CN102760275B - A kind of information handling system for agriculture of city type comprehensive evaluation - Google Patents
A kind of information handling system for agriculture of city type comprehensive evaluation Download PDFInfo
- Publication number
- CN102760275B CN102760275B CN201210144934.3A CN201210144934A CN102760275B CN 102760275 B CN102760275 B CN 102760275B CN 201210144934 A CN201210144934 A CN 201210144934A CN 102760275 B CN102760275 B CN 102760275B
- Authority
- CN
- China
- Prior art keywords
- evaluation
- index
- module
- agriculture
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 148
- 238000012545 processing Methods 0.000 claims abstract description 28
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 22
- 238000010276 construction Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 10
- 238000005457 optimization Methods 0.000 claims description 5
- 238000003909 pattern recognition Methods 0.000 claims description 5
- 238000011002 quantification Methods 0.000 claims description 2
- 238000013210 evaluation model Methods 0.000 claims 2
- 230000001502 supplementing effect Effects 0.000 claims 1
- 238000003860 storage Methods 0.000 abstract description 12
- 230000010365 information processing Effects 0.000 abstract description 10
- 238000004364 calculation method Methods 0.000 description 12
- 238000013077 scoring method Methods 0.000 description 11
- 238000011161 development Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 238000007781 pre-processing Methods 0.000 description 8
- 230000004927 fusion Effects 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 2
- 238000012854 evaluation process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明涉及一种用于都市型农业综合评价的信息处理系统,包括:输入模块,用于获取评价指标与相对应的评价数值;存储模块,用于保存先验知识模板、评价指标集合、评价参考阈值及规则集合和历史数据;评价处理模块,根据输入模块获取的基本评价指标与相对应的评价数值以及存储模块保存的先验知识模板、评价指标集合、评价参考阈值及规则集合、历史数据进行处理,生成评价结果;输出模块,用于输出评价处理模块生成的评价结果。与现有技术相比,本发明通过自动构建指标体系及调用指标算法,从而动态的、多层次的对都市型农业的指标进行信息处理,获取综合评分。
The invention relates to an information processing system for comprehensive evaluation of urban agriculture, comprising: an input module for obtaining evaluation indicators and corresponding evaluation values; a storage module for storing prior knowledge templates, evaluation index sets, evaluation Reference threshold and rule set and historical data; evaluation processing module, based on the basic evaluation indicators obtained by the input module and the corresponding evaluation values, as well as the prior knowledge templates, evaluation index sets, evaluation reference thresholds and rule sets, and historical data stored in the storage module Perform processing to generate an evaluation result; an output module is used to output the evaluation result generated by the evaluation processing module. Compared with the prior art, the present invention automatically constructs the index system and invokes the index algorithm, thereby dynamically and multi-level information processing on the urban agriculture index, and obtains a comprehensive score.
Description
技术领域 technical field
本发明涉及一种信息处理系统,尤其是涉及一种用于都市型农业综合评价的信息处理系统。The invention relates to an information processing system, in particular to an information processing system for comprehensive evaluation of urban agriculture.
背景技术 Background technique
长期以来,都市型农业作为一个笼统的概念,在很大程度上阻碍了研究的深入和实践的推进。实际上,我们可以将人们在不同场合使用的都市型农业划分为三个层次。第一层次,即宏观层次,是整个都市经济社会综合体的一个组成部分,我们称之为都市型农业体系;第二层次,即区域层次,是都市型农业体系的某个区域的农业,我们称之为都市型区域农业;第三层次,即微观层次,是都市型农业体系中具有独立经济利益的农业经营单元,我们称之为都市型农业经营单元。不论是农业体系、区域农业还是农业经营单元,前面修饰了“都市型”,就说明其与相应的“农区型”农业存在显著区别。这种区别一方面是城乡互动自然演变而形成,另一方面也是为适应城市扩张,满足城市发展需求而有意识促进而形成。For a long time, urban agriculture, as a general concept, has hindered the deepening of research and the advancement of practice to a large extent. In fact, we can divide the urban agriculture that people use in different situations into three levels. The first level, that is, the macro level, is a part of the entire urban economic and social complex, which we call the urban agricultural system; the second level, that is, the regional level, is the agriculture in a certain area of the urban agricultural system. It is called urban regional agriculture; the third level, the micro level, is the agricultural management unit with independent economic interests in the urban agricultural system, which we call urban agricultural management unit. Whether it is an agricultural system, regional agriculture or agricultural management unit, the modification of "urban type" in front of it shows that it is significantly different from the corresponding "agricultural area type" agriculture. On the one hand, this difference is formed by the natural evolution of urban-rural interaction, and on the other hand, it is also formed by conscious promotion to adapt to urban expansion and meet the needs of urban development.
都市型农业评价指标体系不仅代表了对都市型农业更为全面和更为具体的理解,也是促进都市型农业健康、快速发展的行动指南。评价指标体系一直以来就是都市型农业研究的重点内容之一。韩士元设计了人均GDP、科技贡献率、林木覆盖率等八项指标,描述都市型农业的综合发展程度和达到的总体水平。黄映辉设计了农业保障水平、农业综合生产水平、农业生态环境及资源利用水平和农业社会服务水平等四类指标。文化等从综合生产水平、社会服务水平、生态保障水平、区域和谐、发展能力建设水平等五个方面设计了21项指标。毕然设计了生态坏境水平、农业机械化水平、科技创新、社会服务水平和城乡和谐水平等五类指标。陈凯设计了农业投入水平、农业可持续发展、农业产出水平和农村社会发展水平等四类指标。关海玲设计了经济发展水平、社会发展水平和生态发展水平等三类指标。现有的评价指标体系一方面未能很好地从与城市关系的角度凸显都市型农业“依托都市资源,服务都市需求”的特征,受先验知识影响较大,主观性强。另一方面也仅限于宏观层次的评价,从而使其评价指标体系及方法未能在从不同的层次,动态地实现对都市型农业的综合评价,因此其通用性受到了很大的制约。The evaluation index system of urban agriculture not only represents a more comprehensive and specific understanding of urban agriculture, but also serves as an action guide to promote the healthy and rapid development of urban agriculture. Evaluation index system has always been one of the key contents of urban agriculture research. Han Shiyuan designed eight indicators including per capita GDP, scientific and technological contribution rate, and tree coverage rate to describe the comprehensive development degree and overall level of urban agriculture. Huang Yinghui designed four types of indicators, including the level of agricultural security, the level of comprehensive agricultural production, the level of agricultural ecological environment and resource utilization, and the level of agricultural social services. Culture, etc. designed 21 indicators from five aspects including comprehensive production level, social service level, ecological security level, regional harmony, and development capacity building level. Bi Ran designed five categories of indicators, including ecological environment level, agricultural mechanization level, technological innovation, social service level and urban-rural harmony level. Chen Kai designed four types of indicators: agricultural input level, agricultural sustainable development, agricultural output level and rural social development level. Guan Hailing designed three types of indicators: economic development level, social development level and ecological development level. On the one hand, the existing evaluation index system fails to highlight the characteristics of urban agriculture "relying on urban resources and serving urban needs" from the perspective of its relationship with cities. It is greatly influenced by prior knowledge and is highly subjective. On the other hand, it is limited to the evaluation at the macro level, so that its evaluation index system and methods cannot dynamically realize the comprehensive evaluation of urban agriculture from different levels, so its versatility is greatly restricted.
综上所述,不仅在农业体系上,都市型农业与农区型农业存在显著区别,在区域层次和经营单元层次,同样存在“都市型”的特征。其次,各种评价方法在指标选取及计算方法上主观性较大。因此,需要有一种通用的方法、系统及装置在评价过程中智能地进行指标的选取、体系的构建及算法的融合,从而能够动态的、多层次的实现对都市型农业进行综合性的评价。To sum up, not only in the agricultural system, there are significant differences between urban agriculture and agricultural area agriculture, but also in the regional level and management unit level, there are also "urban" characteristics. Secondly, various evaluation methods are relatively subjective in the selection of indicators and calculation methods. Therefore, there is a need for a general method, system, and device to intelligently select indicators, construct systems, and integrate algorithms during the evaluation process, so as to realize comprehensive evaluation of urban agriculture in a dynamic and multi-level manner.
发明内容 Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种用于都市型农业综合评价的信息处理系统,该信息处理系统通过自动构建指标体系及调用指标算法,从而动态的、多层次的对都市型农业的指标进行信息处理,获取综合评分。The purpose of the present invention is to provide an information processing system for the comprehensive evaluation of urban agriculture in order to overcome the above-mentioned defects in the prior art. Information processing is carried out on the indicators of urban agriculture to obtain a comprehensive score.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种用于都市型农业综合评价的信息处理系统,包括:An information processing system for comprehensive evaluation of urban agriculture, including:
输入模块,用于获取评价指标与相对应的评价数值;The input module is used to obtain the evaluation index and the corresponding evaluation value;
存储模块,用于保存先验知识模板、评价指标集合、评价参考阈值及规则集合和历史数据;The storage module is used to store prior knowledge templates, evaluation index sets, evaluation reference thresholds, rule sets, and historical data;
评价处理模块,根据输入模块获取的基本评价指标与相对应的评价数值以及存储模块保存的的先验知识模板、评价指标集合、评价参考阈值及规则集合、历史数据进行处理,生成评价结果;The evaluation processing module processes the basic evaluation indicators obtained by the input module and the corresponding evaluation values, as well as the prior knowledge templates, evaluation index sets, evaluation reference thresholds, rule sets, and historical data stored in the storage module, and generates evaluation results;
输出模块,用于输出评价处理模块生成的评价结果。The output module is used to output the evaluation result generated by the evaluation processing module.
存储模块中的先验知识模板、评价指标集合、评价参考阈值及规则集合和历史数据以符合ER模型的格式化数据存储于关系型数据库中。The prior knowledge template, evaluation index set, evaluation reference threshold and rule set and historical data in the storage module are stored in the relational database as formatted data conforming to the ER model.
所述的评价处理模块包括:The evaluation processing module includes:
指标预处理单元,用于对输入的评价指标进行格式化处理;The index preprocessing unit is used to format the input evaluation index;
指标智能推荐单元,用于对格式化处理后的评价指标进行优化;An indicator intelligent recommendation unit is used to optimize the formatted evaluation indicators;
综合评价计算单元,根据优化后的评价指标、评价参考阈值及规则集合生成基于不同算法的评价结果;The comprehensive evaluation calculation unit generates evaluation results based on different algorithms according to the optimized evaluation index, evaluation reference threshold and rule set;
评价结果融合单元,用于对基于不同算法的评价结果进行融合,生成最终的评价结果。The evaluation result fusion unit is configured to fuse evaluation results based on different algorithms to generate a final evaluation result.
所述的指标预处理单元包括无量纲化处理子单元和标度设置子单元,分别用于对评价指标进行无量纲化处理和标度设置处理。The index preprocessing unit includes a dimensionless processing subunit and a scale setting subunit, which are respectively used to perform dimensionless processing and scale setting processing on the evaluation index.
所述的指标智能推荐单元包括:The indicator intelligent recommendation unit includes:
数据清洗子单元,将输入的数据进行规范化处理后保存入存储模块中;The data cleaning sub-unit is used to standardize the input data and store it in the storage module;
模式构建子单元,从存储模块中调用评价参考规则,并根据评价参考规则构建评价模式;The mode construction subunit calls the evaluation reference rules from the storage module, and constructs the evaluation mode according to the evaluation reference rules;
模式识别子单元,采用组合加权评分的方法对模式构建子单元所构建的评价模式进行补充优化;The pattern recognition subunit adopts the method of combined weighted scoring to supplement and optimize the evaluation mode constructed by the pattern construction subunit;
指标推荐子单元,用于进行指标的智能化推荐及指标体系的优化。The indicator recommendation subunit is used for intelligent recommendation of indicators and optimization of the indicator system.
所述的输出模块包括量化输出单元、图形化输出单元和预定义报告格式输出单元。The output module includes a quantitative output unit, a graphic output unit and a predefined report format output unit.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1)本发明可以根据用户输入的基本评价目标,根据先验知识进行相似模板的推荐及提供向导完成评价指标体系的构建。1) The present invention can recommend similar templates and provide guides to complete the construction of the evaluation index system based on the basic evaluation goals input by the user and prior knowledge.
2)本发明可以自动的完成对用户评价指标的无量纲化处理及标度设置的数据预处理操作。2) The present invention can automatically complete the data preprocessing operations of dimensionless processing of user evaluation indicators and scale setting.
3)本发明可以基于组合加权评分方法对评价指标进行智能,补充及优化用户的评价指标体系。3) The present invention can intelligentize the evaluation index based on the combined weighted scoring method, complement and optimize the user's evaluation index system.
4)本发明可以在综合评价过程中提供多种算法包进行调用,并保留扩展算法包的接口。4) The present invention can provide a variety of algorithm packages for calling during the comprehensive evaluation process, and retain the interface of the extended algorithm package.
5)本发明可以对不同的算法包计算产生的综合评价结果进行动态的融合。5) The present invention can dynamically fuse the comprehensive evaluation results calculated by different algorithm packages.
6)本发明可以以多种形式对评价结果进行输出和可视化表达。6) The present invention can output and visualize the evaluation results in various forms.
附图说明 Description of drawings
图1是本发明的整体结构框图;Fig. 1 is an overall structural block diagram of the present invention;
图2是本发明的信息处理过程图;Fig. 2 is the information processing process figure of the present invention;
图3是输入模块的内部结构图;Fig. 3 is an internal structural diagram of the input module;
图4是指标预处理单元的内部结构图;Fig. 4 is an internal structure diagram of the indicator preprocessing unit;
图5是指标智能推荐单元的内部结构图;Fig. 5 is an internal structure diagram of an index intelligent recommendation unit;
图6是评价结果融合单元的结构示意图;Fig. 6 is a schematic structural diagram of an evaluation result fusion unit;
图7是评价目标设置示意图;Fig. 7 is a schematic diagram of evaluation target setting;
图8是自定义指标输入单元的定义方式示意图;Figure 8 is a schematic diagram of the definition method of the custom indicator input unit;
图9是模式构建子单元的模式构建流程图。Fig. 9 is a pattern construction flow chart of the pattern construction subunit.
具体实施方式 Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例Example
如图1所示,一种用于都市型农业综合评价的信息处理系统,包括输入模块101、存储模块102、评价处理模块103和输出模块104。As shown in FIG. 1 , an information processing system for comprehensive evaluation of urban agriculture includes an input module 101 , a storage module 102 , an evaluation processing module 103 and an output module 104 .
其中,输入模块101用于获取评价指标与相对应的评价数值,包括针对都市型农业的各项评价指标定义及数值。Wherein, the input module 101 is used to obtain evaluation indexes and corresponding evaluation values, including definitions and values of various evaluation indexes for urban agriculture.
存储模块102存储先验知识模板、备选评价指标集合、评价参考阈值及规则集合等结构化数据,并保存系统运行过程中的都市型农业评价运算的历史信息及中间信息。在本实施例中,存储模块102所存储的都市型农业评价指标的历史信息是在历史积累的基础上得到的,并作为进行模板生成、指标推荐及算法处理的数据基础。The storage module 102 stores structured data such as prior knowledge templates, candidate evaluation index sets, evaluation reference thresholds, and rule sets, and saves historical information and intermediate information of urban agriculture evaluation calculations during system operation. In this embodiment, the historical information of urban agriculture evaluation indicators stored in the storage module 102 is obtained on the basis of historical accumulation, and serves as the data basis for template generation, index recommendation and algorithm processing.
评价处理模块103根据输入模块101所输入的评价指标进行指标的预处理(包括无量纲化处理及标度设置),并根据用户的评价目标及存储单元102所存储的历史评价记录进行评价指标的智能推荐处理,并根据上述两步合并及清洗后的格式化的指标集合进行算法计算,评价处理模块103预置了多种算法可供选择,最后将计算结果经过融合处理后输出到输出模块104,其主要包括了如图2所示的几个单元,分别为:The evaluation processing module 103 performs index preprocessing (including dimensionless processing and scale setting) according to the evaluation index input by the input module 101, and performs evaluation index evaluation based on the user's evaluation target and the historical evaluation records stored in the storage unit 102. Intelligent recommendation processing, and algorithm calculation according to the above-mentioned two-step merged and formatted index set after cleaning, the evaluation processing module 103 presets a variety of algorithms to choose from, and finally outputs the calculation results to the output module 104 after fusion processing , which mainly includes several units as shown in Figure 2, which are:
1、用于对输入的评价指标进行格式化处理的指标预处理单元202,包括指标的无量纲化处理与标度设置两个主要操作,无量纲化处理是指将所有指标的原始数据换算成统一的没有单位的标量数据,标度设置是指在设置了不同指标区间的不同跨度,并赋予相同的分数跨度后,在每一个小的指标区间内采用平均评分法使得标度的设置更为科学。1. The indicator preprocessing unit 202 for formatting the input evaluation indicators, including two main operations: dimensionless processing of indicators and scale setting. Dimensionless processing refers to converting the original data of all indicators into Unified scalar data without units. Scale setting means that after setting different spans of different index intervals and assigning the same score span, the average scoring method is used in each small index interval to make the scale setting more accurate. science.
2、用于对格式化处理后的评价指标进行优化的指标智能推荐单元203,基于组合加权评分的方法对预处理后的评价指标体系进行指标补充及优化,使得评价结果更有客观性和覆盖面。同时,解决了传统推荐方式存在的稀疏性问题、冷启动问题及可扩展性问题。2. The indicator intelligent recommendation unit 203 for optimizing the formatted evaluation indicators, supplements and optimizes the preprocessed evaluation indicator system based on the combined weighted scoring method, making the evaluation results more objective and comprehensive . At the same time, it solves the sparsity problem, cold start problem and scalability problem existing in the traditional recommendation method.
3、根据优化后的评价指标、评价参考阈值及规则集合生成基于不同算法的评价结果的综合评价计算单元204。3. A comprehensive evaluation calculation unit 204 that generates evaluation results based on different algorithms according to the optimized evaluation index, evaluation reference threshold and rule set.
4、用于对基于不同算法的评价结果进行融合,如图6所示,生成最终的评价结果的评价结果融合单元205。4. An evaluation result fusion unit 205 for fusing evaluation results based on different algorithms, as shown in FIG. 6 , to generate a final evaluation result.
输出模块104包括量化输出单元、图形化输出单元和预定义报告格式输出单元,根据处理单元103所运算结果向用户输出最终的评价结果,评价结果可通过量化方式、图形化方式及评估报告等多种形式进行输出。The output module 104 includes a quantitative output unit, a graphical output unit, and a predefined report format output unit, and outputs the final evaluation result to the user according to the calculation result of the processing unit 103. The evaluation result can be quantified, graphically, and evaluated. output in various formats.
输入模块101的具体结构如图3所示,评价目标设置单元301、自定义指标输入单元302、自定义阈值输入单元303、先验模板判断单元304、模板向导单元305及评价指标构建单元306。The specific structure of the input module 101 is shown in FIG. 3 , an evaluation target setting unit 301 , a custom index input unit 302 , a custom threshold input unit 303 , a priori template judgment unit 304 , a template guide unit 305 and an evaluation index construction unit 306 .
评价目标设置单元301用于接收用户对于评价目标、原则、体系框架及专题领域等顶层设计概念集合,本实施例中的评价目标设置如图7所示。自定义指标输入单元302用于接收用户输入的自定义指标,指标的输入按照树形结构进行,方便用户维护及保持数据的内部参照性,具体的定义方式如图8所示。The evaluation target setting unit 301 is used to receive a set of top-level design concepts such as evaluation targets, principles, system frameworks, and thematic fields from users. The evaluation target setting in this embodiment is shown in FIG. 7 . The user-defined index input unit 302 is used to receive the user-defined index. The input of the index is carried out according to the tree structure, which is convenient for the user to maintain and maintain the internal reference of the data. The specific definition method is shown in FIG. 8 .
自定义阈值输入单元303用于接收用户输入的自定义参照阈值,以太阳能和风能的使用为例:The custom threshold input unit 303 is used to receive the custom reference threshold input by the user, taking the use of solar energy and wind energy as an example:
指标:太阳能及风能使用比例(C15)Indicator: Proportion of solar and wind energy utilization (C15)
指标阈值:5%Metric Threshold: 5%
阈值说明:欧盟规定使用可再生能源是强制性指标,规定2020年英国可再生能源的比重达到20%,德国为18%;日本是节能高效的国家,其规定2010年可再生能源使用比例达30%。丹麦在2000年,仅风能发电的比重已经达到了10%,可再生能源的使用比例已远远超过20%。但总体来说,西方国家的可再生能源使用比例大部分都在10%以下,而中国本底值较小,在0.5%之下。Threshold description: The European Union stipulates that the use of renewable energy is a mandatory indicator. It stipulates that the proportion of renewable energy in the UK will reach 20% in 2020, and that in Germany will be 18%. Japan is an energy-saving and efficient country. %. In Denmark in 2000, only the proportion of wind power generation has reached 10%, and the proportion of renewable energy use has far exceeded 20%. But generally speaking, the proportion of renewable energy used in most western countries is below 10%, while China's background value is relatively small, below 0.5%.
先验模板判断单元304用于对评价目标设置单元301的输入进行分析,检查数据中心单元中是否存在相似度较高的体系框架,若存在该模板,则调用模板向导单元304协助用户完成评价指标及阈值的输入,完成评级指标构建过程,并将结果输出到评价指标构建单元306中,用于后续的评价处理。The a priori template judging unit 304 is used to analyze the input of the evaluation target setting unit 301, check whether there is a system framework with high similarity in the data center unit, and if there is such a template, call the template wizard unit 304 to assist the user to complete the evaluation index and the input of the threshold value, complete the rating index construction process, and output the result to the evaluation index construction unit 306 for subsequent evaluation processing.
图4示出了本发明评价处理模块103中指标预处理单元的内部结构示意图,包括:指标无量纲化处理子单元401及标度设置子单元402。FIG. 4 shows a schematic diagram of the internal structure of the indicator preprocessing unit in the evaluation processing module 103 of the present invention, including: an indicator dimensionless processing subunit 401 and a scale setting subunit 402 .
指标的无量纲化处理是指将所有指标的原始数据换算成统一的没有单位的标量数据。本发明中的指标无量纲化处理子单元401采用阈值内(min-max)全距平均评分法,即:The dimensionless processing of indicators refers to converting the raw data of all indicators into unified scalar data without units. The index dimensionless processing subunit 401 in the present invention adopts the threshold (min-max) range average scoring method, namely:
指标指越大越优时:
指标值越小越优时:
其中:Pi为无量纲化后的评分,ci为指标原始数据,cmax、cmin分别为指标范围的最小值、最大值。Among them: P i is the score after dimensionless, ci is the original data of the index, c max and c min are the minimum value and maximum value of the index range respectively.
实际上,全距平均评分法存在重要缺陷:相同的指标跨度,在不同的指标区间其所付出的代价和难度一般都是不一样的。例如:水质从5级提升到4级的难度要远远小于从3级提升到2;利润率从5%提升到10%的难度要小于从20%提升到25%,如果采用平均评分法,就必然出现难度不同,分值相同的缺陷,最后总评分中的每一分所代表的难度和重要性不一致,这就失去了综合评价的意义。为避免此种情况,本发明的标度设置子单元402针对每一个指标设置不同的标度,不同的标度赋予不同的评分范围,在标度内再采用平均评分法。例如:每一个指标的取值范围划分为5级(或者根据用户需求在系统中定制其他级别),则评分分别为0~20、20~40、40~60、60~80、80~100,(考虑到多数指标为连续性指标因此上述评分区间也是连续的)。非全距平均设置标度将有效避免上述问题,并给予具体问题具体分析带来较大的自由度。例如,针对某一百分比指标,其标度和评分可能设置为:0~5%(0~20)、5%~8%(20~40)、8%~10%(40~60)、10%~11%(60~80)、11%~11.5%(80~100)。在设置了不同指标区间的不同跨度,并赋予相同的分数跨度后,在每一个小的指标区间内采用平均评分法,如上例中的5%~8%(20~40)即3%跨度中的指标平均分享20分的评分。相对于一般的阈值内全距平均评分法,本发明所使用的方法称之为阈值内阶段平均评分法,具体计算公式如下:In fact, there are important flaws in the full-range average scoring method: for the same index span, the price and difficulty paid are generally different in different index intervals. For example: the difficulty of upgrading water quality from 5 to 4 is far less than that of upgrading from 3 to 2; the difficulty of increasing the profit rate from 5% to 10% is less than that of increasing from 20% to 25%. If the average scoring method is used, It is bound to have the defect of different difficulty and the same score, and the difficulty and importance represented by each point in the final total score are inconsistent, which loses the meaning of comprehensive evaluation. To avoid this situation, the scale setting subunit 402 of the present invention sets different scales for each index, and different scales endow different scoring ranges, and the average scoring method is used within the scales. For example: the value range of each indicator is divided into 5 levels (or other levels can be customized in the system according to user needs), and the scores are 0~20, 20~40, 40~60, 60~80, 80~100, (Considering that most indicators are continuous indicators, the above scoring intervals are also continuous). The non-range average setting scale will effectively avoid the above-mentioned problems, and bring greater degrees of freedom to the specific analysis of specific problems. For example, for a certain percentage indicator, its scale and scoring may be set as: 0-5% (0-20), 5%-8% (20-40), 8%-10% (40-60), 10% %~11% (60~80), 11%~11.5% (80~100). After setting different spans of different index intervals and assigning the same score span, the average scoring method is used in each small index interval, such as 5%~8% (20~40) in the above example, that is, in the 3% span indicators share an average score of 20 points. With respect to the average scoring method of the range in the general threshold, the method used in the present invention is called the stage average scoring method in the threshold, and the specific calculation formula is as follows:
指标越大越优时:
指标越小越优时:
其中:Pi为无量纲化后的指标值,ci为指标原始数据,cd-max、cd-min分别为各指标区间内最小值、最大值。Among them: P i is the index value after dimensionless, ci is the original data of the index, c d-max and c d-min are the minimum value and maximum value in each index interval respectively.
表1示出了选中的多个指标的指标阈值及评分范围的具体计算结果:Table 1 shows the specific calculation results of the index thresholds and scoring ranges of the selected indicators:
表1Table 1
图5示出了本发明的一个实施例的指标智能推荐单元的内部结构,包括:数据清洗子单元501、模式构建子单元502、模式识别子单元503及指标推荐子单元504,Fig. 5 shows the internal structure of an index intelligent recommendation unit according to an embodiment of the present invention, including: a data cleaning subunit 501, a pattern construction subunit 502, a pattern recognition subunit 503 and an index recommendation subunit 504,
其中,数据清洗子单元501是从存储模块的用户数据库、日志数据库、行为数据库中提取相关数据,并经过数据挖掘预处理技术后,再把规范化的数据存入数据库中,本发明中的模式构建子单元502选取了用户-指标关系矩阵等相关、用户-指标评分矩阵、以及用户的搜索关键词等评价参考规则的相关数据组合来描述用户偏好,其模式构建的流程如图9所示。Among them, the data cleaning subunit 501 is to extract relevant data from the user database, log database, and behavior database of the storage module, and after the data mining preprocessing technology, then store the standardized data in the database, the mode construction in the present invention Subunit 502 selects user-indicator relationship matrix and other related data combinations, user-indicator scoring matrix, and user search keywords and other evaluation reference rules to describe user preferences. The process of model construction is shown in Figure 9.
本发明的模式识别子单元503克服了传统的协同过滤推荐有以下缺点:The pattern recognition subunit 503 of the present invention overcomes the following shortcomings of traditional collaborative filtering recommendations:
(1)稀疏性问题:在系统使用初期或随着数据中心中资源的增加,指标与用户评分不对称,那么就系统就没有足够的样本进行相似用户的计算,从而导致得到的邻居数据并不可靠。(1) Sparsity problem: In the early stage of system use or with the increase of resources in the data center, the indicators and user scores are asymmetrical, then the system does not have enough samples to calculate similar users, resulting in the obtained neighbor data being inconsistent. reliable.
(2)冷启动问题;用户没有历史评分记录和访问记录;或者是新指标的上线,还未被进行评分;这两种情况也将导致无法推荐的情况。(2) Cold start problem; users have no historical scoring records and access records; or new indicators have not been scored yet; these two situations will also lead to the situation that cannot be recommended.
(3)可扩展性问题;随着用户数和指标资源增多,数据量的增大会导致系统性能降低。(3) Scalability issues; as the number of users and index resources increase, the increase in data volume will lead to a decrease in system performance.
为了弥补这些缺点,本发明在模式识别子单元503中实现时采用了基于组合加权评分的方法,这样基本可以缓解上述缺点。组合加权评分主要作用是通过对评分矩阵行和列的平均加权评分进行综合处理并计算得出预测评分,这样就可使每个用户对每个指标都有评分值,从而缓解稀疏性问题。In order to make up for these shortcomings, the present invention adopts a method based on combined weighted scoring when implemented in the pattern recognition subunit 503, which can basically alleviate the above-mentioned shortcomings. The main function of the combined weighted score is to comprehensively process the average weighted scores of the rows and columns of the score matrix and calculate the predicted score, so that each user has a score value for each indicator, thereby alleviating the sparsity problem.
组合加权评分由用户平均加权评分和指标平均加权评分两部分组成,本发明对该算法做了如下改进:The combined weighted score is composed of two parts, the average weighted score of users and the average weighted score of indicators. The present invention makes the following improvements to the algorithm:
(1)首先结合当前用户已有评分均值与其他用户对其未评分指标的评分偏差均值,得到当前用户的未评分指标评分估算,即得到用户对未评分指标的平均加权评分;(1) First, combine the current user's existing score mean with the score deviation mean of other users' unrated indicators to obtain the current user's unrated indicator score estimate, that is, obtain the user's average weighted score for the unrated indicators;
(2)再次,重新计算当前用户新的评分均值;(2) Again, recalculate the new rating average of the current user;
(3)接着根据指标已有评分均值,结合有评分缺失用户的已有评分与该用户新的评分均值的偏差均值,得到缺失指标的平均加权评分;(3) Then, according to the existing score mean of the indicator, combined with the deviation mean between the existing score of the user with missing score and the new score mean of the user, the average weighted score of the missing indicator is obtained;
(4)最后,将(1)和(3)结合,得到最终的组合加权评分;(4) Finally, combine (1) and (3) to obtain the final combined weighted score;
(5)使用(4)得出的值,对用户-指标评分矩阵进行相应评分指标的缺失值填充。(5) Use the value obtained in (4) to fill in the missing values of the corresponding scoring indicators in the user-indicator scoring matrix.
本发明中改进后的组合加权评分算法步骤如下:The improved combined weighted scoring algorithm steps in the present invention are as follows:
Stepl:对当前用户u对其未评分指标i的评分进行估计:Stepl: Estimate the rating of the current user u for its unrated indicator i:
上式中,表示用户u的所有评分指标的平均评分(原始数据);K表示对指标i评分的用户总数(原始数据);rk,i为其他用户K对用户u未评分指标i的评分值;表示用户K对其已评分指标的平均分(原始数据)。In the above formula, Indicates the average score (raw data) of all rating indicators of user u; K indicates the total number of users who score indicator i (raw data); r k,i is the rating value of other user K for user u who has not rated indicator i; Indicates the average score (raw data) of user K for its rated indicators.
该式根据对指标i有评分的其他用户K的评分与其平均评分偏差的均值,来估计用户u对其未评分指标i的可能平分值。由此,得到用户u对未评分指标i的平均加权评分ru。This formula estimates the possible average value of user u for unrated index i based on the mean value of the deviation between the ratings of other users K who have rated index i and their average rating deviation. Thus, the average weighted rating r u of user u for unrated index i is obtained.
Step2:计算有评分缺失指标i平均加权评分ri:Step2: Calculate the average weighted score r i of index i with missing score:
上式中,表示有评分缺失的指标i的平均评分(原始数据);表示用户u对所有评分指标的平均评分(其中包含经过step1的更新数据);Q表示用户u对的指标评分总数(原始数据);ru,q表示用户u对其已评分指标q的评分值。In the above formula, Indicates the average score (raw data) of indicator i with missing scores; Indicates the average score of user u on all scoring indicators (including the updated data after step1); Q indicates the total number of indicator scores of user u (original data); r u,q indicates the score value of user u on its rated indicator q .
该式根据用户u已评分指标的评分与其更新后的评分均值偏差的均值,进行对其未评分指标i的平均加权评分估计。This formula estimates the average weighted score of user u's unrated indicator i based on the mean value of the deviation between the score of user u's rated indicator and its updated score mean.
Step3:计算组合加权评分ru,i:Step3: Calculate the combined weighted score r u,i :
ru,i表示使用组合加权评分方法得出用户u对其未评分指标i的评分估计值。上式中,可以计算出用户-评分矩阵中未评分项的组合加权评分,并对相应项的缺失值进行填充;由此用户-评分矩阵中任意用户对指标i均有评分,从而可以基于用户-评分矩阵计算指标相似度并搜寻目标指标的最近邻居指标集合。r u,i means using the combined weighted scoring method to obtain the estimated value of user u's rating for its unrated indicator i. In the above formula, the combined weighted score of the unrated item in the user-score matrix can be calculated, and the missing value of the corresponding item can be filled; thus, any user in the user-score matrix has a score for the index i, so it can be based on the user - The scoring matrix calculates the index similarity and searches for the nearest neighbor index set of the target index.
本实施例中,采用该算法的具体计算如下表所示,其中表2为原始数据表,表3为Step1中通过其他用户的评分得到ru值的表,表4为Step2中通过用户对其他指标的评分得到ri值的表,表5为(d)Step3得到最终的填充数据表。In the present embodiment, the specific calculation using this algorithm is shown in the following table, wherein Table 2 is the original data table, Table 3 is the table of r u value obtained by the ratings of other users in Step1, and Table 4 is the table of other users' evaluation of other users in Step2. The score of the index gets the table of r i values, and Table 5 is (d) Step3 to get the final filled data table.
表2Table 2
表3table 3
表4Table 4
表5table 5
以对U1指标评分缺失数据填充为例,其具体步骤为:Taking the missing data filling of U 1 index score as an example, the specific steps are:
Step1:计算I4的用户平均加权评分Step1: Calculate the user average weighted rating of I 4
同理,计算I5的用户平均加权评分;并得出U1的 Similarly, calculate the user average weighted rating of I 5 ; and get U 1 's
Step2:计算有评分缺失指标i平均加权评分Step2: Calculate the average weighted score of index i with score missing
Step3:计算组合加权评分,并最终用该值为用户-评分矩阵中相应的缺失值进行填充。Step3: Calculate the combined weighted score, and finally use this value to fill in the corresponding missing values in the user-score matrix.
本发明结合TF-IDF算法,针对每个评价目标的特征指标都可以计算出权重值,从而评价目标d可以表示成一个n维的向量d=d{(k1,r1),(k2,r2),...(kn,rn)}。有了这个向量,就可以使如下的余弦相似度公式计算任意两个评价目标之间的相似度。The present invention combines the TF-IDF algorithm to calculate the weight value for each characteristic index of the evaluation target, so that the evaluation target d can be expressed as an n-dimensional vector d=d{(k 1 ,r 1 ),(k 2 ,r 2 ),...(k n ,r n )}. With this vector, the following cosine similarity formula can be used to calculate the similarity between any two evaluation targets.
指标推荐子单元504根据上述计算结果针对用户的综合评价要求进行指标的智能化推荐及指标体系的优化。The indicator recommendation subunit 504 performs intelligent recommendation of indicators and optimization of the indicator system according to the above calculation results according to the user's comprehensive evaluation requirements.
如图2所示,评价结果融合单元205可接收经过综合评价计算单元204的单个或者多个算法得到的评价结果,若输入为多个算法得到的结果,将触发评价结果融合单元205工作。以5个指标为例,此5项指标经过调用算法包1得到的指标评价结果为:As shown in FIG. 2 , the evaluation result fusion unit 205 can receive the evaluation results obtained by a single or multiple algorithms of the comprehensive evaluation calculation unit 204 , and if the input is the result obtained by multiple algorithms, the evaluation result fusion unit 205 will be triggered to work. Taking 5 indicators as an example, the indicator evaluation results obtained by calling the algorithm package 1 for these 5 indicators are:
P1=(0.149,0.157,0.374,0.124,0.192)P 1 =(0.149,0.157,0.374,0.124,0.192)
同样,经过算法包2得到的指标评价结果为:Similarly, the index evaluation results obtained through algorithm package 2 are:
P2=(0.249,0.258,0.264,0.035,0.194)P 2 =(0.249,0.258,0.264,0.035,0.194)
若采用平均值法进行融合,则指标的综合评价结果为:P=(P1+P2)/2If the average value method is used for fusion, the comprehensive evaluation result of the index is: P=(P 1 +P 2 )/2
P=(0.20,0.21,0.32,0.08,0.20)P=(0.20,0.21,0.32,0.08,0.20)
本发明的评价结果融合并不局限于平均值法,可以根据具体评价需要,采用其他方法。The fusion of evaluation results in the present invention is not limited to the average value method, and other methods can be used according to specific evaluation needs.
经过评价结果融合的数据输入到输出单元104中,并最终通过量化方式、图形化方式及评估报告等多种形式进行输出,完成系统的对综合评价结果的可视化表达。The data fused with the evaluation results is input into the output unit 104, and finally output in various forms such as quantification, graphics, and evaluation reports to complete the systematic visual expression of the comprehensive evaluation results.
本发明通过自动构建指标体系及调用指标算法,从而动态的、多层次的对都市型农业的指标进行信息处理,获取综合评分。The present invention automatically constructs an index system and invokes an index algorithm, thereby dynamically and multi-level information processing on the urban agriculture index, and obtains a comprehensive score.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210144934.3A CN102760275B (en) | 2012-05-10 | 2012-05-10 | A kind of information handling system for agriculture of city type comprehensive evaluation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210144934.3A CN102760275B (en) | 2012-05-10 | 2012-05-10 | A kind of information handling system for agriculture of city type comprehensive evaluation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102760275A CN102760275A (en) | 2012-10-31 |
CN102760275B true CN102760275B (en) | 2015-09-09 |
Family
ID=47054728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210144934.3A Active CN102760275B (en) | 2012-05-10 | 2012-05-10 | A kind of information handling system for agriculture of city type comprehensive evaluation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102760275B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109816187B (en) * | 2017-11-21 | 2022-09-23 | 财付通支付科技有限公司 | Information processing method, information processing device, computer equipment and storage medium |
US20220261826A1 (en) * | 2019-06-24 | 2022-08-18 | Honda Motor Co., Ltd. | Information delivery system and method for information delivery |
CN112163733A (en) * | 2020-08-28 | 2021-01-01 | 南京星耀智能科技有限公司 | Fighting capacity assessment method based on expert knowledge combined collaborative filtering algorithm |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102034176A (en) * | 2011-01-17 | 2011-04-27 | 北京理工大学 | General comprehensive evaluation system adopting multiple evaluation methods |
CN102163318A (en) * | 2011-04-29 | 2011-08-24 | 上海交通大学 | Multilevel dynamic urban agriculture integrated information evaluation apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7957843B2 (en) * | 2008-10-24 | 2011-06-07 | National Diversified Sales, Inc. | System and method for irrigation controller |
-
2012
- 2012-05-10 CN CN201210144934.3A patent/CN102760275B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102034176A (en) * | 2011-01-17 | 2011-04-27 | 北京理工大学 | General comprehensive evaluation system adopting multiple evaluation methods |
CN102163318A (en) * | 2011-04-29 | 2011-08-24 | 上海交通大学 | Multilevel dynamic urban agriculture integrated information evaluation apparatus |
Non-Patent Citations (1)
Title |
---|
都市型农业的概念、属性与研究重点;李强等;《农业现代化研究》;20110730;第32卷(第4期);428-431 * |
Also Published As
Publication number | Publication date |
---|---|
CN102760275A (en) | 2012-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019100504A1 (en) | Method for constructing big data technology-based power transaction index system | |
CN106505593B (en) | A kind of analysis of distribution transforming three-phase imbalance and the method for load adjustment based on big data | |
CN104391849B (en) | Collaborative filtering recommendation method incorporating temporal context information | |
Wang et al. | China's natural gas consumption and subsidies—From a sector perspective | |
CN103679544A (en) | Comprehensive assessment method for running of intelligent power distribution network | |
CN102194015B (en) | Retrieval information heat statistical method | |
CN106022960B (en) | A kind of reservoir Multiobjective Scheduling parameter of regularity preferred method based on data mining | |
Yi et al. | Evolutional model of tourism efficiency based on the DEA method: A case study of cities in Guangdong Province, China | |
CN113450031B (en) | Method and device for selecting potential stations for smart energy service for residents | |
CN101916335A (en) | Urban Water Demand Time Series-Exponential Smoothing Model Forecasting Method | |
CN112633645B (en) | Social and economic benefit accounting method for water resource mining and efficient utilization effects of river source arid region | |
CN106557956A (en) | A kind of method with regard to configuring client's paying service information pushing strategy | |
CN102760275B (en) | A kind of information handling system for agriculture of city type comprehensive evaluation | |
CN107748940A (en) | A kind of energy conservation potential Quantitative prediction methods | |
Li et al. | Assessment of operation safety risk for South-to-North Water Diversion Project: a fuzzy VIKOR-FMEA approach | |
CN105511901A (en) | App cold start-up recommending method based on mobile app operation list | |
Xu et al. | The convergence level and influencing factors of China’s digital economy and real economy based on grey model and PLS-SEM | |
CN107146187A (en) | Methods for dealing with near-telecoupling relationship between urbanization and ecological environment in urban agglomerations | |
CN118412848A (en) | A multi-dimensional medium- and long-term power generation forecasting method | |
CN106570618A (en) | Cluster analysis and neutral network-based load simultaneous factor prediction method | |
CN112241804A (en) | Macroscopic economy leading index construction method and system for energy power data | |
CN104700155A (en) | Method and system for predicting business model in business intelligence by PMML (predictive model markup language) | |
CN116362609A (en) | An economic and technical evaluation method of power grid engineering big data | |
Yufei et al. | Application of big data analysis method in technology foresight for strategic emerging industries | |
Lu et al. | Adaptability of water resources development and utilization to social-economy system in Hunan province, China |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |