瓣,优选地,该间距可以选取为1/2信号波长;第一天线阵元组101与第二天线阵元组之间的间距可以根据实际需要灵活设定,例如,可以设定为MIMO技术要求的间距,即设置该间距等于信号波长的设定倍数,例如,该间距等于1个信号波长。优选地,为了减少天线阵列的面积,本发明实施例还可以设定第一天线阵元组101与第二天线阵元组102之间的间距为大于1/2信号波长且小于1个信号波长,由于本发明实施例通过电线阵元组之间的正交极化实现天线阵元组之间信号的不相关,因此,第一天线阵元组101与第二天线阵元组102之间的间距在取大于1/2信号波长且小于1个信号波长时,也能够满足MIMO技术对信号不相关的要求,并且可以通过减少天线横向尺寸以达到减少风阻的目的。FIG. 1 shows a schematic structural diagram of an antenna array provided by Embodiment 1 of the present invention. As shown in Figure 1, the antenna array includes a first
进一步地,为了更好地满足智能天线技术对天线阵元之间信号的相关性的要求、以及满足MIMO对天线阵元信号之间无相关性的要求,本发明实施例一中,图1提供的天线阵列中,第一天线阵元组101以及第二天线阵元组102内的每个天线阵元分别采用双极化方式进行极化,且同一个天线阵元组内的天线阵元采用相同的极化方式进行极化,以保证同极化的天线阵元所发射的信号具有相同的相位和幅度,从而实现信号发射的波束赋形。不同天线阵元组内的天线阵元采用正交极化方式进行极化。其中,双极化方式可以包括正45度极化方式、负45度极化方式等,例如,第一天线阵元组101采用正45度极化方式进行极化,第二天线阵元组102采用负45度极化方式进行极化。Further, in order to better meet the requirements of smart antenna technology for the correlation of signals between antenna elements and the requirement of MIMO for no correlation between antenna element signals, in Embodiment 1 of the present invention, FIG. 1 provides In the antenna array of , each antenna element in the first
图2示出了本发明实施例一提供的又一天线阵列的结构示意图。在图1所示的天线阵列的基础上,该天线阵列如图2所示,还进一步包括与第一天线阵元组101对应且存在连接关系的第一定向耦合单元103、与第二天线阵元组102对应且存在连接关系的第二定向耦合单元104,以及分别与第一定向耦合单元103以及第二定向耦合单元104存在连接关系的极化校准单元105。FIG. 2 shows a schematic structural diagram of another antenna array provided by Embodiment 1 of the present invention. On the basis of the antenna array shown in FIG. 1, the antenna array, as shown in FIG. The
其中:in:
第一定向耦合单元103以及第二定向耦合单元104,主要用于对待输入对应的天线阵列组的信号进行定向耦合处理,即调整该信号的幅度及相位,使输入所对应的天线阵元组内的各天线阵元的信号的工作方式为同极化,以达到使发射信号相关的目的,形成波束赋形的效果;The first
极化校准单元105,主要用于对第一定向耦合单元103以及第二定向耦合单元104处理后的信号进行进一步校准,以使输入给第一天线阵元组101的信号的工作方式与输入给第二天线阵元组102的信号的工作方式互为正交极化方式。The
图3示出了本发明实施例一提供的又一天线阵列的结构示意图。如图3所示,在图2所示的天线阵列的基础上,该天线阵列如图3所示,还进一步包括信号串并转换单元106,该信号串并转换单元106分别与第一定向耦合单元103的射频信号端口以及第二定向耦合单元104的射频信号端口存在连接关系,主要用于将串行信号转换为并行信号。FIG. 3 shows a schematic structural diagram of another antenna array provided by Embodiment 1 of the present invention. As shown in Figure 3, on the basis of the antenna array shown in Figure 2, the antenna array, as shown in Figure 3, further includes a signal serial-to-
同理,为了更好地满足智能天线技术对天线阵元之间信号的相关性的要求、以及满足MIMO对天线阵元信号之间无相关性的要求,图2以及图3提供的天线阵列中,第一天线阵元组101以及第二天线阵元组102的工作方式与图1中第一天线阵元组101以及第二天线阵元组102的工作方式相同,即第一天线阵元组101以及第二天线阵元组102内的每个天线阵元分别采用双极化方式进行极化,且同一个天线阵元组内的天线阵元采用相同的极化方式进行极化,不同天线阵元组内的天线阵元采用正交极化方式进行极化。Similarly, in order to better meet the requirements of smart antenna technology for the correlation of signals between antenna elements and the requirement of MIMO for no correlation between antenna element signals, the antenna arrays provided in Figure 2 and Figure 3 , the working mode of the first
根据本发明实施例一提供的上述任一结构的天线阵列,综合了双极化智能天线和单天线内阵元分组优势,通过双极化实现天线阵元组之间信号的不相关性,相对于单纯利用空间距离实现信号不相关的方式,在未来LTE引入双极化技术后,也能够适用未来LTE的发展趋势。According to the antenna array of any one of the above structures provided in Embodiment 1 of the present invention, the advantages of the dual-polarization smart antenna and the array element grouping in the single antenna are combined, and the signal irrelevance between the antenna element groups is realized through dual polarization. In the method of simply using the spatial distance to realize signal uncorrelation, it can also be applicable to the future development trend of LTE after the dual-polarization technology is introduced into LTE in the future.
并且,本发明实施例一提供的天线阵列由于在天线阵元组由等边三角形位置关系的三个天线阵元构成,相对于现有智能天线平铺设计缩小了天线阵列占用的横向尺寸,在实现了智能天线和MIMO技术融合的基础上,也达到了便于施工以及减小风阻的目的,对现网影响较小,部署时可单个基站部署。Moreover, since the antenna array provided by Embodiment 1 of the present invention is composed of three antenna elements in an equilateral triangle position relationship, compared with the existing smart antenna tile design, the horizontal size occupied by the antenna array is reduced. On the basis of realizing the integration of smart antenna and MIMO technology, it also achieves the purpose of facilitating construction and reducing wind resistance, has little impact on the existing network, and can be deployed in a single base station during deployment.
本发明实施例一提供的上述天线阵列,可以包括在现有的移动通信系统中,例如,包括在基站设备中,以提高通信系统的数据传输效率及系统容量。The above-mentioned antenna array provided by Embodiment 1 of the present invention may be included in an existing mobile communication system, for example, included in a base station device, so as to improve data transmission efficiency and system capacity of the communication system.
实施例二Embodiment two
本发明实施例二提供了一种基于实施例一所提供的天线阵列实现的通信方法。Embodiment 2 of the present invention provides a communication method based on the antenna array provided in Embodiment 1.
图4示出了基于实施例一提供的天线阵列实现通信方法的流程示意图。如图4所示,基于图1所示的天线阵列实现的通信方法,主要包括如下步骤:FIG. 4 shows a schematic flowchart of a communication method implemented based on the antenna array provided in the first embodiment. As shown in Figure 4, the communication method implemented based on the antenna array shown in Figure 1 mainly includes the following steps:
步骤401、天线阵列包括的第一天线阵元组101内的每个天线阵元分别接收采用第一极化方式进行极化处理后的信号。Step 401 , each antenna element in the first
步骤402、天线阵列包括的第二天线阵元组102内的每个天线阵元分别接收采用第二极化方式进行极化处理后的信号。Step 402 , each antenna element in the second
上述步骤401以及步骤402中,第一极化方式与第二极化方式为正交极化方式,例如,第一极化方式为正45度极化方式,则第二极化方式可以为负45度极化方式。并且,上述步骤401以及步骤402并无严格的执行顺序,通常情况下是同时执行。In the above step 401 and step 402, the first polarization mode and the second polarization mode are orthogonal polarization modes, for example, the first polarization mode is a positive 45 degree polarization mode, then the second polarization mode can be negative 45 degree polarization mode. Moreover, the above steps 401 and 402 are not strictly executed in order, and are usually executed simultaneously.
步骤403、第一天线阵元组101内的每个天线阵元以及第二天线阵元组102内的每个天线阵元分别采用智能天线技术发射接收的信号。Step 403 , each antenna element in the first
至此,基于图1所示的天线阵列实现的通信流程结束。So far, the communication process implemented based on the antenna array shown in FIG. 1 ends.
通过图4对应的流程,第一天线阵元组101以及第二天线阵元组102内部各天线阵元接收的信号为同极化信号,在各天线阵元组内部能够实现信号的最大相关以满足智能天线技术的要求,第一天线阵元组101以及第二天线阵元组102内部各天线阵元接收的信号为正交极化信号,在各天线阵元组之间能够实现信号的最大不相关以满足MIMO技术的要求。从而通过该过程实现的通信过程,能够兼并智能天线技术以及MIMO技术的优点,提高了通信系统的数据传输效率及系统容量。Through the process corresponding to FIG. 4 , the signals received by the antenna elements in the first
进一步地,本发明实施例二中,第一天线阵元组101以及第二天线阵元组102分别接收的信号为由串行信号转换得到的并行信号。Further, in the second embodiment of the present invention, the signals respectively received by the first
为了更好地理解本发明实施例提供的通信方法,以下结合图3所示的天线阵列,对本发明实施例二提供的通信方法的具体信号处理过程进行详细说明。In order to better understand the communication method provided by the embodiment of the present invention, the specific signal processing process of the communication method provided by the second embodiment of the present invention will be described in detail below in conjunction with the antenna array shown in FIG. 3 .
图5示出了基于实施例一提供的天线阵列实现通信方法的又一流程示意图。如图5所示,基于图3所示的天线阵列实现的通信方法,主要包括如下步骤:FIG. 5 shows another schematic flowchart of a communication method implemented based on the antenna array provided in the first embodiment. As shown in Figure 5, the communication method implemented based on the antenna array shown in Figure 3 mainly includes the following steps:
步骤501、信号串并转换单元106将串行信号转换为两组并行信号,并分别通过射频信号端口输入给第一定向耦合单元103以及第二定向耦合单元104。
该步骤501中,信号串并转换单元106将串行信号转换为两组并行信号后,将一组并行信号输入给第一定向耦合单元103,将另一组并行信号输入给第二定向耦合单元104,从而使本发明提供的技术方案能够运用于OFDM(正交频分复用)与MIMO融合的技术中,能够使并行信号传输在正交子信道上。In this
步骤502、第一定向耦合单元103以及第二定向耦合单元104分别将输入的信号进行处理,并将处理后的信号输入给极化校准单元105。In
该步骤502中,第一定向耦合单元103以及第二定向耦合单元104分别将输入的信号进行处理,即使输入给同一天线阵元组的信号满足同极化要求,具体处理过程已在上述实施例中说明,此处不再赘述。In
步骤503、极化校准单元105对第一定向耦合单元103以及第二定向耦合单元104提供的信号进行处理,并将处理后的信号分别通过第一定向耦合单元103发送到第一天线阵元组101,以及通过第二定向耦合单元104发送到第二天线阵元组102。Step 503, the
该步骤503中,极化校准单元105对第一定向耦合单元103以及第二定向耦合单元104提供的信号进行处理,主要是使输入给第一天线阵元组101的信号的工作方式与输入给第二天线阵元组102的信号的工作方式互为正交极化方式。具体地,极化校准单元105可以采用现有的极化校准器实现,例如,极化校准器通过自适应的调整,保证天线阵元组之间的信号的正交极化,从而满足MIMO技术对信号不相关性的要求。In this step 503, the
步骤504、第一天线阵元组101以及第二天线阵元组102分别将接收的信号采用智能天线技术发射。In
该步骤504中,每个天线阵元组内部的三个天线阵元通过自适应网络、自适应调整加权值,形成若干个自适应波束从而达到传统智能天线工作要求。In this
至此,流程结束。At this point, the process ends.
图5对应的流程中,相对独立的两个天线阵元组所发射的信号为:由一系列串行信号转换得到的两组并行信号,在极化方向正交状态下,形成多输入多输出天线工作模式,有效的克服无线移动通信信道的衰落效应。In the process corresponding to Figure 5, the signals transmitted by the relatively independent two antenna element groups are: two sets of parallel signals converted from a series of serial signals, in the state of orthogonal polarization directions, forming multiple input and multiple output The antenna working mode can effectively overcome the fading effect of the wireless mobile communication channel.
本发明实施例提供的上述技术方案可以应用于CBD(Central BusinessDistrict,中央商务区)、住宅小区、高校等场景,也可以应用于地理和楼层环境复杂场景,传统的2/3G信号受地理和楼层环境复杂程度影响较大,主要由于楼层信号反射导致多径效应,或者地形坡度引起覆盖盲点,根据本发明实施例提供的技术方案可充分利用环境复杂引起的多径效应,将多径干扰变成分集增益,有效的改善信号恶化问题。The above-mentioned technical solutions provided by the embodiments of the present invention can be applied to scenes such as CBD (Central Business District, central business district), residential quarters, universities, etc., and can also be applied to scenes with complex geography and floor environments. Traditional 2/3G signals are affected by geography and floors. The complexity of the environment has a great influence, mainly due to the multipath effect caused by the reflection of the floor signal, or the coverage blind spot caused by the slope of the terrain. The technical solution provided according to the embodiment of the present invention can make full use of the multipath effect caused by the complex environment, and the multipath interference becomes Diversity gain can effectively improve the problem of signal deterioration.
通过本发明实施例提供的天线阵列,将天线阵元分为两个天线阵元组,每个天线阵元组分别包括构成等边三角形位置关系的三个天线阵元、且各天线阵元之间的间距为智能天线技术要求的间距(小于一个信号波长),以满足智能天线技术对天线阵元之间信号的相关性的要求;并且,两个天线阵元组内的每个天线阵元采用相同的极化方式进行极化,不同天线阵元组内的天线阵元采用正交极化方式进行极化,从而通过组间正交极化方式进行极化,以满足MIMO对天线阵元信号之间无相关性的要求,从而能够支持MIMO技术及智能天线技术。Through the antenna array provided by the embodiment of the present invention, the antenna array elements are divided into two antenna array element groups, and each antenna array element group includes three antenna array elements forming an equilateral triangle position relationship, and each antenna array element The spacing between them is the spacing required by smart antenna technology (less than one signal wavelength), to meet the requirements of smart antenna technology for the correlation of signals between antenna elements; and, each antenna element in the two antenna element groups The same polarization method is used for polarization, and the antenna elements in different antenna element groups are polarized by orthogonal polarization, so that the polarization is carried out through the orthogonal polarization method between groups to meet the requirements of MIMO for antenna elements. There is no correlation requirement between signals, so that MIMO technology and smart antenna technology can be supported.
通过本发明实施例提供的基于上述结构的天线阵列实现的通信系统以及通信方法,由于该智能天线能够支持MIMO技术及智能天线技术,因此兼并了MIMO技术以及智能天线技术的优点,提高了通信系统的数据传输效率及系统容量,并且适应于未来移动通信系统中对高速率业务的要求。Through the communication system and communication method realized by the antenna array based on the above-mentioned structure provided by the embodiment of the present invention, since the smart antenna can support MIMO technology and smart antenna technology, it combines the advantages of MIMO technology and smart antenna technology, and improves the communication system. High data transmission efficiency and system capacity, and adapt to the requirements of high-speed services in future mobile communication systems.
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。While preferred embodiments of the present application have been described, additional changes and modifications to these embodiments can be made by those skilled in the art once the basic inventive concept is appreciated. Therefore, the appended claims are intended to be construed to cover the preferred embodiment and all changes and modifications which fall within the scope of the application.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and equivalent technologies thereof, the present invention also intends to include these modifications and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110122325.3A CN102780522B (en) | 2011-05-12 | 2011-05-12 | Antenna array, communication system and communication method based on the antenna array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110122325.3A CN102780522B (en) | 2011-05-12 | 2011-05-12 | Antenna array, communication system and communication method based on the antenna array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102780522A true CN102780522A (en) | 2012-11-14 |
CN102780522B CN102780522B (en) | 2015-11-04 |
Family
ID=47125294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110122325.3A Active CN102780522B (en) | 2011-05-12 | 2011-05-12 | Antenna array, communication system and communication method based on the antenna array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102780522B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015184638A1 (en) * | 2014-06-06 | 2015-12-10 | 华为技术有限公司 | Array antenna calibration method, device and system |
CN106911365A (en) * | 2015-12-21 | 2017-06-30 | 中国移动通信集团公司 | A kind of method and device of polarized antenna arrays channel correcting |
WO2018094660A1 (en) * | 2016-11-24 | 2018-05-31 | 深圳市大疆创新科技有限公司 | Antenna assembly and unmanned aerial vehicle |
CN113030927A (en) * | 2021-03-10 | 2021-06-25 | 深圳核芯物联科技有限公司 | Method and device for wirelessly detecting distance |
CN113745853A (en) * | 2020-05-30 | 2021-12-03 | 华为技术有限公司 | Antenna array and wireless communication equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020085643A1 (en) * | 2000-12-28 | 2002-07-04 | Dean Kitchener | MIMO wireless communication system |
CN1755986A (en) * | 2004-09-30 | 2006-04-05 | 北京信威通信技术股份有限公司 | Dual-polarization panel-shaped antenna used in TD-SCDMA system |
CN1878023A (en) * | 2005-06-09 | 2006-12-13 | 大唐移动通信设备有限公司 | Method for forming MIMO array by using intelligent antenna array |
CN101635391A (en) * | 2008-07-24 | 2010-01-27 | 中兴通讯股份有限公司 | Antenna array supporting MIMO and intelligent antenna technology |
-
2011
- 2011-05-12 CN CN201110122325.3A patent/CN102780522B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020085643A1 (en) * | 2000-12-28 | 2002-07-04 | Dean Kitchener | MIMO wireless communication system |
CN1755986A (en) * | 2004-09-30 | 2006-04-05 | 北京信威通信技术股份有限公司 | Dual-polarization panel-shaped antenna used in TD-SCDMA system |
CN1878023A (en) * | 2005-06-09 | 2006-12-13 | 大唐移动通信设备有限公司 | Method for forming MIMO array by using intelligent antenna array |
CN101635391A (en) * | 2008-07-24 | 2010-01-27 | 中兴通讯股份有限公司 | Antenna array supporting MIMO and intelligent antenna technology |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015184638A1 (en) * | 2014-06-06 | 2015-12-10 | 华为技术有限公司 | Array antenna calibration method, device and system |
CN106911365A (en) * | 2015-12-21 | 2017-06-30 | 中国移动通信集团公司 | A kind of method and device of polarized antenna arrays channel correcting |
CN106911365B (en) * | 2015-12-21 | 2020-08-28 | 中国移动通信集团公司 | Method and device for channel correction of polarized antenna array |
WO2018094660A1 (en) * | 2016-11-24 | 2018-05-31 | 深圳市大疆创新科技有限公司 | Antenna assembly and unmanned aerial vehicle |
CN113745853A (en) * | 2020-05-30 | 2021-12-03 | 华为技术有限公司 | Antenna array and wireless communication equipment |
CN113030927A (en) * | 2021-03-10 | 2021-06-25 | 深圳核芯物联科技有限公司 | Method and device for wirelessly detecting distance |
Also Published As
Publication number | Publication date |
---|---|
CN102780522B (en) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2022203856B2 (en) | High gain and large bandwidth antenna incorporating a built-in differential feeding scheme | |
US10020866B2 (en) | Wireless communication node with adaptive communication | |
EP2260578B1 (en) | System and method for wireless communications | |
US9214720B2 (en) | Communication system node comprising a re-configuration network | |
CN110391506A (en) | Antenna system, feeder network reconstruction method and device | |
CN101635391A (en) | Antenna array supporting MIMO and intelligent antenna technology | |
US20150195015A1 (en) | Power control method and device for forming multiple beams in wireless communication system | |
US9735473B2 (en) | Compact radiation structure for diversity antennas | |
CN103460508A (en) | Conformal antenna array | |
CN104639217B (en) | antenna system, antenna and base station | |
CN103297104B (en) | Antenna array configuration method and aerial array | |
CN102780522B (en) | Antenna array, communication system and communication method based on the antenna array | |
CN111656611A (en) | High gain and wide bandwidth antenna with built-in differential feeding scheme | |
JP2012522460A5 (en) | ||
WO2014047858A1 (en) | Array antenna and base station | |
CN106992802B (en) | Signal receiving and transmitting device for user terminal, user terminal and signal transmission method | |
US12155452B2 (en) | Repeater device and operation of repeater device for non-line-of-sight communication | |
KR101683932B1 (en) | Method for calibrating a terminal with a multi-sector antenna and mesh network terminal | |
CN213878438U (en) | Antenna device for realizing space-polarization separation of wave beam | |
CN206807453U (en) | Signal receiving/transmission device, user terminal for user terminal | |
CN108206713B (en) | Beamforming in MIMO systems | |
KR20250002960A (en) | Method and apparatus for scanning of transmission beam with reference signal adaptation in wireless communication system | |
WO2025120039A1 (en) | Mobile communication network with reconfigurable reflective surfaces | |
WO2024217804A1 (en) | An antenna system for enabling beamforming and directional communication, an antenna device, and a related communication system | |
WO2023011182A1 (en) | Communication apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |