CN102775713B - Preparation method of plastic die material for ceramic forming - Google Patents

Preparation method of plastic die material for ceramic forming Download PDF

Info

Publication number
CN102775713B
CN102775713B CN201210240782.7A CN201210240782A CN102775713B CN 102775713 B CN102775713 B CN 102775713B CN 201210240782 A CN201210240782 A CN 201210240782A CN 102775713 B CN102775713 B CN 102775713B
Authority
CN
China
Prior art keywords
parts
adds
preparation
minutes
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210240782.7A
Other languages
Chinese (zh)
Other versions
CN102775713A (en
Inventor
刘平
高金明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201210240782.7A priority Critical patent/CN102775713B/en
Publication of CN102775713A publication Critical patent/CN102775713A/en
Application granted granted Critical
Publication of CN102775713B publication Critical patent/CN102775713B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention relates to a preparation method of a plastic die material for ceramic forming. The preparation method of the plastic die material comprises the following steps of: 1) adding unsaturated polyester, methyl methacrylate and surfactant to a reaction kettle, controlling the temperature and agitating by a stirrer; 2) adding methyl methacrylate in batch for a plurality of times, and fastening the stirring speed at the same time; 3) adding dibenzoyl peroxide and inorganic powder, and continuing to stir; 4) adding salt and silica gel; and 5) slowly adding water and sodium dodecyl sulfate to a reaction system, fully stirring uniformly and curing at the room temperature. The plastic die material for the ceramic forming, obtained by the preparation method, has better hydroscopicity.

Description

The preparation method who is used for the plastic mould material of forming process of ceramics
Technical field
The present invention relates to pottery and ceramic die industry, be specifically related to the preparation method for the plastic mould material of forming process of ceramics.
background technology
Gypsum mold is the traditional moulds that domestic ceramics and sanitary pottery industrial production have been used since medium-term and long-term, because its cost of manufacture is cheap and self-characteristic, is still widely used at present in the moulding processs such as slip casting, spinning, roll extrusion, plastic compression (colding pressing).Along with ceramic industry is progressively to the development of mechanize and automatic production direction, the weak point of gypsum mold is also just more and more outstanding, low such as intensity, work-ing life is short etc.Meanwhile, because the quality of gypsum mold directly affects and determined the quality of molding blank, and final decision the quality of product.Therefore, the limitation that gypsum material itself exists, has restricted ceramic industry to high-quality, efficient future development.
Mould of plastics has excellent performance, for example lightweight, tough good springiness, good mechanical property, acid-alkali-corrosive-resisting, long service life etc., can carry out car, milling, plane, mill, brill, the various operations such as bonding, be applicable to various moulding processs, but there is the shortcomings such as water-absorbent is poor in existing mould of plastics, be difficult to meet the demand of ceramic molding, limited the use of mould of plastics in forming process of ceramics.
Summary of the invention
The present invention utilizes liquid phase pore-forming principle, and a kind of preparation method of the plastic mould material for forming process of ceramics is provided.
The preparation method of the plastic mould material for forming process of ceramics of the present invention, comprises the steps:
The first step, adds 1~2 part of 100 parts of unsaturated polyester, 20~30 parts of methyl methacrylates, tensio-active agent in reactor, controls temperature at 40 ℃~60 ℃, stirs 15~25 minutes;
Second step, adds 10~20 parts of polymethylmethacrylates in reactor, strengthens stirring velocity simultaneously, and churning time is 20~30 minutes;
The 3rd step, after polymethylmethacrylate is uniformly dispersed, adds 2~5 parts of 2~5 parts of dibenzoyl peroxide and mineral powders, continues to stir 15~30 minutes;
The 4th step, adds 10~40 parts, 2~5 parts of salt and silica gel, continues to strengthen stirring velocity;
The 5th step, continue to stir after 10~20 minutes, by system cooling, to reaction system, slowly added 2~5 parts of 10~70 parts, water and sodium laurylsulfonates, after stirring, and self-vulcanizing.
Step 2 when adding described polymethylmethacrylate in reactor, preferably repeatedly adds in batches.
More than one in the preferred calcium carbonate of described mineral powder, polynite, talcum powder or titanium dioxide.
More than one in the preferred thionamic acid sodium of described salt, tetrabutylammonium perchlorate sodium or disodium EDTA.
Described in step 5, cooling is preferably reduced to 0~10 ℃.
Increasing stirring velocity of the present invention is: as long as large than step 1 of the stirring velocity that guarantees step 2, the stirring velocity of step 4 is greater than the stirring velocity of step 2, to scope no requirement (NR).
The resulting forming process of ceramics of the present invention plastic mould material good water absorption, can meet the requirement of ceramic molding.
Accompanying drawing explanation
Fig. 1 is the photo that water droplet does not contact plastic mould material surface.
Fig. 2 is the photo behind water droplet contact plastic mould material surface.
Embodiment
Below in conjunction with embodiment, the present invention is done further and described in detail
Embodiment 1
The first step, adds 1 part of 100 parts of unsaturated polyester, 20 parts of methyl methacrylates, polysorbate in reactor, controls temperature at 40 ℃, with agitator, stirs 15 minutes.
Second step, adds 10 parts of polymethylmethacrylates in reactor, divides and adds for 3 times, strengthens stirring velocity simultaneously, and churning time is 30 minutes.
The 3rd step, after polymethylmethacrylate is uniformly dispersed, adds 5 parts, 5 parts of dibenzoyl peroxide and calcium carbonate, continues to stir 15 minutes.
The 4th step, adds 10 parts, 2 parts, thionamic acid sodium and silica gel, and now emulsion viscosity obviously increases, and should continue suitably to strengthen stirring velocity.
The 5th step, continue to stir after 10 minutes, and system is cooled to 10 ℃, to reaction system, slowly added 2 parts of 20 parts, water and sodium laurylsulfonates, after stirring, and self-vulcanizing.
Embodiment 2
The first step, adds 1 part of 100 parts of unsaturated polyester, 20 parts of methyl methacrylates, polysorbate in reactor, controls temperature at 45 ℃, with agitator, stirs 15 minutes.
Second step, adds 10 parts of polymethylmethacrylates in reactor, divides and adds for 3 times, strengthens stirring velocity simultaneously, and churning time is 20 minutes.
The 3rd step, after polymethylmethacrylate is uniformly dispersed, adds 4 parts of 4 parts of dibenzoyl peroxide and titanium dioxide, continues to stir 20 minutes.
The 4th step, adds 20 parts, 2 parts, thionamic acid sodium and silica gel, and now emulsion viscosity obviously increases, and should continue suitably to strengthen stirring velocity.
The 5th step, continue to stir after 10 minutes, and system is cooled to 10 ℃, to reaction system, slowly added 3 parts of 30 parts, water and sodium laurylsulfonates, after stirring, and self-vulcanizing.
Embodiment 3
The first step, adds 1.5 parts of 100 parts of unsaturated polyesters, 25 parts of methyl methacrylates, glycerin fatty acid ester in reactor, controls temperature at 50 ℃, with agitator, stirs 20 minutes.
Second step, adds 15 parts of polymethylmethacrylates in reactor, divides and adds for 4 times, strengthens stirring velocity simultaneously, and churning time is 25 minutes.
The 3rd step, after polymethylmethacrylate is uniformly dispersed, adds 3 parts, 3 parts of dibenzoyl peroxide and calcium carbonate, continues to stir 15 minutes.
The 4th step, adds 25 parts, 4 parts, tetrabutylammonium perchlorate sodium and silica gel, and now emulsion viscosity obviously increases, and should continue suitably to strengthen stirring velocity.
The 5th step, continue to stir after 15 minutes, and system is cooled to 5 ℃, to reaction system, slowly added 4 parts of 40 parts, water and sodium laurylsulfonates, after stirring, and self-vulcanizing.
Embodiment 4
The first step, adds 1.5 parts of 100 parts of unsaturated polyesters, 25 parts of methyl methacrylates, glycerin fatty acid ester in reactor, controls temperature at 55 ℃, with agitator, stirs 15 minutes.
Second step, adds 20 parts of polymethylmethacrylates in reactor, divides and adds for 5 times, strengthens stirring velocity simultaneously, and churning time is 20 minutes.
The 3rd step, after polymethylmethacrylate is uniformly dispersed, adds 3 parts of 3 parts of dibenzoyl peroxide and talcum powder, continues to stir 20 minutes.
The 4th step, adds 30 parts, 2 parts of disodium ethylene diamine tetraacetate and silica gel, and now emulsion viscosity obviously increases, and should continue suitably to strengthen stirring velocity.
The 5th step, continue to stir after 20 minutes, and system is cooled to 5 ℃, to reaction system, slowly added 5 parts of 50 parts, water and sodium laurylsulfonates, after stirring, and self-vulcanizing.
Embodiment 5
The first step, adds 2 parts of 100 parts of unsaturated polyesters, 30 parts of methyl methacrylates, glycerin fatty acid ester in reactor, controls temperature at 60 ℃, with agitator, stirs 25 minutes.
Second step, adds 15 parts of polymethylmethacrylates in reactor, divides and adds for 4 times, strengthens stirring velocity simultaneously, and churning time is 30 minutes.
The 3rd step, after polymethylmethacrylate is uniformly dispersed, adds 2 parts of 2 parts of dibenzoyl peroxide and polynites, continues to stir 15 minutes.
The 4th step, adds 40 parts, 5 parts, thionamic acid sodium and silica gel, and now emulsion viscosity obviously increases, and should continue suitably to strengthen stirring velocity.
The 5th step, continue to stir after 20 minutes, and system is cooled to 0 ℃, to reaction system, slowly added 2 parts of 70 parts, water and sodium laurylsulfonates, after stirring, and self-vulcanizing.
The plastic mould material obtaining according to above-described embodiment 1-5, measured respectively water at its surperficial surface contact angle, result shows when water droplet contact plastic mould material surface, water droplet is paved on mould of plastics surface soon, the surface contact angle of Gu Shui on plastic mould material surface is 0 °, this presentation of results, the resulting plastic mould material of the present invention has good water-absorbent.Measurement result is as shown in attached Fig. 1 and 2.Fig. 1 is the photo that water droplet does not contact plastic mould material surface, and Fig. 2 is the photo behind water droplet contact plastic mould material surface.

Claims (4)

1. for the preparation method of the plastic mould material of forming process of ceramics, comprise the steps:
The first step, adds 1~2 part of 100 parts of unsaturated polyester, 20~30 parts of methyl methacrylates, tensio-active agent in reactor, controls temperature at 40 ℃~60 ℃, stirs 15~25 minutes;
Second step, adds 10~20 parts of polymethylmethacrylates in reactor, strengthens stirring velocity simultaneously, and churning time is 20~30 minutes;
The 3rd step, after polymethylmethacrylate is uniformly dispersed, adds 2~5 parts of 2~5 parts of dibenzoyl peroxide and mineral powders, continues to stir 15~30 minutes;
The 4th step, adds 10~40 parts, 2~5 parts of salt and silica gel, continues to strengthen stirring velocity; Described salt comprises more than one in thionamic acid sodium, tetrabutylammonium perchlorate or disodium ethylene diamine tetraacetate;
The 5th step, continue to stir after 10~20 minutes, by system cooling, to reaction system, slowly added 2~5 parts of 10~70 parts, water and sodium laurylsulfonates, after stirring, and self-vulcanizing.
2. preparation method according to claim 1, is characterized in that, step 2 repeatedly adds when adding described polymethylmethacrylate in reactor in batches.
3. preparation method according to claim 1, is characterized in that, described mineral powder comprises more than one in calcium carbonate, polynite, talcum powder or titanium dioxide.
4. preparation method according to claim 1, is characterized in that, cooling is to be reduced to 0~10 ℃ described in step 5.
CN201210240782.7A 2012-07-12 2012-07-12 Preparation method of plastic die material for ceramic forming Active CN102775713B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210240782.7A CN102775713B (en) 2012-07-12 2012-07-12 Preparation method of plastic die material for ceramic forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210240782.7A CN102775713B (en) 2012-07-12 2012-07-12 Preparation method of plastic die material for ceramic forming

Publications (2)

Publication Number Publication Date
CN102775713A CN102775713A (en) 2012-11-14
CN102775713B true CN102775713B (en) 2014-04-02

Family

ID=47120835

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210240782.7A Active CN102775713B (en) 2012-07-12 2012-07-12 Preparation method of plastic die material for ceramic forming

Country Status (1)

Country Link
CN (1) CN102775713B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194236A (en) * 2014-08-28 2014-12-10 云南云天化股份有限公司 Acrylate-ceramic composite material and preparation method thereof, and base plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763056A (en) * 1971-06-02 1973-10-02 G Will Porous polymeric compositions processes and products
US4801624A (en) * 1983-12-14 1989-01-31 Guenther Will Molding of ceramic materials
EP0516224A1 (en) * 1991-05-30 1992-12-02 SACMI Cooperativa Meccanici Imola Soc. Coop. a Resp. Lim. Porous mould materials, their production and their use for forming ceramic castings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763056A (en) * 1971-06-02 1973-10-02 G Will Porous polymeric compositions processes and products
US4801624A (en) * 1983-12-14 1989-01-31 Guenther Will Molding of ceramic materials
EP0516224A1 (en) * 1991-05-30 1992-12-02 SACMI Cooperativa Meccanici Imola Soc. Coop. a Resp. Lim. Porous mould materials, their production and their use for forming ceramic castings

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"陶瓷成型用不饱和树脂基模具的研究";武光 等;《山东轻工业学院学报》;20061231;第20卷(第4期);82-84 *
"陶瓷成形用多孔塑料模具的研究进展";田燕 等;《陶瓷》;20051231(第10期);19-22 *
武光 等."陶瓷成型用不饱和树脂基模具的研究".《山东轻工业学院学报》.2006,第20卷(第4期),82-84.
田燕 等."陶瓷成形用多孔塑料模具的研究进展".《陶瓷》.2005,(第10期),19-22.

Also Published As

Publication number Publication date
CN102775713A (en) 2012-11-14

Similar Documents

Publication Publication Date Title
CN101570413A (en) Acrylic artificial stone and method for preparing same
CN105645923B (en) A kind of Filamentous clay material and preparation method thereof for 3D printing
CN103111585B (en) A kind of preparation technology of magnesium alloy cast ceramics gypsum composite mould
CN107081865B (en) A kind of preparation method of LED acrylic luminescent characters
CN103570275A (en) Pure acrylic artificial stone as well as manufacturing method thereof
CN101274835A (en) Micro-foaming light gypsum decorative material
CN101899201B (en) Method for preparing PET (Polyethylene Terephthalate) engineering plastic particle of attapulgite fast crystallization
CN101824162A (en) Combination and solidification evocating agent for unsaturated polyester resin
CN102765233B (en) Environment-friendly stone plate and preparation method thereof
CN102775713B (en) Preparation method of plastic die material for ceramic forming
CN103538179A (en) Method for preparing mold release agent by waste edible oil and applications thereof
CN107540970A (en) A kind of graphene heat preservation plate material and preparation method thereof
CN101549971B (en) Preparation method of magnesite cement material accelerator
CN101774799B (en) Ceramic scrap product and preparation method thereof
CN104176971A (en) Foaming agent and preparation method thereof
CN104943039A (en) Production method of silica gel mould
CN104960189A (en) Gypsum plastic suction mold
CN105313250A (en) Gypsum plastic suction mold
CN103866922B (en) The production technology of a kind of composite material watt
CN103587008A (en) Silica gel mould for preparing imitation brick veneer material
CN102702604A (en) High-temperature-resistant permeation-resistant cross-linked olefin rotational molding special material and preparation method thereof
CN102351472A (en) Method for preparing building standard brick with water granulated slag and fly ash
CN102503314A (en) Light-weight brick and manufacturing method thereof
CN101116999A (en) Method for preparation of light wall material
CN102766230B (en) Expandable phenylethylene copolymer bead with heat-resistant performance and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant