CN102758651B - 构件和使用多种填充剂制造涂覆构件的方法 - Google Patents

构件和使用多种填充剂制造涂覆构件的方法 Download PDF

Info

Publication number
CN102758651B
CN102758651B CN201210143170.6A CN201210143170A CN102758651B CN 102758651 B CN102758651 B CN 102758651B CN 201210143170 A CN201210143170 A CN 201210143170A CN 102758651 B CN102758651 B CN 102758651B
Authority
CN
China
Prior art keywords
bulking agent
groove
permanent
sacrificial
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210143170.6A
Other languages
English (en)
Other versions
CN102758651A (zh
Inventor
R·B·雷贝克
R·B·罗林
S·A·韦弗
R·S·班克
D·M·利普金
J·B·麦德莫特
L·B·库尔
A·M·里特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102758651A publication Critical patent/CN102758651A/zh
Application granted granted Critical
Publication of CN102758651B publication Critical patent/CN102758651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • F01D5/184Blade walls being made of perforated sheet laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • B81B1/002Holes characterised by their shape, in either longitudinal or sectional plane
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/203Heat transfer, e.g. cooling by transpiration cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • Y10T29/49341Hollow blade with cooling passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24562Interlaminar spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • Y10T428/2462Composite web or sheet with partial filling of valleys on outer surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/02Other than completely through work thickness
    • Y10T83/0304Grooving

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及构件和使用多种填充剂制造涂覆构件的方法。具体而言,提供的是使用多种填充剂来制造涂覆构件(100)的方法。一种方法包括在基底(110)的外表面(112)中形成一个或更多凹槽(132)。每个凹槽均具有基部(134)并至少部分地沿该基底的外表面延伸。该方法还包括将牺牲性填充剂(32)设置在凹槽(多个)内,将永久性填充剂(33)设置在牺牲性填充剂(32)上,将涂层(150)设置在基底的至少一部分和永久性填充剂上,以及从凹槽(多个)去除第一牺牲性填充剂,以限定用于冷却该构件的一个或更多通道(130)。本发明还提供的是一种带有永久性填充剂(33)的构件(100)。

Description

构件和使用多种填充剂制造涂覆构件的方法
技术领域
本发明主要涉及燃气涡轮发动机,且更具体地涉及在其中的微通道冷却。
背景技术
在燃气涡轮发动机中,空气在压缩机中加压并在燃烧器中与燃料混合以生成热燃烧气体。从驱动压缩机的高压涡轮(HPT)中以及驱动涡扇式飞机发动机应用中的风扇或者驱动用于航运和工业应用的外部轴的低压涡轮(LPT)中的气体获取能量。
发动机效率随着燃烧气体的温度升高而提高。然而,燃烧气体加热沿它们的流动路径的各种构件,而这又要求对这些构件进行冷却以实现长的发动机寿命。通常,热气体路径构件通过来自压缩机的泄放空气冷却。该冷却过程降低了发动机效率,因为所泄放的空气并未用于燃烧过程。
燃气涡轮发动机冷却技术是成熟的并且对于各种热气体路径构件中的冷却回路和特征的各个方面均包括大量专利。例如,燃烧器包括在操作期间需要冷却的径向外衬套和内衬套。涡轮喷嘴包括支承在外环带与内环带之间的中空导叶,这些导叶也需要冷却。涡轮转子叶片是中空的并且其中通常包括冷却回路,同时叶片由也需要冷却的涡轮护罩所包绕。热燃烧气体经由也可设有衬层并适当地冷却的排气装置排出。
在所有这些示例性燃气涡轮发动机构件中,高强度超合金金属的薄金属壁通常用于增强的耐久性,同时最大限度地降低对其冷却的需求。各种冷却回路和特征针对这些单独构件在它们于发动机中的对应环境中进行定制。例如,一系列内部冷却通路或蛇形通路可形成在热气体路径构件中。冷却流体可从气室(plenum)提供至蛇形通路,并且冷却流体可流经这些通路,从而冷却热气体路径构件的基底和涂层。然而,该冷却策略通常引起比较低的传热率和不均匀的构件温度分布。
微通道冷却具有通过尽可能靠近经加热的区域布置冷却而显著地减少冷却需求的潜力,从而对于给定的传热率而言减小了主负载轴承基底材料的热侧和冷侧之间的温差。当前,使用牺牲性材料来保持结构涂层免于在其施加期间堵塞冷却通道。由于冷却通道趋于具有大的长度与液压直径比,故填充剂(filler)去除过程通常是耗时的并因此昂贵,而且还会经受不彻底的填充剂去除。
因此,希望提供克服了现有技术的上述缺点的将结构涂层淀积(或沉积)在冷却通道上的方法。
发明内容
本发明的一方面在于一种制造构件的方法。该方法包括在基底的外表面中形成一个或更多凹槽。每个凹槽均具有基部并至少部分地沿基底的外表面延伸。该方法还包括将牺牲性填充剂设置在凹槽内,将永久性填充剂设置在牺牲性填充剂上,以及将涂层设置在基底的至少一部分和永久性填充剂上。该方法还包括从凹槽(多个)去除第一牺牲性填充剂,以限定用于冷却该构件的一个或更多通道。
本发明的另一方面在于一种包括基底的构件,该基底包括外表面和内表面。该外表面限定一个或更多凹槽,并且每个凹槽均至少部分地沿基底的外表面延伸并具有基部。该构件还包括设置在每个凹槽内并跨过每个凹槽的顶部延伸的永久性填充剂。该构件还包括设置在基底的至少一部分和永久性填充剂上的涂层。凹槽(多个)和永久性填充剂或涂层共同限定用于冷却该构件的一个或更多通道。
本发明的又一方面在于一种制造构件的方法。该方法包括在基底的外表面中形成一个或更多凹槽。每个凹槽均具有基部和顶部并至少部分地沿基底的外表面延伸。该方法还包括将填充剂设置在凹槽(多个)内,使得间隙形成在填充剂与相应凹槽的基部之间,以及将涂层设置在基底的至少一部分和填充剂上。
本发明的另一方面在于一种制造构件的方法。该方法包括在基底的外表面中形成一个或更多凹槽。每个凹槽均具有基部并至少部分地沿基底的外表面延伸。该方法还包括将牺牲性填充剂设置在凹槽(多个)内,将第二填充剂设置在牺牲性填充剂以及基底的外表面的至少一部分上,以及将涂层设置在第二填充剂上,使得涂层在基底的至少一部分上延伸。该方法还包括从凹槽(多个)去除第一牺牲性填充剂并部分地去除第二填充剂,以限定用于冷却该构件的一个或更多通道。
附图说明
当参照附图阅读下文的详细描述时,本发明的这些和其它特征、方面和优点将变得更好理解,全部附图中同样的附图标记始终表示同样的零件,其中:
图1是燃气轮机系统的示意性图示;
图2是根据本发明的方面的带有冷却通道的示例性翼型构型的示意性截面;
图3至图8示意性地图示了用于使用多种填充剂对基底施加涂层的过程步骤;
图9在截面图中示意性地描绘了三个示例性冷却通道,其中永久性填充剂层保留在冷却通道中;
图10图示了用于通过在基底的外表面上位于所需凹槽的任一侧添加材料而形成凹槽的另一技术;
图11示意性地图示了使用三种填充剂的过程步骤;
图12示意性地图示了带有凹入形的冷却通道和永久性填充剂的涂覆构件;
图13在透视图中示意性地描绘了带有永久性填充剂的三个示例性冷却通道,其中这些通道部分地沿基底的表面延伸并将冷却剂引导至相应的膜冷却孔;以及
图14是图12的示例性冷却通道中的一个的截面图并示出了将冷却剂从进入孔传送到膜冷却孔的通道;
图15示意性地图示了用于使用填充剂对基底施加涂层的过程步骤,其中间隙形成在填充剂与相应凹槽的基部之间;以及
图16至图18示意性地图示了用于使用永久性填充剂对带有凹入形的凹槽的基底施加涂层的过程步骤。
零件清单
10燃气轮机系统
12压缩机
14燃烧器
16涡轮
18轴
20燃料喷嘴
30短效涂层
32牺牲性填充剂
33永久性填充剂
35附加填充剂
100热气体路径构件
110基底
112基底的外表面
114中空内部空间
116基底的内表面
130通道
132凹槽
134凹槽的基部
136凹槽的顶部(开口)
138凹槽壁
140进入孔
142膜孔(多个)
150涂层(多个)
152涂层的表面
160研磨液射流
具体实施方式
用语“第一”、“第二”等在文中并不表示任何次序、数量或重要性,而是用来将一个元件与另一元件进行区分。用语“一”和“一个”在文中并不表示对数量的限制,而是表示存在至少一个所提及的物件。结合数量使用的修饰语“约”包括所述及的值,并具有通过上下文所指示的含义(例如,包括与特定数量的测量相关的误差程度)。另外,用语“组合物”包括掺合物、混合物、合金、反应产品等。
此外,在本说明书中,后缀“(多个)”通常旨在包括它修饰的用语的单数和复数两者,从而包括一个或更多该用语(例如,“通路孔”可包括一个或更多通路孔,除非另外特指)。在说明书全文中对“一个实施例”、“另一实施例”、“实施例”等的提及意味着结合该实施例所述的特定元件(例如,特征、结构和/或特性)包括在文中所述的至少一个实施例内,并且在其它实施例中可能存在也可能不存在。另外,应理解的是,所描述的发明特征在各种实施例中可以任何合适的方式相结合。
图1是燃气轮机系统10的示意图。系统10可包括一个或更多压缩机12、燃烧器14、涡轮16和燃料喷嘴20。压缩机12和涡轮16可通过一个或更多轴18联接。轴18可为单个轴或联接在一起以形成轴18的多个轴部段。
燃气轮机系统10可包括多个热气体路径构件100。热气体路径构件是系统10的至少部分地暴露于经过系统10的高温气流的任何构件。例如,轮叶组件(也称为叶片或叶片组件)、喷嘴组件(也称为导叶或导叶组件)、护罩组件、过渡件、挡圈和压缩机排气构件都为热气体路径构件。然而,应理解,本发明的热气体路径构件100并不限于以上实例,而是可为至少部分地暴露于高温气流的任何构件。此外,应理解,本公开内容的热气体路径构件100并不限于燃气轮机系统10中的构件,而是可以是其可暴露于高温流的任何机械零件或构件。
当热气体路径构件100暴露于热气流时,热气体路径构件100通过热气流加热并可达到热气体路径构件100失效的温度。因此,为了允许系统10利用高温热气流操作而提高系统10的效率和性能,需要用于热气体路径构件100的冷却系统。
一般而言,本公开内容的冷却系统包括形成在热气体路径构件100的表面中的一系列小型通道或微通道。对于工业级的功率生成涡轮构件,“小型”或“微”通道尺寸将涵盖处于0.25mm至1.5mm的范围内的大致深度和宽度,而对于航空级涡轮构件,通道尺寸将涵盖处于0.15mm至0.5mm的范围内的大致深度和宽度。热气体路径构件可设置有覆盖层。冷却流体可从气室提供至通道,并且冷却流体可流经通道,从而冷却覆盖层。
参照图2至图14,描述了制造构件100的方法。如例如在图3和图10中所示,该构件制造方法包括在基底110的外表面112中形成一个或更多凹槽132。如图13和图14中所示,例如,每个凹槽132均具有基部134并至少部分地沿基底110的外表面112延伸。凹槽132可通过如图3中所示从基底110去除材料或通过如图10中所示在所需凹槽的任一侧上对基底110添加材料而形成。Hasz等人的美国专利6,921,014“Methodforformingachannelonthesurfaceofametalsubstrate”记载了用于通过对基底110添加材料而形成凹槽的技术并以引用的方式全文并入本申请。对于图2中所示的示例性布置,基底110具有至少一个中空内部空间114。
基底110通常先于在基底110的外表面112中形成凹槽132而铸造。如以引用的方式全文并入本申请的MelvinR.Jackson等人的共同受让的美国专利No.5,626,462“Double-WallAirfoil”中所述,基底110可由任何合适的材料形成。根据对于构件100的预期应用,这可包括Ni基、Co基和Fe基超合金。Ni基超合金可为包含γ相和γ′相二者的超合金,特别是那些包含γ相和γ′相二者的Ni基超合金,其中γ′相占超合金体积的至少40%。此类合金公知的是由于包括高温强度和高度抗蠕变性的理想特性的组合而是有利的。基底材料还可包含NiAl金属间合金,因为还公知的是这些合金具备包括高温强度和高温抗蠕变性的优异性能的组合,这些优异性能对在用于飞机的涡轮发动机应用中使用有利的。在Nb基合金的情形中,具有优异的抗氧化性的经涂覆的Nb基合金将是优选的,特别是包含Nb-(27-40)Ti-(4.5-10.5)Al-(4.5-7.9)Cr-(1.5-5.5)Hf-(0-6)V的那些合金,其中组分范围为原子百分数。基底材料还可包含Nb基合金,其包含至少一个二次相,例如含有Nb的金属间化合物,包括硅化物、碳化物或硼化物。此类合金是延性相(即,Nb基合金)和强化相(即,含有Nb的金属间化合物)的合成物。对于其它布置,基底材料包含钼基合金,例如具有Mo5SiB2和Mo3Si次生相的钼基合金(固溶体)。对于其它构型,基底材料包含陶瓷基质合成物,例如使用SiC纤维增强的碳化硅(SiC)基质。对于其它构型,基底材料包含基于TiAl的金属间化合物。
如例如在图5和图6中所示,该构件制造方法还包括将牺牲性填充剂32设置在凹槽(多个)132内并将永久性填充剂33淀积在牺牲性填充剂32上。永久性填充剂33可设置在凹槽(多个)132内或者可在基底110的外表面112的至少一部分上延伸(或散开)。下文提供用于填充剂32、33的合适的材料。应注意,尽管在图6和图7中将牺牲性填充剂与永久性填充剂之间的界面示出为平滑的,但在实践中,该界面可为粗糙的和/或可包括缝隙。如图7至图9中所示,例如,该构件制造方法还包括将涂层150设置在基底110的至少一部分和永久性填充剂33上并从凹槽(多个)132去除牺牲性填充剂32,使得凹槽(多个)132和永久性填充剂33(或如果永久性填充剂33形成涂层的整体部分则为涂层150,如下文所述)共同限定用于冷却构件100的一个或更多通道130。下文提供用于涂层150的合适的材料。尽管将凹槽示出为具有直壁,但凹槽132可具有任何构型,例如,它们可以是直的,弯曲的,或者具有多个弯曲部。
如图13和图14中所示,例如,基底110和涂层150还可限定一个或更多离开膜孔142。对于特定的过程,膜孔142可例如通过在去除填充剂32、33之前钻取而形成。有益的是,填充剂可用作对钻孔的背面止挡装置(back-stop)。对于图13和图14中所示的示例性构型,冷却通道130将冷却剂从相应的进入孔140传送到离开膜冷却孔142。然而,其它构型并不需要膜孔,其中,冷却通道仅沿基底表面112延伸并离开构件边缘,例如后缘或轮叶末端,或端壁边缘。另外,应注意,尽管在图13中将膜孔示出为呈圆形,但这是非限制性的实例。膜孔也可为非圆形的孔。
涂层150包括合适的材料并在永久性填充剂在基底110的外表面112的至少一部分上延伸的情况下结合到基底110的翼形外表面112上和/或永久性填充剂33上。对于特定构型,对于工业构件而言,涂层150的厚度在0.1-2.0毫米的范围内、更具体而言在0.1至1毫米的范围内且再更具体而言为0.1至0.5毫米。对于航空构件而言,该范围通常为0.1至0.25毫米。然而,根据对特定构件100的要求,可采用其它厚度。
涂层150包括结构涂覆层并且还可包括可选的附加涂覆层(多个)。该涂覆层(多个)可利用各种方法来淀积。对于特定过程,通过执行离子等离子体淀积(阴极电弧)来淀积结构涂覆层(多个)。Weaver等人的共同受让的美国已公布专利申请No.20080138529“Methodandapparatusforcathodicarcionplasmadeposition”中提供了示例性离子等离子体淀积设备和方法,该申请的全部内容以引用的方式并入本申请。简而言之,离子等离子体淀积包括将由涂层材料形成的阴极放置在真空腔室内的真空环境中,将基底110设置在该真空环境内,向阴极供应电流以在阴极表面上形成阴极电弧而引起从阴极表面的涂层材料的电弧诱导腐蚀,并且将来自阴极的涂层材料淀积在基底表面112上。
使用离子等离子体淀积的涂层的非限制性的实例包括结构涂层,以及结合涂层和抗氧化涂层,如下文参照美国专利No.5,626,462更详细地说明。对于某些热气体路径构件100,结构涂层包括镍基或钴基合金,且更具体而言包括超合金或(NiCo)CrAlY合金。例如,在基底材料为包含γ相和γ′相两者的Ni基超合金的情况下,结构涂层可包括类似的材料成分,如下文参照美国专利No.5,626,462更详细地说明。
对于其它过程构型,通过执行热喷涂过程和冷喷涂过程中的至少一者来淀积结构涂层。例如,热喷涂过程可包括燃烧喷涂或等离子体喷涂,其中,燃烧喷涂可包括高速氧燃料喷涂(HVOF)或高速空气燃料喷涂(HVAF),以及等离子体喷涂可包括大气(例如空气或惰性气体)等离子体喷涂或低压等离子体喷涂(LPPS,也称为真空等离子体喷涂或VPS)。在一个非限制性的实例中,通过HVOF或HVAF来淀积NiCrAlY。用于淀积结构涂层的其它示例性技术包括但不限于溅镀、电子束物理汽相淀积、无电镀和电镀。
对于某些构型,希望采用多种淀积技术来淀积结构涂覆层和可选的附加涂覆层。例如,第一结构涂覆层可使用离子等离子体淀积来淀积,以及随后淀积的层和可选的附加层(未示出)可使用其它技术如燃烧喷涂过程或等离子体喷涂过程来淀积。根据所使用的材料,对涂覆层使用不同的淀积技术可提供例如但不限于耐应变性、强度、附着和/或延展性的特性方面的益处。
凹槽132可使用各种技术形成。例如,凹槽132可使用研磨液射流、柱塞电解加工(ECM)、使用旋转单点电极的放电加工(铣削EDM)和激光加工(激光钻取)中的一者或更多来形成。2010年1月29日提交的共同受让的序列号为12/697,005的美国专利申请“Processandsystemforformingshapedairholes”中记载了示例性激光加工技术,该申请的全部内容以引用的方式并入本申请。2010年5月28日提交的共同受让的序列号为12/790,675的美国专利申请“Articleswhichincludechevronfilmcoolingholes,andrelatedprocesses”中记载了示例性EDM技术,该申请的全部内容以引用的方式并入本申请。
对于特定的过程构型,凹槽132通过在基底110的外表面112引导研磨液射流160而形成,如图3中示意性地描绘。在序列号为12/790,675的美国专利申请中提供了示例性的水射流钻取方法和系统。如在序列号为12/790,675的美国专利申请中所述,水射流方法通常利用悬浮在高压水流中的高速研磨粒子(例如,研磨“粗砂(gfit)”)流。水的压力可大幅变化,但通常在约35-620MPa的范围内。可使用多种研磨材料,例如石榴石、氧化铝、碳化硅和玻璃珠。
另外,并如在序列号为No.12/790,675的美国专利申请中所述,该水射流系统可包括多轴线计算机数控(CNC)单元。CNC系统本身在本领域中是公知的,并例如记载于美国专利公报2005/0013926(S.Rutkowski等人)中,该专利公报以引用的方式并入本申请。CNC系统允许切削工具沿多个X、Y和Z轴线以及旋转轴线运动。
对于图4中所示的示例性过程,该构件制造方法还包括穿过凹槽132中的相应一个的基部134形成一个或更多进入孔140以提供在凹槽132与中空内部空间(多个)114之间的流体连通。进入孔140通常在淀积牺牲性填充剂32之前形成。然而,对于某些过程,进入孔可在淀积牺牲性填充剂之后形成,也就是说通过钻穿牺牲性填充剂和基底而形成。进入孔140通常为圆形或椭圆形截面,并可例如使用激光加工(激光钻取)、研磨液射流、放电加工(EDM)和电子束钻取中的一个或更多来形成。进入孔140可垂直于相应凹槽132的基部134(如例如在图13中所示),或者更一般而言,可相对于凹槽的基部134以在20-90度的范围内的角度钻取。进入孔140可用于在已淀积涂层150之后从通道沥滤牺牲性填充剂32。
对于图8和图9中所示的实例,从凹槽(多个)132去除牺牲性填充剂32,使得凹槽(多个)132和第二填充剂33共同限定用于冷却构件100的一个或更多通道130。也就是说,对于特定方法,永久性填充剂33形成未从通道130去除的永久性层33(要么在凹槽(多个)内,要么至少部分地跨过基底110的外表面112延伸),使得凹槽(多个)132和永久性填充剂(和/或涂层150)共同限定冷却通道(多个)130,例如,如在图9中所示。根据应用,对于第一牺牲性填充剂32和第二牺牲性填充剂33可使用各种材料。现参照图5,对于特定布置,牺牲性填充剂32包含选自由蜡、树脂、金属合金、石墨和它们的组合物所组成的群组中的至少一种材料。合适的树脂的非限制性的实例包括环氧树脂和光固化树脂(例如,可见光或UV固化树脂),其非限制性的实例包括由在康涅狄格州Torrington有销售点的DYMAX公司以商标Speedmask市售的UV/可见光固化掩蔽树脂。如果使用树脂,则该方法还包括在淀积永久性填充剂33之前使树脂32固化的可选步骤。非限制性的示例性金属合金包括具有低熔化温度(例如低于约300℃)的金属合金,例如焊料,举例而言铅铋、锡铅、锡铅铋和铟铅焊料。
对于更多特定布置,牺牲性填充剂32包括蜡或树脂并且还包括导电颗粒相,例如分散在蜡或树脂内的粉末、碎片以及须丝(whisker)。通过使用导电牺牲性填充剂32,可通过电镀或离子等离子体淀积来淀积永久性填充剂33。例如,蜡或树脂基部可装载有石墨或铝粉,使得可在第一牺牲性填充剂上电镀永久性填充剂33。
对于特定构型,永久性填充剂33包含至少一种金属。例如,永久性填充剂33可包含钨、镍、钴、钼、铬、铝和它们的合金中的至少一者。该金属可使用金属油墨(也即一种固体金属填充剂)通过电镀或通过无电淀积来淀积。用于金属层33的淀积技术的非限制性的实例包括使用注射器或直接填写技术来淀积金属油墨,例如分散在树脂粘合剂中的钼或钨油墨粒子。例如,钨和/或钼可使用注射器或直接填写而以金属油墨的形式淀积,这种情况下该方法还包括在淀积涂层150之前使金属油墨固化的附加可选步骤。
对于其它过程,可使用固体金属填充剂,例如退火金属丝,如在RonaldS.Bunker等人的共同受让的美国专利No.12/953,177“Turbinecomponentswithcoolingfeaturesandmethodsofmanufacturingthesame”中所述的那样。对于其它过程,在牺牲性填充剂32的顶部上将钨或钼的薄层(箔层)压入凹槽(多个)132中。
对于其它过程,可通过电镀或通过无电淀积来淀积金属层33。例如,可使用无电技术来淀积钼。对于某些过程,可通过物理汽相淀积例如通过溅镀、蒸发或离子等离子体淀积来淀积钼。对于其它过程,例如通过无电镀来将镍淀积到凹槽中且然后将其留在通道中。
根据所使用的特定填充剂,可采用各种技术来去除牺牲性填充剂32。对于某些构型,牺牲性填充剂32可例如通过将牺牲性填充剂32从凹槽(多个)132熔化、蒸发、热解或氧化出来而易于去除。例如,可通过加热(例如,在约100℃下)或通过在约300℃下烧尽(汽化)来去除蜡层32。另外,在执行初始去除过程之后保留了残留物的情况下,可通过热解来去除残留物。
对于特定过程,凹槽大部分填充有可易于去除的牺牲性填充剂32并且使用相对少量的永久性填充剂33。这有利于第二填充剂33的使用,该第二填充剂33可耐受在涂覆之前执行的抛光(例如,喷砂)或其它操作,并耐受涂覆过程本身。对于特定构型,以在相应凹槽132的深度的约60%-99.9%的范围内部分填充的方式将牺牲性填充剂32淀积在凹槽132(多个)内,且然后以相应凹槽132至少填满的方式将永久性填充剂33淀积在凹槽(多个)132内。如果凹槽过度填充有第二材料33,则可在涂层150的淀积之前根据所使用的填充剂33的类型例如通过施加刮刀或通过抛光来去除过剩的材料。
对于特定构型,永久性填充剂33的厚度小于约500微米。更具体而言,永久性层33的厚度小于约200微米,且再更具体而言,小于约50微米。有益的是,通过使用相对薄的第二、永久性填充剂33层来淀积相对厚的牺牲性填充剂32层(其相对容易去除但对于涂覆过程较不坚固),最后所得到的填充剂将能够耐受涂覆过程,其中大部分填充剂(亦即,牺牲性填充剂32)易于从凹槽去除而留下通过凹槽132和永久性填充剂33所限定的冷却通道。
对于图11中所示的示例性布置,该构件制造方法还包括在设置永久性填充剂33之前将至少一种附加填充剂35设置在一个或更多凹槽132内。对于特定过程,牺牲性填充剂32包含蜡,附加填充剂35包含电镀铜,以及永久性填充剂33包含溅镀钼。对于本实例,可通过加热来去除牺牲性填充剂32并且可使用浓硝酸来去除附加填充剂35。对于其它示例性过程,牺牲性填充剂32包含铜丝,附加填充剂35包含树脂,以及永久性填充剂33包含钨。
另外,该方法还可任选地包括将氧化涂层如PtAl(例如用于航空构件)或MCrAlY涂层(例如,对于静止的功率生成构件)施加到冷却通道130的内表面,其中M选自钴、镍或铁。对于特定过程,可在已去除填充剂32、35之后并在执行可选的热处理之前施加氧化涂层(未示出)。
对于特定过程,永久性填充剂33包含导电材料33,并且设置永久性填充剂33的步骤包括利用导电材料33至少部分地覆盖牺牲性填充剂32。对于该过程,可使用离子等离子体或通过电镀来淀积涂层150。上文描述了离子等离子体淀积。更具体而言,导电材料33可包含导电颗粒相33,例如粉末、碎片和须丝。对于特定过程,以至少约30%且更具体而言至少约50%的表面积覆盖率将导电颗粒相撒在牺牲性填充剂32上。对于特定过程,以至少约30%、更具体而言至少约50%且再更具体而言约100%的表面积覆盖率将导电颗粒相33撒在牺牲性填充剂32上。
根据基底和涂层组分,可对导电颗粒相33使用多种材料。例如,可使用镍或钼颗粒相。对于示例性过程,施加在凹槽132中的牺牲性填充剂32是润湿的,使得导电颗粒相33粘附在润湿的牺牲性填充剂32上。导电颗粒相通过允许高能金属离子附着在导电颗粒相上而提高离子等离子体涂覆过程的涂层覆盖率。一旦生成初始一致的层,则随后来自阴极的离子便积聚在该金属层上并使它增厚。对于该过程,导电颗粒相33可采取整体地连接到涂层150的表面152上的大量金属粒子的形式,而不是形成连续的永久性层。
在该过程中可使用多种牺牲性填充剂32。理想的是,牺牲性填充剂将在相关的涂层淀积温度下具有最低收缩率并将耐受例如低于约550℃的温度。合适的填充剂32的一个示例性等级包括可商购得到的低收缩率连结化合物。有益的是,可通过机械搅拌和施加热水而在涂层淀积之后去除这些材料。在一个非限制性的实例中,使用可从美国Gypsum公司商购得到的以商标Durabond-市售的连结化合物作为牺牲性填充剂,并以约100%的覆盖率将镍粉撒在润湿的连结化合物上。镍基涂层150通过离子等离子体淀积来淀积,且然后通过机械搅拌和施加热水来去除连结化合物。
除淀积在牺牲性填充剂32上以外,导电颗粒相33可分散在附加填充剂35上,使得可使用离子等离子体而将涂层150淀积在不导电的附加填充剂35上。
尽管将上文参照图3至图9所述的过程示出为具有矩形凹槽132,但这些凹槽可根据特定应用的要求而具有各种形状。例如,凹槽132(和通道130)可为凹入的凹槽132(凹入的通道130),如下文参照图12所述。另外,凹槽132(通道130)的侧壁不必是直的。对于各种应用,凹槽132(通道130)的侧壁可为弯曲的或圆形的。
对于图12中所示的示例性构型,每个相应凹槽132的基部134比其顶部136宽,使得每个凹槽132均包括凹入形的凹槽132。在Bunker等人的共同受让的序列号为12/943,624的美国专利申请“Componentswithre-entrantshapedcoolingchannelsandmethodsofmanufacture”中说明了凹入凹槽132,该申请的全部内容以引用的方式并入本申请。有益的是,通过将凹入形的凹槽132填充覆盖有第二永久性填充剂33(图12)的更易去除的牺牲性填充剂,涂层将桥接凹槽的顶部136,并且牺牲性材料32将相对容易去除。
对于特定构型,凹入形的凹槽132中的相应一个的基部134比相应凹槽132的顶部136宽至少2倍。例如,对于此构型,如果凹槽132的基部134的宽度为0.75毫米,则顶部136的宽度将小于0.375毫米。对于更多特定构型,相应凹入形的凹槽132的基部134比相应凹槽132的顶部136宽至少3倍,且再更具体而言,相应凹入形的凹槽132的基部134处于比相应凹槽132的顶部136宽约3-4倍的范围内。有益的是,大的基部与顶部之比增加了用于微通道130的总体冷却容积。
如在序列号为12/943,624的美国专利申请中所述,参照序列号为12/943,624的美国专利申请的图7和图11,对于某些构型,涂层150完全桥接相应的凹槽132,使得涂层150密封相应的冷却通道130。对于其它布置,永久性填充剂可包括整体地连接到涂层150的表面152(在图7中示出)上(而不是形成连续的永久性层33)的大量金属粒子,并且涂层150可限定一个或更多多孔间隙(也称为“可渗透的隙槽”),例如,涂层150中的孔隙或该涂层中的间隙,使得涂层150不完全桥接各相应的凹槽132。尽管在序列号为12/943,624的美国专利申请中教导的方法在不使用填充剂的情况下淀积涂层,但凹入形的凹槽也可使用本申请的图3至图9中所示的过程的多种填充剂而有利地进行涂覆。例如,填充剂可用于确保涂层桥接凹槽的顶部,其中,易于去除的牺牲性填充剂32(和可选的附加填充剂35)仅需相对简单的去除过程。
参照图3、图9、图10、图13、图14和图16描述本发明的构件100实施例。如图所示,例如在图9中,构件100包括基底110,该基底110包括外表面112和内表面116。外表面112限定一个或更多凹槽132,如例如在图3中所示。如上所述,凹槽132可通过如图3中所示从基底110去除材料或通过如图10中所示在凹槽的任一侧上对基底110添加材料而形成。如例如在图13中所示,每个凹槽132均至少部分地沿基底110的外表面112延伸并具有基部134。如图9、图13和图14中所示,构件100还包括设置在一个或更多凹槽132中的每一个内并跨过每一个凹槽132的顶部136延伸的永久性填充剂33和设置在基底110的至少一部分和永久性填充剂33上的涂层150。对于某些构型,永久性填充剂33还在外基底表面112的至少一部分上延伸。如图9中所示,凹槽(多个)132和永久性填充剂33和/或涂层150共同限定用于冷却构件100的一个或更多通道130。
上文提供了用于永久性填充剂33的示例性材料和淀积技术。对于示例性构型,永久性填充剂33包含钨、镍、钴、钼、铬、铝和它们的合金中的至少一者。对于图示的实例,永久性填充剂33包括连续层,使得凹槽(多个)132和永久性填充剂33共同限定冷却通道(多个)130。对于其它构型,永久性填充剂33包含整体地连接到涂层150的表面152上的大量金属粒子。
如图9中所示且如上所述,对于示例性构型,基底110的内表面116限定至少一个中空内部空间114,并且一个或更多进入孔140延伸穿过凹槽(多个)132中的相应一个的基部134,以将凹槽132布置成与相应的中空内部空间114成流体连通。
如上所述,凹槽无需呈矩形而是可根据特定应用的要求而呈多种形状。对于特定构型,凹槽可呈凹入形,例如,如图16中所示。对于此构型,永久性填充剂33跨过凹入形的凹槽的顶部延伸,使得涂层桥接该凹槽。
有益的是,永久性填充剂33的使用简化了用于填充剂的材料去除过程并提供用以在涂层150淀积期间支承涂层150的坚固的永久性层。
参照图3、图4、图9、图10和图15至图18描述另一构件制造方法。如例如在图3和图10中所示,该制造构件100的方法包括在基底110的外表面112中形成一个或更多凹槽132。每个凹槽132均具有基部134和顶部136并至少部分地沿基底110的外表面112延伸。如上所述,凹槽132可通过如图3中所示从基底110去除材料或通过如图10中所示在凹槽的任一侧上对基底110添加材料而形成。上文参照图3和图10更详细地描述了该步骤。如图15中所示,该构件制造方法还包括将填充剂33设置在一个或更多凹槽132内,使得间隙37(例如,空气间隙)形成在相应凹槽132的填充剂33和基部134之间。如例如在图9中所示,该构件制造方法还包括将涂层150设置在基底110的至少一部分和填充剂33上。上文提供了示例性涂层材料和淀积技术。
对于图9和图15所示的方法的一些构型,填充剂33形成未从通道130去除的永久性层33,使得间隙37限定相应的冷却通道130。对于这些构型,最终所得到的构件在图9中示出。换言之,对于这些构型,凹槽132(多个)和(永久性)填充剂33共同限定用于冷却构件100的一个或更多通道130。对于特定构型,(永久性)填充剂33包含钨、镍、钴、钼、铬、铝和它们的合金中的至少一者。例如,可将金属箔层冲压或滚压在表面上以恰好填充凹槽的上部,而且在空气间隙上提供了明确限定的填充深度。有益的是,该构型提供了用于在涂层150淀积期间支承涂层150的坚固的永久性层33,同时消除了对可能困难和耗时的沥滤过程的需要。
对于其它过程,例如还通过图15示出的过程,填充剂33包括牺牲性填充剂33,并且该构件制造方法还包括在设置涂层150之后至少部分地去除填充剂33,使得涂层150在凹槽(多个)132上延伸,并且凹槽(多个)132和涂层150共同限定用于冷却构件100的一个或更多通道130。用于结合该空气间隙实施例使用的示例性牺牲性填充剂包括铜丝、铝丝和铜油墨。用于这些填充剂的合适的去除过程包括分别施加浓硝酸、50%的苛性钠和浓硝酸。
如上文参照图4所述,该构件制造方法还可包括穿过相应凹槽132的基部134形成一个或更多进入孔140以将相应的凹槽132与相应的中空内部空间114成流体连通地连接。如图15中所示,进入孔140通常在淀积填充剂33之前形成。
类似于上述方法,凹槽无需呈矩形,而是可根据对特定应用的要求而呈许多形状。对于特定构型,凹槽可呈凹入形,例如,如图16和图17中所示。对于此构型,填充剂33跨过凹入形的凹槽132的顶部延伸,如例如在图17中所示,使得涂层150桥接凹槽132,如在图18中所示。
参照图2至图14描述另一构件制造方法。如例如在图3和图10中所示,该制造方法包括在基底110的外表面112中形成一个或更多凹槽132。如例如在图13和图14中所示,每个凹槽132均具有基部134并至少部分地沿基底110的外表面112延伸。上文描述了基底、凹槽和凹槽的形成。凹槽132可通过如图3中所示从基底110去除材料或通过如图10中所示在所需凹槽的任一侧上对基底110添加材料而形成。
如例如在图5和图6中所示,该构件制造方法还包括将牺牲性填充剂32设置在一个或更多凹槽132内并且将第二填充剂33设置在牺牲性填充剂32和基底110的外表面112的至少一部分上。如例如在图7至图9中所示,该构件制造方法还包括将涂层150设置在第二填充剂33上,使得涂层在基底110的至少一部分上延伸,以及从一个或更多凹槽132去除第一牺牲性填充剂32并部分地去除第二填充剂33,以限定用于冷却构件100的一个或更多通道130。
上文描述了示例性填充剂材料和去除技术。对于特定过程,牺牲性填充剂32包含选自由蜡、树脂、金属合金、石墨和它们的组合物所组成的群组的至少一种材料,并且通过将牺牲性填充剂32从凹槽132(多个)熔化、蒸发、热解、沥滤或氧化出来而去除牺牲性填充剂32。对于特定过程,第二填充剂33包含至少一种金属或金属合金,并且通过沥滤而部分地去除第二填充剂33。
有益的是,上述方法提供了用于将涂层淀积在带有凹槽的基底上以使构件形成有冷却通道的改进手段。具体而言,上述方法使得更易于提供能耐受涂覆过程的坚固填充剂。另外,包括牺牲性填充剂的使用的方法提供了对牺牲性填充剂的更容易的去除,而仅使用永久性填充剂的方法消除了对填充剂去除过程的需要。通过简化(或消除)用于填充剂(多个)的去除过程,这些方法减少了用于在涂覆构件内形成冷却通道的时间和因此制造的成本。
尽管文中仅例证和描述了本发明的某些特征,但本领域的技术人员将想到许多改型和变更。因此,应理解的是所附权利要求旨在涵盖如落入本发明的真实精神内的所有此类改型和变更。

Claims (11)

1.一种制造构件(100)的方法,所述方法包括:
在基底(110)的外表面(112)中形成一个或多个凹槽(132),所述基底(110)具有至少一个中空内部空间(114),其中,所述一个或多个凹槽(132)中的每一个均具有由基部(134)和多个侧壁限定的连续的几何结构,其中每个侧壁连续地从所述基部(134)向所述基底(110)的最上面延伸,并且其中所述一个或多个凹槽(132)中每一个至少部分地沿所述基底(110)的所述外表面(112)延伸;
穿过所述一个或多个凹槽(132)中的相应一个的所述基部(134)形成一个或多个进入孔(140),以将相应凹槽(132)与相应中空内部空间(114)成流体连通;
将牺牲性填充剂(32)设置在所述一个或多个凹槽(132)内,所述牺牲性填充剂(32)与所述一个或多个凹槽(132)中每一个的所述基部(134)和多个侧壁相接触;
将永久性填充剂(33)设置在所述牺牲性填充剂(32)的最上面,其中所述永久性填充剂(33)由结构材料构成且仅与所述牺牲性填充剂(32)的所述最上面以及所述一个或多个凹槽(132)中的所述多个侧壁相接触,并且所述永久性填充剂(33)不与所述一个或多个凹槽(132)中每一个的所述基部(134)相接触;
将涂层(150)设置在所述基底(110)的至少一部分和所述永久性填充剂(33)上;以及
从所述一个或多个凹槽(132)去除所述牺牲性填充剂(32),以限定用于冷却所述构件(100)的一个或多个通道(130)。
2.根据权利要求1所述的方法,其特征在于,所述牺牲性填充剂(32)包括蜡或树脂以及金属合金或石墨或金属合金和石墨的组合物,其中,所述牺牲性填充剂(32)中的金属合金或石墨或金属合金和石墨的组合物形成分散在所述蜡或树脂内的导电颗粒相,并且其中,所述永久性填充剂(33)通过电镀或离子等离子体淀积来淀积。
3.根据权利要求1所述的方法,其特征在于,所述牺牲性填充剂(32)包括蜡或树脂以及金属合金或石墨或金属合金和石墨的组合物,并且其中,所述牺牲性填充剂(32)通过将所述牺牲性填充剂(32)从所述一个或多个凹槽(132)熔化、蒸发、热解、氧化或沥滤出来而去除。
4.根据权利要求1所述的方法,其特征在于,所述永久性填充剂(33)包含导电材料,其中,将所述永久性填充剂(33)设置在所述牺牲性填充剂(32)上的步骤包括使用所述导电材料至少部分地覆盖所述牺牲性填充剂(32),其中,通过离子等离子体淀积或电镀来执行设置所述涂层(150)的步骤,并且其中,所述导电材料包含导电颗粒相。
5.根据权利要求1所述的方法,其特征在于,所述方法还包括在设置所述永久性填充剂(33)之前将至少一种附加填充剂(35)设置在所述一个或多个凹槽(132)内。
6.根据权利要求1所述的方法,其特征在于,所述永久性填充剂(33)包含钨、镍、钴、钼、铬或铝中的一者或至少两者的合金。
7.根据权利要求1所述的方法,其特征在于,所述一个或多个凹槽(132)使用研磨液射流、柱塞电解加工、使用旋转单点电极的放电加工和激光加工中的一者或更多个来形成。
8.一种构件(100),包括:
包括外表面(112)和内表面(116)的基底(110),其中,所述内表面(116)限定至少一个中空内部空间(114),所述外表面(112)限定出形成在所述外表面(112)中的一个或多个凹槽(132),其中,所述一个或多个凹槽(132)中的每一个均具有由基部(134)和多个侧壁限定的连续的几何结构,其中每个侧壁从所述基部(134)向所述基底(110)的最上面连续地延伸,并且其中所述一个或多个凹槽(132)中每一个至少部分地沿所述基底(110)的所述外表面(112)延伸;
一个或多个进入孔(140),所述一个或多个进入孔(140)延伸穿过所述一个或多个凹槽(132)中的相应一个的所述基部(134),以将所述凹槽(132)布置成与所述至少一个中空内部空间(114)中的相应的中空内部空间成流体连通;
设置在所述一个或多个凹槽(132)中的每一个内并跨过每一个凹槽(132)的顶部(136)延伸的永久性填充剂(33),其中所述永久性填充剂(33)由结构材料构成且仅与所述一个或多个凹槽(132)中的所述多个侧壁相接触,并且所述永久性填充剂(33)不与所述一个或多个凹槽(132)中每一个的所述基部(134)以及和所述基底(110)的所述外表面(112)相接触;以及
设置在所述基底(110)的至少一部分上和所述永久性填充剂(33)上的涂层(150),所述永久性填充剂(33)设置在所述每一个凹槽(132)中并跨过所述每一个凹槽(132)的顶部(136)延伸,其中,所述一个或多个凹槽(132)和所述永久性填充剂(33)或涂层(150)共同限定用于冷却所述构件(100)的一个或多个通道(130)。
9.根据权利要求8所述的构件(100),其特征在于,所述永久性填充剂(33)包含钨、镍、钴、钼、铬或铝中的一者或至少两者的合金。
10.根据权利要求8所述的构件(100),其特征在于,所述永久性填充剂(33)包括连续层,使得所述一个或多个凹槽(132)和所述永久性填充剂(33)共同限定所述一个或多个通道(130)。
11.根据权利要求8所述的构件(100),其特征在于,所述永久性填充剂(33)包含整体地连接到所述涂层(150)的表面(152)上的大量金属粒子。
CN201210143170.6A 2011-04-27 2012-04-27 构件和使用多种填充剂制造涂覆构件的方法 Active CN102758651B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/095129 2011-04-27
US13/095,129 US8601691B2 (en) 2011-04-27 2011-04-27 Component and methods of fabricating a coated component using multiple types of fillers

Publications (2)

Publication Number Publication Date
CN102758651A CN102758651A (zh) 2012-10-31
CN102758651B true CN102758651B (zh) 2016-04-20

Family

ID=46147266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210143170.6A Active CN102758651B (zh) 2011-04-27 2012-04-27 构件和使用多种填充剂制造涂覆构件的方法

Country Status (3)

Country Link
US (2) US8601691B2 (zh)
EP (1) EP2518270B1 (zh)
CN (1) CN102758651B (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673397B2 (en) 2010-11-10 2014-03-18 General Electric Company Methods of fabricating and coating a component
US8387245B2 (en) * 2010-11-10 2013-03-05 General Electric Company Components with re-entrant shaped cooling channels and methods of manufacture
US8528208B2 (en) * 2011-04-11 2013-09-10 General Electric Company Methods of fabricating a coated component using multiple types of fillers
US8601691B2 (en) 2011-04-27 2013-12-10 General Electric Company Component and methods of fabricating a coated component using multiple types of fillers
US20120295061A1 (en) * 2011-05-18 2012-11-22 General Electric Company Components with precision surface channels and hybrid machining method
US9206696B2 (en) 2011-08-16 2015-12-08 General Electric Company Components with cooling channels and methods of manufacture
US20130086784A1 (en) 2011-10-06 2013-04-11 General Electric Company Repair methods for cooled components
CH706090A1 (de) * 2012-02-17 2013-08-30 Alstom Technology Ltd Verfahren zum Herstellen eines oberflächennahen Kühlkanals in einem thermisch hoch beanspruchten Bauteil sowie Bauteil mit einem solchen Kanal.
US9435208B2 (en) 2012-04-17 2016-09-06 General Electric Company Components with microchannel cooling
DE102013109116A1 (de) 2012-08-27 2014-03-27 General Electric Company (N.D.Ges.D. Staates New York) Bauteil mit Kühlkanälen und Verfahren zur Herstellung
US9238265B2 (en) 2012-09-27 2016-01-19 General Electric Company Backstrike protection during machining of cooling features
US9200521B2 (en) * 2012-10-30 2015-12-01 General Electric Company Components with micro cooled coating layer and methods of manufacture
US20140137408A1 (en) * 2012-11-16 2014-05-22 General Electric Company Methods of fabricating and coating turbine components
US9476306B2 (en) 2013-11-26 2016-10-25 General Electric Company Components with multi-layered cooling features and methods of manufacture
DE102014200381A1 (de) * 2014-01-13 2015-07-16 Robert Bosch Gmbh Verfahren für das generative Herstellen eines Turbinenrades mit einem Deckband
US10731857B2 (en) * 2014-09-09 2020-08-04 Raytheon Technologies Corporation Film cooling circuit for a combustor liner
EP3018415B1 (en) * 2014-11-07 2020-01-01 United Technologies Corporation Combustor dilution hole cooling
US10132498B2 (en) * 2015-01-20 2018-11-20 United Technologies Corporation Thermal barrier coating of a combustor dilution hole
CN104625655A (zh) * 2015-02-14 2015-05-20 杨光华 一种曲线形液压通道的制造方法
US9897006B2 (en) 2015-06-15 2018-02-20 General Electric Company Hot gas path component cooling system having a particle collection chamber
US9970302B2 (en) 2015-06-15 2018-05-15 General Electric Company Hot gas path component trailing edge having near wall cooling features
US9828915B2 (en) * 2015-06-15 2017-11-28 General Electric Company Hot gas path component having near wall cooling features
US9938899B2 (en) 2015-06-15 2018-04-10 General Electric Company Hot gas path component having cast-in features for near wall cooling
CA2935398A1 (en) 2015-07-31 2017-01-31 Rolls-Royce Corporation Turbine airfoils with micro cooling features
US10415396B2 (en) * 2016-05-10 2019-09-17 General Electric Company Airfoil having cooling circuit
US10704395B2 (en) * 2016-05-10 2020-07-07 General Electric Company Airfoil with cooling circuit
US10731472B2 (en) * 2016-05-10 2020-08-04 General Electric Company Airfoil with cooling circuit
US20170370375A1 (en) * 2016-06-22 2017-12-28 United Technologies Corporation Fan blade filler
US20180111200A1 (en) * 2016-10-20 2018-04-26 General Electric Company Porous film hole exit and method for making same
US10465526B2 (en) 2016-11-15 2019-11-05 Rolls-Royce Corporation Dual-wall airfoil with leading edge cooling slot
US10648341B2 (en) 2016-11-15 2020-05-12 Rolls-Royce Corporation Airfoil leading edge impingement cooling
JP6622176B2 (ja) * 2016-11-30 2019-12-18 三菱重工業株式会社 ガスタービン用高温部品及びガスタービン
US10450873B2 (en) 2017-07-31 2019-10-22 Rolls-Royce Corporation Airfoil edge cooling channels
CN111356820A (zh) * 2017-10-13 2020-06-30 通用电气公司 具有自适应冷却开口的带涂层的部件及其制备方法
US10760889B2 (en) 2018-09-12 2020-09-01 United Technologies Corporation Fan blade masking/coating check inspection tool
US10882158B2 (en) * 2019-01-29 2021-01-05 General Electric Company Peening coated internal surfaces of turbomachine components
US11548102B2 (en) 2020-07-31 2023-01-10 General Electric Company Method for repairing composite components using a plug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075966A (en) * 1990-09-04 1991-12-31 General Electric Company Method for fabricating a hollow component for a rocket engine
US6427327B1 (en) * 2000-11-29 2002-08-06 General Electric Company Method of modifying cooled turbine components
US7553534B2 (en) * 2006-08-29 2009-06-30 General Electric Company Film cooled slotted wall and method of making the same
CN101545381A (zh) * 2008-03-25 2009-09-30 通用电气公司 涡轮机构件的薄膜冷却

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL70146A0 (en) * 1982-12-22 1984-02-29 Gen Electric Article with a fluid passage and method for making it
US4487550A (en) 1983-01-27 1984-12-11 The United States Of America As Represented By The Secretary Of The Air Force Cooled turbine blade tip closure
US4893987A (en) 1987-12-08 1990-01-16 General Electric Company Diffusion-cooled blade tip cap
US5660523A (en) 1992-02-03 1997-08-26 General Electric Company Turbine blade squealer tip peripheral end wall with cooling passage arrangement
JP3137527B2 (ja) 1994-04-21 2001-02-26 三菱重工業株式会社 ガスタービン動翼チップ冷却装置
US5626462A (en) 1995-01-03 1997-05-06 General Electric Company Double-wall airfoil
US5640767A (en) 1995-01-03 1997-06-24 Gen Electric Method for making a double-wall airfoil
US6383602B1 (en) 1996-12-23 2002-05-07 General Electric Company Method for improving the cooling effectiveness of a gaseous coolant stream which flows through a substrate, and related articles of manufacture
US5875549A (en) 1997-03-17 1999-03-02 Siemens Westinghouse Power Corporation Method of forming internal passages within articles and articles formed by same
DE19737845C2 (de) * 1997-08-29 1999-12-02 Siemens Ag Verfahren zum Herstellen einer Gasturbinenschaufel, sowie nach dem Verfahren hergestellte Gasturbinenschaufel
FR2776215B1 (fr) * 1998-03-20 2000-06-16 Snecma Procede de fabrication d'un circuit regeneratif a fort flux thermique, notamment pour chambre de combustion de moteur-fusee
US6214248B1 (en) * 1998-11-12 2001-04-10 General Electric Company Method of forming hollow channels within a component
US6321449B2 (en) 1998-11-12 2001-11-27 General Electric Company Method of forming hollow channels within a component
US6086328A (en) 1998-12-21 2000-07-11 General Electric Company Tapered tip turbine blade
US6190129B1 (en) 1998-12-21 2001-02-20 General Electric Company Tapered tip-rib turbine blade
US6059530A (en) 1998-12-21 2000-05-09 General Electric Company Twin rib turbine blade
US6231307B1 (en) 1999-06-01 2001-05-15 General Electric Company Impingement cooled airfoil tip
DE59909337D1 (de) 1999-06-03 2004-06-03 Alstom Technology Ltd Baden Verfahren zur Herstellung oder zur Reparatur von Kühlkanälen in einstristallinen Komponenten von Gasturbinen
US6254756B1 (en) * 1999-08-11 2001-07-03 General Electric Company Preparation of components having a partial platinum coating thereon
US6164914A (en) 1999-08-23 2000-12-26 General Electric Company Cool tip blade
US6234755B1 (en) 1999-10-04 2001-05-22 General Electric Company Method for improving the cooling effectiveness of a gaseous coolant stream, and related articles of manufacture
DE10024302A1 (de) 2000-05-17 2001-11-22 Alstom Power Nv Verfahren zur Herstellung eines thermisch belasteten Gussteils
US6368060B1 (en) 2000-05-23 2002-04-09 General Electric Company Shaped cooling hole for an airfoil
US6617003B1 (en) 2000-11-06 2003-09-09 General Electric Company Directly cooled thermal barrier coating system
US6461107B1 (en) 2001-03-27 2002-10-08 General Electric Company Turbine blade tip having thermal barrier coating-formed micro cooling channels
US6551061B2 (en) 2001-03-27 2003-04-22 General Electric Company Process for forming micro cooling channels inside a thermal barrier coating system without masking material
US6461108B1 (en) 2001-03-27 2002-10-08 General Electric Company Cooled thermal barrier coating on a turbine blade tip
US6494678B1 (en) 2001-05-31 2002-12-17 General Electric Company Film cooled blade tip
US6602052B2 (en) 2001-06-20 2003-08-05 Alstom (Switzerland) Ltd Airfoil tip squealer cooling construction
US6602053B2 (en) 2001-08-02 2003-08-05 Siemens Westinghouse Power Corporation Cooling structure and method of manufacturing the same
EP1295969A1 (en) 2001-09-22 2003-03-26 ALSTOM (Switzerland) Ltd Method of growing a MCrAIY-coating and an article coated with the MCrAIY-coating
EP1295970A1 (en) 2001-09-22 2003-03-26 ALSTOM (Switzerland) Ltd MCrAlY type alloy coating
US6634860B2 (en) 2001-12-20 2003-10-21 General Electric Company Foil formed structure for turbine airfoil tip
US6921014B2 (en) 2002-05-07 2005-07-26 General Electric Company Method for forming a channel on the surface of a metal substrate
EP1365039A1 (en) * 2002-05-24 2003-11-26 ALSTOM (Switzerland) Ltd Process of masking colling holes of a gas turbine component
EP1387040B1 (en) 2002-08-02 2006-12-06 ALSTOM Technology Ltd Method of protecting partial areas of a component
US6994514B2 (en) 2002-11-20 2006-02-07 Mitsubishi Heavy Industries, Ltd. Turbine blade and gas turbine
US7216428B2 (en) 2003-03-03 2007-05-15 United Technologies Corporation Method for turbine element repairing
US7351290B2 (en) 2003-07-17 2008-04-01 General Electric Company Robotic pen
US6905302B2 (en) 2003-09-17 2005-06-14 General Electric Company Network cooled coated wall
US7186167B2 (en) 2004-04-15 2007-03-06 United Technologies Corporation Suspended abrasive waterjet hole drilling system and method
US7302990B2 (en) 2004-05-06 2007-12-04 General Electric Company Method of forming concavities in the surface of a metal component, and related processes and articles
WO2006069941A1 (de) 2004-12-24 2006-07-06 Alstom Technology Ltd Bauteil mit eingebettetem kanal, insbesondere heissgaskomponente einer strömungsmaschine
US7334991B2 (en) 2005-01-07 2008-02-26 Siemens Power Generation, Inc. Turbine blade tip cooling system
US20070181278A1 (en) 2006-02-09 2007-08-09 Bancheri Stephen F Method of removal of cores from niobium-based part
US7879203B2 (en) 2006-12-11 2011-02-01 General Electric Company Method and apparatus for cathodic arc ion plasma deposition
US7775768B2 (en) 2007-03-06 2010-08-17 United Technologies Corporation Turbine component with axially spaced radially flowing microcircuit cooling channels
US7766617B1 (en) 2007-03-06 2010-08-03 Florida Turbine Technologies, Inc. Transpiration cooled turbine airfoil
US7900458B2 (en) * 2007-05-29 2011-03-08 Siemens Energy, Inc. Turbine airfoils with near surface cooling passages and method of making same
AU2009271271A1 (en) 2008-06-23 2010-01-21 Biodelivery Sciences International, Inc. Multidirectional mucosal delivery devices and methods of use
US8147196B2 (en) 2009-05-05 2012-04-03 Siemens Energy, Inc. Turbine airfoil with a compliant outer wall
US8535491B2 (en) 2009-09-18 2013-09-17 General Electric Company Electrochemical machining assembly with curved electrode
US8857055B2 (en) 2010-01-29 2014-10-14 General Electric Company Process and system for forming shaped air holes
US8651805B2 (en) 2010-04-22 2014-02-18 General Electric Company Hot gas path component cooling system
US8905713B2 (en) 2010-05-28 2014-12-09 General Electric Company Articles which include chevron film cooling holes, and related processes
US8673397B2 (en) 2010-11-10 2014-03-18 General Electric Company Methods of fabricating and coating a component
US20120114868A1 (en) 2010-11-10 2012-05-10 General Electric Company Method of fabricating a component using a fugitive coating
US8387245B2 (en) 2010-11-10 2013-03-05 General Electric Company Components with re-entrant shaped cooling channels and methods of manufacture
US8739404B2 (en) 2010-11-23 2014-06-03 General Electric Company Turbine components with cooling features and methods of manufacturing the same
US8727727B2 (en) 2010-12-10 2014-05-20 General Electric Company Components with cooling channels and methods of manufacture
US8533949B2 (en) 2011-02-14 2013-09-17 General Electric Company Methods of manufacture for components with cooling channels
US20120243995A1 (en) 2011-03-21 2012-09-27 General Electric Company Components with cooling channels formed in coating and methods of manufacture
US8528208B2 (en) 2011-04-11 2013-09-10 General Electric Company Methods of fabricating a coated component using multiple types of fillers
US8601691B2 (en) 2011-04-27 2013-12-10 General Electric Company Component and methods of fabricating a coated component using multiple types of fillers
US9216491B2 (en) 2011-06-24 2015-12-22 General Electric Company Components with cooling channels and methods of manufacture
US9206696B2 (en) 2011-08-16 2015-12-08 General Electric Company Components with cooling channels and methods of manufacture
US20130086784A1 (en) 2011-10-06 2013-04-11 General Electric Company Repair methods for cooled components
US20130101761A1 (en) 2011-10-21 2013-04-25 General Electric Company Components with laser cladding and methods of manufacture
US9249670B2 (en) 2011-12-15 2016-02-02 General Electric Company Components with microchannel cooling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075966A (en) * 1990-09-04 1991-12-31 General Electric Company Method for fabricating a hollow component for a rocket engine
US6427327B1 (en) * 2000-11-29 2002-08-06 General Electric Company Method of modifying cooled turbine components
US7553534B2 (en) * 2006-08-29 2009-06-30 General Electric Company Film cooled slotted wall and method of making the same
CN101545381A (zh) * 2008-03-25 2009-09-30 通用电气公司 涡轮机构件的薄膜冷却

Also Published As

Publication number Publication date
US20140004310A1 (en) 2014-01-02
US20120276308A1 (en) 2012-11-01
CN102758651A (zh) 2012-10-31
US8910379B2 (en) 2014-12-16
US8601691B2 (en) 2013-12-10
EP2518270B1 (en) 2019-02-27
EP2518270A2 (en) 2012-10-31
EP2518270A3 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
CN102758651B (zh) 构件和使用多种填充剂制造涂覆构件的方法
EP2511475B1 (en) Method of fabricating a component for a gas turbine engine
CN102536465B (zh) 使用短效涂层制作构件的方法
JP5916079B2 (ja) 二層構造コーティングを用いた構成要素の製造方法
CN102678199B (zh) 带有冷却通道的构件及制造方法
US9598963B2 (en) Components with microchannel cooling
CN107119273B (zh) 用于受冷却构件的修理方法
JP5997432B2 (ja) 構成部品、ならびに、構成部品の製造および被覆方法
CN102606231B (zh) 具有冷却通道的构件和制造方法
CN102536332B (zh) 具有凹形冷却通道的部件及其制造方法
EP2604796B1 (en) Gas turbine components with microchannel cooling
CN102691533A (zh) 带有形成在涂层中的冷却通道的构件和制造方法
US20140169943A1 (en) Components with porous metal cooling and methods of manufacture
CN102839993A (zh) 具有冷却通道的部件及其制造方法
CN103422907A (zh) 具有微通道冷却式平台和倒角的构件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240103

Address after: Swiss Baden

Patentee after: GENERAL ELECTRIC CO. LTD.

Address before: New York, United States

Patentee before: General Electric Co.

TR01 Transfer of patent right