CN102749852A - Fault-tolerant anti-interference control method for multisource interference system - Google Patents

Fault-tolerant anti-interference control method for multisource interference system Download PDF

Info

Publication number
CN102749852A
CN102749852A CN2012102586742A CN201210258674A CN102749852A CN 102749852 A CN102749852 A CN 102749852A CN 2012102586742 A CN2012102586742 A CN 2012102586742A CN 201210258674 A CN201210258674 A CN 201210258674A CN 102749852 A CN102749852 A CN 102749852A
Authority
CN
China
Prior art keywords
disturbance
fault
interference
modelable
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102586742A
Other languages
Chinese (zh)
Other versions
CN102749852B (en
Inventor
郭雷
乔建忠
李小凤
曹松银
雷燕婕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201210258674.2A priority Critical patent/CN102749852B/en
Publication of CN102749852A publication Critical patent/CN102749852A/en
Application granted granted Critical
Publication of CN102749852B publication Critical patent/CN102749852B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

多源干扰系统的容错抗干扰控制方法,针对含有时变故障、可建模干扰和不可建模随机干扰的多源干扰系统,设计一种容错抗干扰控制器;首先,设计故障诊断观测器估计并抵消系统中的时变故障;其次,设计干扰观测器估计并抵消多源干扰系统中的可建模干扰;再次,设计鲁棒H状态反馈控制器抑制多源干扰系统中的不可建模随机干扰、故障估计误差和干扰估计误差;最后,基于故障诊断观测器、干扰观测器和鲁棒H状态反馈控制器,设计容错抗干扰控制器;本方法具有抗干扰性强、容错性能显著、工作可靠性高等优点,可用于航空、航天领域的姿态控制子系统中。

Figure 201210258674

Fault-tolerant and anti-jamming control method for multi-source jamming systems, for multi-source jamming systems with time-varying faults, modelable disturbances and unmodelable random disturbances, a fault-tolerant and anti-jamming controller is designed; first, a fault diagnosis observer is designed to estimate And offset the time-varying faults in the system; secondly, design a disturbance observer to estimate and offset the modelable disturbance in the multi-source disturbance system; thirdly, design a robust H state feedback controller to suppress the unmodelable disturbance in the multi-source disturbance system Random disturbance, fault estimation error and disturbance estimation error; finally, based on fault diagnosis observer, disturbance observer and robust H state feedback controller, a fault-tolerant and anti-disturbance controller is designed; this method has strong anti-disturbance and remarkable fault-tolerant performance , High reliability, etc., can be used in the attitude control subsystem in the field of aviation and aerospace.

Figure 201210258674

Description

多源干扰系统的容错抗干扰控制方法Fault Tolerance and Anti-jamming Control Method for Multi-source Jamming System

技术领域 technical field

本发明涉及一种容错抗干扰控制方法,特别是一种多源干扰系统的容错抗干扰控制方法,该方法可用于多源干扰系统的故障诊断与容错抗干扰控制,如卫星、导弹和飞机等航空航天系统的姿态控制子系统。The invention relates to a fault-tolerant and anti-jamming control method, in particular to a fault-tolerant and anti-jamming control method for a multi-source jamming system. The method can be used for fault diagnosis and fault-tolerant anti-jamming control of a multi-source jamming system, such as satellites, missiles and aircraft, etc. Attitude control subsystem for aerospace systems.

背景技术 Background technique

近年来,随着航空航天技术的发展,飞行器的结构和任务需求日益复杂,对控制精度和稳定度的要求也越来越高,导致飞行器的故障发生概率也愈来愈高。例如,有学者通过对1990-2001年间国内外成功发射的764个航天器进行了统计和分析,结果发现121个出现故障,占航天器总数的15.8%。飞行器工作的可靠性、在轨飞行的可维护性和有效性成为了航空航天领域的一个研究重点。而容错控制及故障检测与诊断为提高系统的可靠性、可维护性和有效性开辟了一条新途径。另外,伴随着飞行器结构和任务需求的日益复杂,影响飞行器姿态控制精度和稳定度的因素越来越多,主要归纳为以下几点:外部环境干扰力矩、星体内部执行机构飞轮的振动、飞轮的摩擦、喷气动量卸载、敏感器测量噪声及系统模型的不确定性等。In recent years, with the development of aerospace technology, the structure and task requirements of aircraft have become increasingly complex, and the requirements for control accuracy and stability have become higher and higher, resulting in an increasing probability of aircraft failure. For example, some scholars have conducted statistics and analysis on 764 spacecraft successfully launched at home and abroad during 1990-2001, and found that 121 of them had malfunctioned, accounting for 15.8% of the total number of spacecraft. The reliability of aircraft work, the maintainability and effectiveness of on-orbit flight have become a research focus in the field of aerospace. Fault-tolerant control and fault detection and diagnosis open up a new way to improve the reliability, maintainability and effectiveness of the system. In addition, with the increasing complexity of aircraft structure and mission requirements, there are more and more factors affecting the accuracy and stability of aircraft attitude control, which are mainly summarized as the following points: external environmental disturbance torque, vibration of the flywheel of the actuator inside the star body, and the vibration of the flywheel. Friction, jet momentum unloading, sensor measurement noise and uncertainty of the system model, etc.

针对上述一系列问题,当系统中存在时变能量有界故障但是没有干扰时,国内外学者提出了很多有效的方法并取得了一定的效果。但是考虑到实际系统中干扰无时不在、无处不在,单一的考虑故障就会带来一系列的问题,特别是不能保证系统的姿态控制精度和稳定度。在此基础上,系统中同时存在时变故障和干扰的情况成为了一个研究方向,国内外学者提出了一系列的解决方法,例如H优化技术、基于内模结构的H控制器等。但是现有方法在设计观测器估计故障的基础上,将干扰看作范数有界量进行抑制,这样的处理方法有以下两方面的劣势:第一,将系统中的所有干扰看作范数有界量进行抑制,即将系统中存在的干扰看作一个整体进行处理,忽略了系统内部分可建模干扰的信息或者通过物理测量手段能获得的干扰信息,没有充分利用系统资源,难以实现高精度的姿态控制;第二,将系统中的所有干扰看作范数有界量进行抑制,势必会增加系统的保守性,同样难以实现高精度的姿态控制。For the above series of problems, when there are time-varying energy bounded faults in the system but no interference, domestic and foreign scholars have proposed many effective methods and achieved certain results. However, considering that interference is present everywhere and everywhere in the actual system, a single consideration of failure will bring a series of problems, especially the attitude control accuracy and stability of the system cannot be guaranteed. On this basis, the simultaneous existence of time-varying faults and disturbances in the system has become a research direction. Scholars at home and abroad have proposed a series of solutions, such as H optimization technology, H controller based on internal model structure, etc. However, based on the design of the observer to estimate the fault, the existing method treats the disturbance as a norm bounded quantity for suppression. This processing method has the following two disadvantages: First, all disturbances in the system are regarded as a norm Bounded quantities are suppressed, that is, the interference existing in the system is treated as a whole, and the interference information that can be modeled in the system or the interference information that can be obtained through physical measurement methods are ignored. The system resources are not fully utilized, and it is difficult to achieve high Accurate attitude control; Second, treating all disturbances in the system as norm-bounded quantities for suppression will inevitably increase the conservatism of the system, and it is also difficult to achieve high-precision attitude control.

发明内容 Contents of the invention

本发明的技术解决问题是:针对多源干扰系统,克服现有技术的不足,提供一种具有干扰抵消和抑制性能的容错抗干扰控制方法,解决多源干扰系统的干扰抵消、干扰抑制和故障诊断及容错控制问题,提高系统的控制精度与稳定度。The technical problem of the present invention is: aiming at the multi-source interference system, overcoming the deficiencies of the prior art, providing a fault-tolerant anti-interference control method with interference cancellation and suppression performance, and solving the interference cancellation, interference suppression and failure of the multi-source interference system Diagnose and fault-tolerant control problems, improve the control accuracy and stability of the system.

本发明的技术解决方案为:一种多源干扰系统的容错抗干扰控制方法,其特征在于包括以下步骤:The technical solution of the present invention is: a fault-tolerant and anti-interference control method for a multi-source interference system, which is characterized in that it includes the following steps:

首先,设计故障诊断观测器估计并抵消系统中的时变故障;其次,设计干扰观测器估计并抵消多源干扰系统中的可建模干扰;再次,设计鲁棒H状态反馈控制器抑制多源干扰系统中的不可建模随机干扰、故障估计误差和干扰估计误差;最后,基于故障诊断观测器、干扰观测器和鲁棒H状态反馈控制器,设计容错抗干扰控制器;具体步骤如下:First, a fault diagnosis observer is designed to estimate and offset time-varying faults in the system; second, a disturbance observer is designed to estimate and offset modelable disturbances in a multi-source interference system; third, a robust H state feedback controller is designed to suppress multiple Unmodelable random disturbances, fault estimation errors and disturbance estimation errors in the source-interference system; finally, based on the fault diagnosis observer, disturbance observer and robust H state feedback controller, a fault-tolerant and anti-disturbance controller is designed; the specific steps are as follows :

第一步,搭建含有多源干扰系统的动力学模型,并写成状态空间表达式The first step is to build a dynamic model of the system with multi-source interference and write it as a state space expression

针对含有时变故障、可建模干扰和不可建模随机干扰的多源干扰系统,搭建其系统动力学模型,并写成状态空间表达式如下:For a multi-source disturbance system with time-varying faults, modelable disturbances and non-modelable random disturbances, a system dynamics model is built, and the state space expression is written as follows:

xx ·&Center Dot; (( tt )) ++ EfEf (( xx ·&Center Dot; ,, tt )) == AxAx (( tt )) ++ BB 11 (( uu (( tt )) ++ dd 11 (( tt )) ++ Ff (( tt )) )) ++ BB 22 dd 22 (( tt ))

其中,x(t)为多源干扰系统状态变量,u(t)为控制输入,d1(t)为可建模干扰,F(t)为时变故障,d2(t)为不可建模随机干扰,A,E,B1和B2为已知维数的矩阵,

Figure BDA00001926355000022
为系统非线性项且满足Lipschitz条件,外部模型描述干扰d1(t)由下列外部干扰模型∑1表示:Among them, x(t) is the state variable of the multi-source disturbance system, u(t) is the control input, d 1 (t) is the disturbance that can be modeled, F(t) is the time-varying fault, and d 2 (t) is the non-buildable Modular random interference, A, E, B 1 and B 2 are matrices of known dimensions,
Figure BDA00001926355000022
is a nonlinear item of the system and satisfies the Lipschitz condition, the external model describes the disturbance d 1 (t) by the following external disturbance model Σ 1 :

ΣΣ 11 :: dd 11 (( tt )) == VwVw (( tt )) ww ·&Center Dot; (( tt )) == Www (( tt )) ++ BB 33 δδ (( tt ))

其中,w(t)为可建模干扰模型的状态变量,V为可建模干扰模型的输出矩阵,W表示可建模干扰模型的系统阵,δ(t)为能量有界的不可建模随机干扰,B3为不可建模随机干扰的增益阵。where w(t) is the state variable of the modelable disturbance model, V is the output matrix of the modelable disturbance model, W represents the system matrix of the modelable disturbance model, and δ(t) is the non-modelable Random interference, B 3 is the gain array of random interference that cannot be modeled.

第二步,设计故障诊断观测器The second step is to design the fault diagnosis observer

针对多源干扰系统中的时变故障F(t),设计故障诊断观测器对其进行实时估计,并求得估计值

Figure BDA00001926355000032
进而得到故障估计误差
Figure BDA00001926355000033
Aiming at the time-varying fault F(t) in the multi-source interference system, a fault diagnosis observer is designed to estimate it in real time and obtain the estimated value
Figure BDA00001926355000032
Then get the fault estimation error
Figure BDA00001926355000033

第三步,设计干扰观测器The third step is to design the disturbance observer

针对多源干扰系统中的可建模干扰d1(t),设计干扰观测器对其进行实时估计,并求得估计值

Figure BDA00001926355000034
进而得到干扰估计误差 为w(t)的估计值。For the modelable interference d 1 (t) in the multi-source interference system, design an interference observer to estimate it in real time, and obtain the estimated value
Figure BDA00001926355000034
Then get the interference estimation error is the estimated value of w(t).

第四步,设计鲁棒H状态反馈控制器The fourth step is to design a robust H state feedback controller

针对多源干扰系统中的不可建模随机干扰d2(t)、故障估计误差eF(t)和干扰估计误差ew(t),设计鲁棒H状态反馈控制器对其进行抑制,控制器结构如下:Aiming at the unmodelable random disturbance d 2 (t), fault estimation error e F (t) and disturbance estimation error e w (t) in the multi-source interference system, a robust H state feedback controller is designed to suppress it, The controller structure is as follows:

uf(t)=Mx(t)u f (t) = Mx (t)

其中,uf(t)为鲁棒H状态反馈控制输入,M为待定状态反馈控制器增益阵。Among them, u f (t) is the robust H state feedback control input, and M is the undetermined state feedback controller gain matrix.

第五步,设计容错抗干扰控制器The fifth step is to design a fault-tolerant and anti-jamming controller

设计容错抗干扰控制器,对系统中的时变故障F(t)和可建模干扰d1(t)进行抵消,不可建模随机干扰d2(t)、故障估计误差eF(t)和干扰估计误差ew(t)进行抑制,容错抗干扰控制器结构如下:Design a fault-tolerant anti-disturbance controller to offset the time-varying fault F(t) in the system and the modelable disturbance d 1 (t), while the random disturbance d 2 (t) and the fault estimation error e F (t) cannot be modeled and interference estimation error e w (t) to suppress, the fault-tolerant anti-interference controller structure is as follows:

uu (( tt )) == uu ff (( tt )) -- Ff ^^ (( tt )) -- dd ^^ 11 (( tt ))

则多源干扰系统可表示为:Then the multi-source interference system can be expressed as:

xx ·&Center Dot; (( tt )) ++ EfEf (( xx ·&Center Dot; ,, tt )) == (( AA ++ BB 11 Mm )) xx (( tt )) ++ BB 11 VV ee ww (( tt )) ++ BB 11 ee Ff (( tt )) ++ BB 22 dd 22 (( tt ))

整理可建模干扰模型的系统估计误差方程和时变故障的系统估计误差方程如下:The system estimation error equation of the modelable disturbance model and the system estimation error equation of time-varying fault are sorted out as follows:

ee ·· ww (( tt )) == (( WW ++ LBLB 11 VV )) ee ww (( tt )) ++ LBLB 11 ee Ff (( tt )) ++ LBLB 22 dd 22 (( tt )) ++ BB 33 δδ (( tt ))

ee ·· Ff (( tt )) == KBKB 11 VV ee ww (( tt )) ++ KBKB 11 ee Ff (( tt )) ++ KBKB 22 dd 22 (( tt )) ++ Ff ·&Center Dot; (( tt ))

联列上述多源干扰系统、时变故障的系统估计误差方程和可建模干扰的系统估计误差方程得到闭环系统:Combine the above multi-source interference system, the system estimation error equation of time-varying fault and the system estimation error equation of modelable interference to obtain the closed-loop system:

xx ·&Center Dot; (( tt )) ee ·&Center Dot; ww (( tt )) ee ·· Ff (( tt )) == AA ++ BB 11 Mm BB 11 VV BB 11 00 WW ++ LBLB 11 VV LBLB 11 00 KBKB 11 VV KBKB 11 xx (( tt )) ee ww (( tt )) ee Ff (( tt )) ++ BB 22 LBLB 22 KBKB 22 dd 22 (( tt )) ++ 00 BB 33 00 δδ (( tt )) ++ 00 00 11 Ff ·· (( tt )) -- EE. 00 00 ff (( xx ·· (( tt )) )) zz ∞∞ (( tt )) == CC 00 CC 11 CC 22 xx (( tt )) ee ww (( tt )) ee Ff (( tt ))

其中,z(t)为H性能参考输出,[C0C1C2]为H性能可调输出矩阵。Among them, z (t) is the H performance reference output, [C 0 C 1 C 2 ] is the H performance adjustable output matrix.

第六步,增益矩阵求解The sixth step is to solve the gain matrix

利用凸优化算法求解多源干扰系统的容错抗干扰控制器增益阵;给定初始值x(0)、ew(0)和eF(0),可调输出矩阵[C0C1C2],非线性权重参数λ,干扰抑制度γ1、γ2和γ3,求解以下凸优化问题:Using the convex optimization algorithm to solve the gain matrix of the fault-tolerant anti-jamming controller of the multi-source jamming system; given the initial values x(0), e w (0) and e F (0), the adjustable output matrix [C 0 C 1 C 2 ], nonlinear weight parameter λ, interference suppression degree γ 1 , γ 2 and γ 3 , to solve the following convex optimization problem:

minmin xx TT (( 00 )) ee TT (( 00 )) PP 11 PP 22 xx TT (( 00 )) ee TT (( 00 )) TT

ΦΦ == ΦΦ 1111 BB 11 GG -- EE. 00 BB 22 00 ΦΦ 1818 PP 11 CC 00 TT ** ΦΦ 22twenty two 00 PP 22 Hh 11 RR 22 BB 22 PP 22 Hh 22 λλ (( Uu BB 11 GG )) TT CC TT ** ** -- λλ 22 II 00 00 00 λλ (( UEUE )) TT 00 ** ** ** -- γγ 11 22 00 00 00 00 ** ** ** ** -- γγ 22 22 00 λλ (( UBUB 22 )) TT 00 ** ** ** ** ** -- γγ 33 22 II 00 00 ** ** ** ** ** ** -- II 00 ** ** ** ** ** ** ** -- II

其中:e(0)=[ew(0)eF(0)]T11=(AP1+B1R1)+(AP1+B1R1)T22=(P2W1+R2B1G)+(P2W1+R2B1G)T18=λ(AP1+B1R1)T,C=[C1C2],G=[EI],H1=[B3 0]T,H2=[0 1]T;符号*表示对称矩阵中相应部分的对称块,求解得P1、P2、R1和R2,则干扰观测器和故障诊断观测器增益阵为 L K = P 2 - 1 R 2 , 状态反馈控制器增益阵为 Among them: e(0)=[e w (0)e F (0)] T11 =(AP 1 +B 1 R 1 )+(AP 1 +B 1 R 1 ) T22 =(P 2 W 1 +R 2 B 1 G)+(P 2 W 1 +R 2 B 1 G) T18 =λ(AP 1 +B 1 R 1 ) T ,C=[C 1 C 2 ],G =[EI], H 1 =[B 3 0] T , H 2 =[0 1] T ; the symbol * represents the symmetric block of the corresponding part in the symmetric matrix, and P 1 , P 2 , R 1 and R 2 can be obtained by solving, Then the gain matrix of disturbance observer and fault diagnosis observer is L K = P 2 - 1 R 2 , The state feedback controller gain matrix is

所述步骤2中的故障诊断观测器结构如下:The structure of the fault diagnosis observer in the step 2 is as follows:

Ff ^^ (( tt )) == ττ -- pp (( xx )) ττ ·&Center Dot; == KBKB 11 (( ττ -- pp (( xx )) )) ++ KK [[ AxAx (( tt )) ++ BB 11 uu (( tt )) ++ BB 11 dd ^^ 11 (( tt )) -- EfEf (( xx ·&Center Dot; (( tt )) )) ]]

其中,K为待定的故障诊断观测器增益矩阵,ε(t)为辅助变量。in, K is the undetermined gain matrix of the fault diagnosis observer, and ε(t) is the auxiliary variable.

所述步骤3中的干扰观测器结构如下:The interference observer structure in the step 3 is as follows:

dd ^^ 11 (( tt )) == VV ww ^^ (( tt )) ww ^^ (( tt )) == vv (( tt )) -- LxLx (( tt )) vv ·· (( tt )) == (( WW ++ LBLB 11 VV )) (( vv (( tt )) -- LxLx (( tt )) )) ++ LL [[ AxAx (( tt )) ++ BB 11 uu (( tt )) ++ BB 11 Ff ^^ (( tt )) -- EfEf (( xx ·&Center Dot; ,, tt )) ]]

其中,v(t)为辅助变量,L为待定的干扰观测器增益矩阵,V为可建模干扰模型的输出矩阵,W表示可建模干扰模型的系统阵。Among them, v(t) is an auxiliary variable, L is the undetermined interference observer gain matrix, V is the output matrix of the modelable interference model, and W represents the system matrix of the modelable interference model.

本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:

(1)本发明的多源干扰系统的容错抗干扰控制方法是一种复合分层抗干扰控制方法,控制器的前馈部分由故障诊断观测器和干扰观测器组成,用于估计和抵消系统中的时变故障和可建模干扰,控制器的反馈部分由鲁棒H状态反馈控制器构成,设计的控制器使系统具有更为精细的故障诊断与容错控制能力。(1) The fault-tolerant and anti-interference control method of the multi-source interference system of the present invention is a compound layered anti-interference control method. The feed-forward part of the controller is composed of a fault diagnosis observer and a disturbance observer, which are used to estimate and offset the system For time-varying faults and modelable disturbances, the feedback part of the controller is composed of a robust H state feedback controller. The designed controller enables the system to have more sophisticated fault diagnosis and fault-tolerant control capabilities.

(2)本发明对干扰的鲁棒性强,在同时存在变化率有界的时变故障、可建模干扰和不可建模随机干扰等多源干扰的情况下,所述方法中的故障诊断观测器可以估计并抵消时变故障,干扰观测器可以估计并抵消可建模干扰,鲁棒H状态反馈控制器抑制不可建模随机干扰、故障估计误差和干扰估计误差,克服了现有方法将干扰看作范数有界量进行抑制带来的保守性大的问题。(2) The present invention has strong robustness to interference. In the case of multi-source interference such as time-varying fault with bounded rate of change, modelable interference, and unmodelable random interference, the fault diagnosis in the method The observer can estimate and offset time-varying faults, the disturbance observer can estimate and offset modelable disturbances, and the robust H state feedback controller suppresses unmodelable random disturbances, fault estimation errors, and disturbance estimation errors, overcoming existing methods Consider the interference as a norm-bounded quantity to suppress the conservative problem.

附图说明 Description of drawings

图1为本发明一种基于多源干扰系统的容错抗干扰控制方法的设计流程图。Fig. 1 is a design flowchart of a fault-tolerant and anti-interference control method based on a multi-source interference system according to the present invention.

具体实施方式 Detailed ways

如图1所示,本发明具体实现步骤如下(以下以卫星姿态确定与控制系统为例来说明方法的具体实现):As shown in Figure 1, the specific implementation steps of the present invention are as follows (the following takes the satellite attitude determination and control system as an example to illustrate the specific implementation of the method):

1、搭建含有多源干扰系统的动力学模型,并写成状态空间表达式1. Build a dynamic model containing multi-source interference system and write it as a state space expression

当微纳卫星本体坐标系和轨道坐标系之间的欧拉角很小时,可以得到如下的卫星线性化姿态动力学和运动学模型:When the Euler angle between the micro-nano-satellite body coordinate system and the orbital coordinate system is small, the following linearized attitude dynamics and kinematics model of the satellite can be obtained:

JJ 11 φφ ·· ·&Center Dot; -- nno (( JJ 11 -- JJ 22 ++ JJ 33 )) ψψ ·&Center Dot; ++ 44 nno 22 (( JJ 22 -- JJ 33 )) φφ == uu 11 ++ TT dd 11 JJ 22 θθ ·&Center Dot; ·&Center Dot; ++ 33 nno 22 (( JJ 11 -- JJ 33 )) θθ == uu 22 ++ Ff (( tt )) ++ TT dd 22 JJ 33 ψψ ·&Center Dot; ·· ++ nno (( JJ 11 -- JJ 22 ++ JJ 33 )) φφ ·&Center Dot; ++ nno 22 (( JJ 22 -- JJ 11 )) ψψ == uu 33 ++ TT dd 33

上式中,J1,J2,J3分别为三轴的转动惯量,n为卫星轨道角速度,φ,θ,ψ分别为卫星本体坐标系和轨道坐标系之间的三轴欧拉角;

Figure BDA00001926355000062
分别为三轴欧拉角速率;
Figure BDA00001926355000063
分别为三轴欧拉角加速度;u1,u2,u3分别为三轴控制力矩;F(t)为时变故障,Td1,Td2,Td3分别为三轴的干扰力矩(包括由于敏感器或者执行机构故障带来的干扰力矩);In the above formula, J 1 , J 2 , J 3 are the moments of inertia of the three axes respectively, n is the orbital angular velocity of the satellite, φ, θ, ψ are the three-axis Euler angles between the satellite body coordinate system and the orbit coordinate system respectively;
Figure BDA00001926355000062
are the three-axis Euler angle rates;
Figure BDA00001926355000063
are three-axis Euler angular accelerations; u 1 , u 2 , u 3 are three-axis control torques; F(t) is time-varying fault; T d1 , T d2 , T d3 are three-axis disturbance torques (including Disturbance torque due to sensor or actuator failure);

微纳卫星模型的不确定性主要来自转动惯量的不确定性,考虑转动惯量不确定性,从姿态动力学模型中提取惯量矩阵,上式可以转化为如下形式:The uncertainty of the micro-nano satellite model mainly comes from the uncertainty of the moment of inertia. Considering the uncertainty of the moment of inertia, the inertia matrix is extracted from the attitude dynamics model. The above formula can be transformed into the following form:

(( Mm ++ ΔMΔM )) pp ·· ·· (( tt )) ++ (( CC ++ ΔCΔC )) pp ·&Center Dot; (( tt )) ++ (( SS ++ ΔSΔS )) pp (( tt )) == BB uu (( uu (( tt )) ++ dd 11 (( tt )) ++ Ff (( tt )) )) ++ BB ww dd 22 (( tt ))

其中状态变量p(t)=[φ,θ,ψ]T为三轴欧拉角,

Figure BDA00001926355000065
是三轴欧拉角速度,
Figure BDA00001926355000066
是三轴欧拉角加速度,d1(t)为可建模干扰,d2(t)为能量有界的不可建模随机(即L2范数
Figure BDA00001926355000067
有界)干扰,Bu为控制输入分配矩阵,Bw为不可建模随机干扰输入分配矩阵,M,C,S为已知转动惯量,ΔM,ΔC,ΔS为由于扰动带来的不确定性转动惯量, M = I 1 0 0 0 I 2 0 0 0 I 3 , C = 0 0 - ω ( I 1 - I 2 + I 3 ) 0 0 0 ω ( I 1 - I 2 + I 3 ) 0 0 , S = 4 ω 2 ( I 2 - I 3 ) 0 0 0 3 ω 2 ( I 1 - I 3 ) 0 0 0 - ω 2 ( I 1 - I 2 ) B u = B w = 1 0 0 0 1 0 0 0 1 , 将上式进行整理转换为状态空间模型如下式所示:Among them, the state variable p(t)=[φ, θ, ψ] T is the three-axis Euler angle,
Figure BDA00001926355000065
is the three-axis Euler angular velocity,
Figure BDA00001926355000066
is the three-axis Euler angular acceleration, d 1 (t) is a modelable disturbance, and d 2 (t) is an energy-bounded non-modelable random (that is, the L 2 norm
Figure BDA00001926355000067
Bounded) disturbance, Bu is the control input allocation matrix, B w is the unmodelable random disturbance input allocation matrix, M, C, S are the known moments of inertia, ΔM, ΔC, ΔS are the uncertainties due to the disturbance Moment of inertia, m = I 1 0 0 0 I 2 0 0 0 I 3 , C = 0 0 - ω ( I 1 - I 2 + I 3 ) 0 0 0 ω ( I 1 - I 2 + I 3 ) 0 0 , S = 4 ω 2 ( I 2 - I 3 ) 0 0 0 3 ω 2 ( I 1 - I 3 ) 0 0 0 - ω 2 ( I 1 - I 2 ) B u = B w = 1 0 0 0 1 0 0 0 1 , The above formula is sorted and transformed into a state space model as shown in the following formula:

xx ·· (( tt )) ++ EfEf (( xx ·· ,, tt )) == AxAx (( tt )) ++ BB 11 (( uu (( tt )) ++ dd 11 (( tt )) ++ Ff (( tt )) )) ++ BB 22 dd 22 (( tt ))

其中,多源干扰系统状态变量 x ( t ) = ∫ 0 t e q ( τ ) dτ e q ( t ) e · q ( t ) T , eq(t)=p(t)-pp(t),pp(t)为参考轨迹信号,u(t)为控制输入,A,E,B1和B2为已知维数的矩阵, A = 0 1 0 0 0 1 0 - M - 1 S - M - 1 C , E = 0 0 0 0 0 0 M - 1 ΔS M - 1 ΔC M - 1 ΔM , B 1 = 0 0 M - 1 B u , B 2 = 0 0 M - 1 B w , 非线性项f(

Figure BDA00001926355000078
(t))满足Lipschitz条件,即存在已知Lipschitz参数阵U∈R3×3使得如下不等式成立:Among them, the multi-source interference system state variable x ( t ) = ∫ 0 t e q ( τ ) dτ e q ( t ) e · q ( t ) T , e q (t)=p(t)-p p (t), p p (t) is the reference trajectory signal, u(t) is the control input, A, E, B 1 and B 2 are known dimensions matrix, A = 0 1 0 0 0 1 0 - m - 1 S - m - 1 C , E. = 0 0 0 0 0 0 m - 1 ΔS m - 1 ΔC m - 1 ΔM , B 1 = 0 0 m - 1 B u , B 2 = 0 0 m - 1 B w , The non-linear term f(
Figure BDA00001926355000078
(t)) satisfies the Lipschitz condition, that is, there is a known Lipschitz parameter matrix U∈R 3×3 so that the following inequality holds:

|| || ff (( xx ·· 11 (( tt )) )) -- ff (( xx ·· 22 (( tt )) )) || || ≤≤ || || Uu (( xx ·&Center Dot; 11 (( tt )) -- xx ·· 22 (( tt )) )) || ||

其中,为系统状态集合中的任意两个状态,外部模型描述干扰d1(t)由下列外部干扰模型∑1表示:in, For any two states in the system state set, the external model describes the disturbance d 1 (t) by the following external disturbance model ∑ 1 :

ΣΣ 11 :: dd 11 (( tt )) == VwVw (( tt )) ww ·&Center Dot; (( tt )) == Www (( tt )) ++ BB 33 δδ (( tt ))

其中,w(t)为可建模干扰模型的状态变量,V为可建模干扰模型的输出矩阵,W表示可建模干扰模型的系统阵,δ(t)为能量有界的不可建模随机(即L2范数

Figure BDA000019263550000712
有界)干扰,B3为不可建模干扰模型的能量有界干扰增益阵。where w(t) is the state variable of the modelable disturbance model, V is the output matrix of the modelable disturbance model, W represents the system matrix of the modelable disturbance model, and δ(t) is the non-modelable random (i.e. L2 norm
Figure BDA000019263550000712
Bounded) interference, B 3 is the energy bounded interference gain array of the unmodelable interference model.

2、设计故障诊断观测器2. Design the fault diagnosis observer

针对多源干扰系统中的时变故障F(t),设计故障诊断观测器为:For the time-varying fault F(t) in the multi-source interference system, the fault diagnosis observer is designed as:

Ff ^^ (( tt )) == ττ -- pp (( xx )) ττ ·· == KBKB 11 (( ττ -- pp (( xx )) )) ++ KK [[ AxAx (( tt )) ++ BB 11 uu (( tt )) ++ BB 11 dd ^^ 11 (( tt )) -- EfEf (( xx ·· (( tt )) )) ]]

其中,ε(t)为辅助变量,K为待定的故障诊断观测器增益矩阵,通过后续步骤6求得,进而得到故障估计误差

Figure BDA000019263550000715
Among them, ε(t) is an auxiliary variable, K is the undetermined fault diagnosis observer gain matrix, obtained through the subsequent step 6, and then the fault estimation error
Figure BDA000019263550000715

3、设计干扰观测器3. Design the disturbance observer

针对多源干扰系统中可建模干扰d1(t),设计干扰观测器为:For the modelable interference d 1 (t) in the multi-source interference system, the designed interference observer is:

dd ^^ 11 (( tt )) == VV ww ^^ (( tt )) ww ^^ (( tt )) == vv (( tt )) -- LxLx (( tt )) vv ·&Center Dot; (( tt )) == (( WW ++ LBLB 11 VV )) (( vv (( tt )) -- LxLx (( tt )) )) ++ LL [[ AxAx (( tt )) ++ BB 11 uu (( tt )) ++ BB 11 Ff ^^ (( tt )) -- EfEf (( xx ·&Center Dot; ,, tt )) ]]

其中,为可建模干扰d1(t)的估计值,

Figure BDA00001926355000083
为w(t)的估计值,v(t)为辅助变量,L为待定的干扰观测器增益矩阵,通过后续步骤6求得,进而得到故障估计误差 e w ( t ) = w ( t ) - w ^ ( t ) . in, is an estimate of the modelable disturbance d 1 (t),
Figure BDA00001926355000083
is the estimated value of w(t), v(t) is the auxiliary variable, L is the undetermined gain matrix of the disturbance observer, obtained through the subsequent step 6, and then the fault estimation error e w ( t ) = w ( t ) - w ^ ( t ) .

4、设计鲁棒H状态反馈控制器4. Design a robust H state feedback controller

针对多源干扰系统中的不可建模随机干扰d2(t)、故障估计误差eF(t)和干扰估计误差ew(t)设计鲁棒H状态反馈控制器对其进行抑制,控制器结构如下:Aiming at the unmodelable random disturbance d 2 (t), fault estimation error e F (t) and disturbance estimation error e w (t) in the multi-source interference system, a robust H state feedback controller is designed to suppress it, and control The device structure is as follows:

uf(t)=Mx(t)u f (t) = Mx (t)

其中,uf(t)为状态反馈控制器,M为待定状态反馈控制器增益阵。Among them, u f (t) is the state feedback controller, and M is the undetermined state feedback controller gain matrix.

5、设计容错抗干扰控制器5. Design fault-tolerant and anti-jamming controller

基于干扰观测器、故障诊断观测器和鲁棒H状态反馈控制器,设计容错抗干扰控制器如下:Based on the disturbance observer, fault diagnosis observer and robust H state feedback controller, the fault-tolerant and anti-disturbance controller is designed as follows:

uu (( tt )) == uu ff (( tt )) -- dd ^^ 11 (( tt )) -- Ff ^^ (( tt ))

则多源干扰系统可表示为:Then the multi-source interference system can be expressed as:

xx ·· (( tt )) ++ EfEf (( xx ·&Center Dot; ,, tt )) == (( AA ++ BB 11 Mm )) xx (( tt )) ++ BB 11 VV ee ww (( tt )) ++ BB 11 ee Ff (( tt )) ++ BB 22 dd 22 (( tt ))

整理可建模干扰模型的系统估计误差方程和变化率有界的时变故障的系统估计误差方程如下:The system estimation error equation of the modelable disturbance model and the system estimation error equation of the time-varying fault with a bounded rate of change are sorted out as follows:

ee ·&Center Dot; ww (( tt )) == (( WW ++ LBLB 11 VV )) ee ww (( tt )) ++ LBLB 11 ee Ff (( tt )) ++ LBLB 22 dd 22 (( tt )) ++ BB 33 δδ (( tt ))

ee ·&Center Dot; Ff (( tt )) == KBKB 11 VV ee ww (( tt )) ++ KBKB 11 ee Ff (( tt )) ++ KBKB 22 dd 22 (( tt )) ++ Ff ·&Center Dot; (( tt ))

联列上述多源干扰系统、可建模干扰模型的系统估计误差和时变故障的系统估计误差方程得到闭环系统:The closed-loop system is obtained by combining the above multi-source interference system, the system estimation error of the modelable interference model, and the system estimation error equation of time-varying faults:

xx ·&Center Dot; (( tt )) ee ·&Center Dot; ww (( tt )) ee ·&Center Dot; Ff (( tt )) == AA ++ BB 11 Mm BB 11 VV BB 11 00 WW ++ LBLB 11 VV LBLB 11 00 KBKB 11 VV KBKB 11 xx (( tt )) ee ww (( tt )) ee Ff (( tt )) ++ BB 22 LBLB 22 KBKB 22 dd 22 (( tt )) ++ 00 BB 33 00 δδ (( tt )) ++ 00 00 11 Ff ·· (( tt )) -- EE. 00 00 ff (( xx ·&Center Dot; (( tt )) )) zz ∞∞ (( tt )) == CC 00 CC 11 CC 22 xx (( tt )) ee ww (( tt )) ee Ff (( tt ))

其中,z(t)为H性能参考输出,[C0C1C2]为H性能可调输出矩阵。Among them, z (t) is the H performance reference output, [C 0 C 1 C 2 ] is the H performance adjustable output matrix.

6、增益矩阵求解6. Gain matrix solution

利用凸优化算法求解多源干扰系统的容错抗干扰控制器增益阵;给定初始值x(0)、ew(0)和eF(0),可调输出矩阵[C0C1C2],非线性权重参数λ,干扰抑制度γ1、γ2和γ3,求解以下凸优化问题:Using the convex optimization algorithm to solve the gain matrix of the fault-tolerant anti-jamming controller of the multi-source jamming system; given the initial values x(0), e w (0) and e F (0), the adjustable output matrix [C 0 C 1 C 2 ], nonlinear weight parameter λ, interference suppression degree γ 1 , γ 2 and γ 3 , to solve the following convex optimization problem:

minmin xx TT (( 00 )) ee TT (( 00 )) PP 11 PP 22 xx TT (( 00 )) ee TT (( 00 )) TT

ΦΦ == ΦΦ 1111 BB 11 GG -- EE. 00 BB 22 00 ΦΦ 1818 PP 11 CC 00 TT ** ΦΦ 22twenty two 00 PP 22 Hh 11 RR 22 BB 22 PP 22 Hh 22 λλ (( Uu BB 11 GG )) TT CC TT ** ** -- λλ 22 II 00 00 00 λλ (( UEUE )) TT 00 ** ** ** -- γγ 11 22 00 00 00 00 ** ** ** ** -- γγ 22 22 00 λλ (( UBUB 22 )) TT 00 ** ** ** ** ** -- γγ 33 22 II 00 00 ** ** ** ** ** ** -- II 00 ** ** ** ** ** ** ** -- II

其中:e(0)=[ew(0)eF(0)]T11=(AP1+B1R1)+(AP1+B1R1)T22=(P2W1+R2B1G)+(P2W1+R2B1G)T18=λ(AP1+B1R1)T,C=[C1C2],G=[E I],H1=[B3 0]T,H2=[0 1]T;符号*表示对称矩阵中相应部分的对称块,求解得P1、P2、R1和R2,则干扰观测器和故障诊断观测器增益阵为 L K = P 2 - 1 R 2 , 状态反馈控制器增益阵为

Figure BDA00001926355000095
Among them: e(0)=[e w (0)e F (0)] T11 =(AP 1 +B 1 R 1 )+(AP 1 +B 1 R 1 ) T22 =(P 2 W 1 +R 2 B 1 G)+(P 2 W 1 +R 2 B 1 G) T18 =λ(AP 1 +B 1 R 1 ) T ,C=[C 1 C 2 ],G =[E I], H 1 =[B 3 0] T , H 2 =[0 1] T ; the symbol * represents the symmetric block of the corresponding part in the symmetric matrix, P 1 , P 2 , R 1 and R 2 can be obtained by solving, Then the gain matrix of disturbance observer and fault diagnosis observer is L K = P 2 - 1 R 2 , The state feedback controller gain matrix is
Figure BDA00001926355000095

本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。The contents not described in detail in the description of the present invention belong to the prior art known to those skilled in the art.

Claims (3)

1.一种多源干扰系统的容错抗干扰控制方法,其特征在于包括以下步骤:首先,设计故障诊断观测器估计并抵消系统中的时变故障;其次,设计干扰观测器估计并抵消多源干扰系统中的可建模干扰;再次,设计鲁棒H状态反馈控制器抑制多源干扰系统中的不可建模随机干扰、故障估计误差和干扰估计误差;最后,基于故障诊断观测器、干扰观测器和鲁棒H状态反馈控制器,设计容错抗干扰控制器;具体步骤如下:1. A fault-tolerant and anti-jamming control method of a multi-source interference system is characterized in that it comprises the following steps: first, designing a fault diagnosis observer to estimate and offset the time-varying fault in the system; secondly, designing an interference observer to estimate and offset the multi-source Modelable disturbances in disturbance systems; thirdly, design a robust H state feedback controller to suppress unmodelable random disturbances, fault estimation errors and disturbance estimation errors in multi-source disturbance systems; finally, based on fault diagnosis observer, disturbance Observer and robust H state feedback controller, design fault-tolerant and anti-disturbance controller; the specific steps are as follows: 第一步,搭建含有多源干扰系统的动力学模型,并写成状态空间表达式The first step is to build a dynamic model with multi-source interference system and write it as a state space expression 针对含有时变故障、可建模干扰和不可建模随机干扰的多源干扰系统,搭建其系统动力学模型,并写成状态空间表达式如下:For a multi-source disturbance system with time-varying faults, modelable disturbances and non-modelable random disturbances, a system dynamics model is built, and the state space expression is written as follows: xx ·&Center Dot; (( tt )) ++ EfEf (( xx ·&Center Dot; ,, tt )) == AxAx (( tt )) ++ BB 11 (( uu (( tt )) ++ dd 11 (( tt )) ++ Ff (( tt )) )) ++ BB 22 dd 22 (( tt )) 其中,x(t)为多源干扰系统状态变量,u(t)为控制输入,d1(t)为可建模干扰,F(t)为时变故障,d2(t)为不可建模随机干扰,A,E,B1和B2为已知维数的矩阵,为系统非线性项且满足Lipschitz条件,外部模型描述干扰d1(t)由下列外部干扰模型∑1表示:Among them, x(t) is the state variable of the multi-source disturbance system, u(t) is the control input, d 1 (t) is the disturbance that can be modeled, F(t) is the time-varying fault, and d 2 (t) is the non-buildable Modular random interference, A, E, B 1 and B 2 are matrices of known dimensions, is a nonlinear item of the system and satisfies the Lipschitz condition, the external model describes the disturbance d 1 (t) by the following external disturbance model Σ 1 : ΣΣ 11 :: dd 11 (( tt )) == VwVw (( tt )) ww ·&Center Dot; (( tt )) == Www (( tt )) ++ BB 33 δδ (( tt )) 其中,w(t)为可建模干扰模型的状态变量,V为可建模干扰模型的输出矩阵,W表示可建模干扰模型的系统阵,δ(t)为能量有界的不可建模随机干扰,B3为不可建模随机干扰的增益阵;where w(t) is the state variable of the modelable disturbance model, V is the output matrix of the modelable disturbance model, W represents the system matrix of the modelable disturbance model, and δ(t) is the non-modelable Random interference, B 3 is the gain array of random interference that cannot be modeled; 第二步,设计故障诊断观测器The second step is to design the fault diagnosis observer 针对多源干扰系统中的时变故障F(t),设计故障诊断观测器对其进行实时估计,并求得估计值
Figure FDA00001926354900014
进而得到故障估计误差
Aiming at the time-varying fault F(t) in the multi-source interference system, a fault diagnosis observer is designed to estimate it in real time and obtain the estimated value
Figure FDA00001926354900014
Then get the fault estimation error
第三步,设计干扰观测器The third step is to design the disturbance observer 针对多源干扰系统中的可建模干扰d1(t),设计干扰观测器对其进行实时估计,并求得估计值进而得到干扰估计误差
Figure FDA00001926354900022
为w(t)的估计值;
For the modelable interference d 1 (t) in the multi-source interference system, design an interference observer to estimate it in real time, and obtain the estimated value Then get the interference estimation error
Figure FDA00001926354900022
is the estimated value of w(t);
第四步,设计鲁棒H状态反馈控制器The fourth step is to design a robust H state feedback controller 针对多源干扰系统中的不可建模随机干扰d2(t)、故障估计误差eF(t)和干扰估计误差ew(t),设计鲁棒H状态反馈控制器对其进行抑制,控制器结构如下:Aiming at the unmodelable random disturbance d 2 (t), fault estimation error e F (t) and disturbance estimation error e w (t) in the multi-source interference system, a robust H state feedback controller is designed to suppress it, The controller structure is as follows: uf(t)=Mx(t)u f (t) = Mx (t) 其中,uf(t)为鲁棒H状态反馈控制输入,M为待定状态反馈控制器增益阵;Among them, u f (t) is the robust H state feedback control input, and M is the undetermined state feedback controller gain matrix; 第五步,设计容错抗干扰控制器The fifth step is to design a fault-tolerant and anti-jamming controller 设计容错抗干扰控制器,对系统中的时变故障F(t)和可建模干扰d1(t)进行抵消,不可建模随机干扰d2(t)、故障估计误差eF(t)和干扰估计误差ew(t)进行抑制,容错抗干扰控制器结构如下:Design a fault-tolerant anti-disturbance controller to offset the time-varying fault F(t) in the system and the modelable disturbance d 1 (t), while the random disturbance d 2 (t) and the fault estimation error e F (t) cannot be modeled and interference estimation error e w (t) to suppress, the fault-tolerant anti-interference controller structure is as follows: uu (( tt )) == uu ff (( tt )) -- Ff ^^ (( tt )) -- dd ^^ 11 (( tt )) 则多源干扰系统可表示为:Then the multi-source interference system can be expressed as: xx ·&Center Dot; (( tt )) ++ EfEf (( xx ·&Center Dot; ,, tt )) == (( AA ++ BB 11 Mm )) xx (( tt )) ++ BB 11 VV ee ww (( tt )) ++ BB 11 ee Ff (( tt )) ++ BB 22 dd 22 (( tt )) 整理可建模干扰模型的系统估计误差方程和时变故障的系统估计误差方程如下:The system estimation error equation of the modelable disturbance model and the system estimation error equation of time-varying fault are sorted out as follows: ee ·&Center Dot; ww (( tt )) == (( WW ++ LBLB 11 VV )) ee ww (( tt )) ++ LBLB 11 ee Ff (( tt )) ++ LBLB 22 dd 22 (( tt )) ++ BB 33 δδ (( tt )) ee ·&Center Dot; Ff (( tt )) == KBKB 11 VV ee ww (( tt )) ++ KBKB 11 ee Ff (( tt )) ++ KBKB 22 dd 22 (( tt )) ++ Ff ·&Center Dot; (( tt )) 联列上述多源干扰系统、时变故障的系统估计误差方程和可建模干扰的系统估计误差方程得到闭环系统:Combine the above multi-source interference system, the system estimation error equation of time-varying fault and the system estimation error equation of modelable interference to obtain the closed-loop system: xx ·&Center Dot; (( tt )) ee ·&Center Dot; ww (( tt )) ee ·&Center Dot; Ff (( tt )) == AA ++ BB 11 Mm BB 11 VV BB 11 00 WW ++ LBLB 11 VV LBLB 11 00 KBKB 11 VV KBKB 11 xx (( tt )) ee ww (( tt )) ee Ff (( tt )) ++ BB 22 LBLB 22 KBKB 22 dd 22 (( tt )) ++ 00 BB 33 00 δδ (( tt )) ++ 00 00 11 Ff ·&Center Dot; (( tt )) -- EE. 00 00 ff (( xx ·&Center Dot; (( tt )) )) zz ∞∞ (( tt )) == CC 00 CC 11 CC 22 xx (( tt )) ee ww (( tt )) ee Ff (( tt )) 其中,z(t)为H性能参考输出,[C0C1C2]为H性能可调输出矩阵;Among them, z (t) is H performance reference output, [C 0 C 1 C 2 ] is H performance adjustable output matrix; 第六步,增益矩阵求解The sixth step is to solve the gain matrix 利用凸优化算法求解多源干扰系统的容错抗干扰控制器增益阵;给定初始值x(0)、ew(0)和eF(0),可调输出矩阵[C0C1C2],非线性权重参数λ,干扰抑制度γ1、γ2和γ3,求解以下凸优化问题:Using the convex optimization algorithm to solve the gain matrix of the fault-tolerant anti-jamming controller of the multi-source jamming system; given the initial values x(0), e w (0) and e F (0), the adjustable output matrix [C 0 C 1 C 2 ], nonlinear weight parameter λ, interference suppression degree γ 1 , γ 2 and γ 3 , to solve the following convex optimization problem: minmin xx TT (( 00 )) ee TT (( 00 )) PP 11 PP 22 xx TT (( 00 )) ee TT (( 00 )) TT ΦΦ == ΦΦ 1111 BB 11 GG -- EE. 00 BB 22 00 ΦΦ 1818 PP 11 CC 00 TT ** ΦΦ 22twenty two 00 PP 22 Hh 11 RR 22 BB 22 PP 22 Hh 22 λλ (( Uu BB 11 GG )) TT CC TT ** ** -- λλ 22 II 00 00 00 λλ (( UEUE )) TT 00 ** ** ** -- γγ 11 22 00 00 00 00 ** ** ** ** -- γγ 22 22 00 λλ (( UBUB 22 )) TT 00 ** ** ** ** ** -- γγ 33 22 II 00 00 ** ** ** ** ** ** -- II 00 ** ** ** ** ** ** ** -- II 其中:e(0)=[ew(0)eF(0)]T11=(AP1+B1R1)+(AP1+B1R1)T22=(P2W1+R2B1G)+(P2W1+R2B1G)T18=λ(AP1+B1R1)T,C=[C1 C2],G=[E I],H1=[B3 0]T,H2=[0 1]T;符号*表示对称矩阵中相应部分的对称块,求解得P1、P2、R1和R2,则干扰观测器和故障诊断观测器增益阵为 L K = P 2 - 1 R 2 , 状态反馈控制器增益阵为
Figure FDA00001926354900034
Among them: e(0)=[e w (0)e F (0)] T11 =(AP 1 +B 1 R 1 )+(AP 1 +B 1 R 1 ) T22 =(P 2 W 1 +R 2 B 1 G)+(P 2 W 1 +R 2 B 1 G) T18 =λ(AP 1 +B 1 R 1 ) T ,C=[C 1 C 2 ],G =[E I], H 1 =[B 3 0] T , H 2 =[0 1] T ; the symbol * represents the symmetric block of the corresponding part in the symmetric matrix, P 1 , P 2 , R 1 and R 2 can be obtained by solving, Then the gain matrix of disturbance observer and fault diagnosis observer is L K = P 2 - 1 R 2 , The state feedback controller gain matrix is
Figure FDA00001926354900034
2.根据权利要求1所述的一种多源干扰系统的容错抗干扰控制方法,其特征在于:所述步骤2中的故障诊断观测器结构如下:2. the fault-tolerant and anti-interference control method of a kind of multi-source interference system according to claim 1, is characterized in that: the fault diagnosis observer structure in the described step 2 is as follows: Ff ^^ (( tt )) == ττ -- pp (( xx )) ττ ·&Center Dot; == KBKB 11 (( ττ -- pp (( xx )) )) ++ KK [[ AxAx (( tt )) ++ BB 11 uu (( tt )) ++ BB 11 dd ^^ 11 (( tt )) -- EfEf (( xx ·&Center Dot; (( tt )) )) ]] 其中,
Figure FDA00001926354900036
K为待定的故障诊断观测器增益矩阵,ε(t)为辅助变量。
in,
Figure FDA00001926354900036
K is the undetermined gain matrix of the fault diagnosis observer, and ε(t) is the auxiliary variable.
3.根据权利要求1所述的一种多源干扰系统的容错抗干扰控制方法,其特征在于:所述步骤3中的干扰观测器结构如下:3. The fault-tolerant anti-jamming control method of a kind of multi-source jamming system according to claim 1, is characterized in that: the disturbance observer structure in described step 3 is as follows: dd ^^ 11 (( tt )) == VV ww ^^ (( tt )) ww ^^ (( tt )) == vv (( tt )) -- LxLx (( tt )) vv ·&Center Dot; (( tt )) == (( WW ++ LBLB 11 VV )) (( vv (( tt )) -- LxLx (( tt )) )) ++ LL [[ AxAx (( tt )) ++ BB 11 uu (( tt )) ++ BB 11 Ff ^^ (( tt )) -- EfEf (( xx ·· ,, tt )) ]] 其中,v(t)为辅助变量,L为待定的干扰观测器增益矩阵,V为可建模干扰模型的输出矩阵,W表示可建模干扰模型的系统阵。Among them, v(t) is an auxiliary variable, L is the undetermined interference observer gain matrix, V is the output matrix of the modelable interference model, and W represents the system matrix of the modelable interference model.
CN201210258674.2A 2012-07-24 2012-07-24 Fault-tolerant anti-interference control method for multisource interference system Active CN102749852B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210258674.2A CN102749852B (en) 2012-07-24 2012-07-24 Fault-tolerant anti-interference control method for multisource interference system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210258674.2A CN102749852B (en) 2012-07-24 2012-07-24 Fault-tolerant anti-interference control method for multisource interference system

Publications (2)

Publication Number Publication Date
CN102749852A true CN102749852A (en) 2012-10-24
CN102749852B CN102749852B (en) 2014-07-02

Family

ID=47030136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210258674.2A Active CN102749852B (en) 2012-07-24 2012-07-24 Fault-tolerant anti-interference control method for multisource interference system

Country Status (1)

Country Link
CN (1) CN102749852B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116357A (en) * 2013-03-14 2013-05-22 郭雷 Sliding-mode control method with anti-interference fault-tolerance performance
CN103135553A (en) * 2013-01-21 2013-06-05 南京航空航天大学 Four-rotor aircraft fault-tolerant control method
CN103488080A (en) * 2013-09-09 2014-01-01 河北科技师范学院 Lunar rover coordinated drive self-adaption fault-tolerant control method based on hierarchical fuzzy system
CN103529705A (en) * 2013-10-16 2014-01-22 北京七星华创电子股份有限公司 Dissipation non-fragile control method and device of LPCVD (Low Pressure Chemical Vapor Deposition) equipment
CN103885451A (en) * 2014-03-29 2014-06-25 北京航空航天大学 Novel anti-interference attitude control circuit resolving system
CN103900559A (en) * 2014-03-29 2014-07-02 北京航空航天大学 High precision attitude resolving system based on interference estimation
CN104102128A (en) * 2013-04-09 2014-10-15 中国人民解放军第二炮兵工程大学 Anti-interference attitude control method suitable for miniaturized unmanned aircraft
CN104192322A (en) * 2014-07-22 2014-12-10 北京航空航天大学 Planet power descending branch anti-interference guidance control method with online track generation function
CN104503428A (en) * 2014-11-25 2015-04-08 中国民航大学 Anti-interference time-variant fault diagnosis method of civil aircraft automatic flight control system
CN105629988A (en) * 2016-03-31 2016-06-01 北京航空航天大学 Anti-interference attitude control method of drag-free satellite
CN105700351A (en) * 2016-01-21 2016-06-22 北京理工大学 Active fault tolerance control method for servo system
CN108710303A (en) * 2018-07-25 2018-10-26 西北工业大学 Spacecraft relative attitude control method containing multi-source disturbance and actuator saturation
CN108983801A (en) * 2018-08-14 2018-12-11 北京航空航天大学 A kind of anti-interference attitude control method of spacecraft based on counteraction flyback dynamic characteristic
CN109885075A (en) * 2019-03-06 2019-06-14 扬州大学 A Fault Tolerant Control Method for Satellite Attitude Anti-jamming Based on T-S Fuzzy Modeling
CN109991848A (en) * 2019-03-28 2019-07-09 鲁东大学 Anti-interference control method and device
CN111472468A (en) * 2020-04-17 2020-07-31 南通大学 Shock absorption control method for high-rise buildings based on distributed fault diagnosis and cooperative fault tolerance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107450328B (en) * 2017-10-12 2018-08-14 北京航空航天大学 A kind of anti-interference fault tolerant control method based on E-S sliding mode observers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188972A1 (en) * 2006-10-11 2008-08-07 Fisher-Rosemount Systems, Inc. Method and System for Detecting Faults in a Process Plant
CN101571704A (en) * 2009-06-18 2009-11-04 北京航空航天大学 Composite layered anti-interference controller
CN101572533A (en) * 2009-06-18 2009-11-04 北京航空航天大学 Composite layered anti-interference filter
CN101895501A (en) * 2010-07-15 2010-11-24 中国科学技术大学 Discontinuous orthogonal frequency division multiplexing anti-interference synchronous method based on channelizing pre-filtering
CN102298390A (en) * 2011-06-24 2011-12-28 北京航空航天大学 Anti-disturbance flexible spacecraft attitude and vibration composite control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188972A1 (en) * 2006-10-11 2008-08-07 Fisher-Rosemount Systems, Inc. Method and System for Detecting Faults in a Process Plant
CN101571704A (en) * 2009-06-18 2009-11-04 北京航空航天大学 Composite layered anti-interference controller
CN101572533A (en) * 2009-06-18 2009-11-04 北京航空航天大学 Composite layered anti-interference filter
CN101895501A (en) * 2010-07-15 2010-11-24 中国科学技术大学 Discontinuous orthogonal frequency division multiplexing anti-interference synchronous method based on channelizing pre-filtering
CN102298390A (en) * 2011-06-24 2011-12-28 北京航空航天大学 Anti-disturbance flexible spacecraft attitude and vibration composite control method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135553B (en) * 2013-01-21 2015-06-17 南京航空航天大学 Four-rotor aircraft fault-tolerant control method
CN103135553A (en) * 2013-01-21 2013-06-05 南京航空航天大学 Four-rotor aircraft fault-tolerant control method
CN103116357A (en) * 2013-03-14 2013-05-22 郭雷 Sliding-mode control method with anti-interference fault-tolerance performance
CN103116357B (en) * 2013-03-14 2016-05-11 北京航空航天大学 A kind of sliding-mode control with anti-interference fault freedom
CN104102128A (en) * 2013-04-09 2014-10-15 中国人民解放军第二炮兵工程大学 Anti-interference attitude control method suitable for miniaturized unmanned aircraft
CN103488080A (en) * 2013-09-09 2014-01-01 河北科技师范学院 Lunar rover coordinated drive self-adaption fault-tolerant control method based on hierarchical fuzzy system
CN103488080B (en) * 2013-09-09 2015-11-11 河北科技师范学院 Moon craft based on layered fuzzy system is coordinated to drive adaptive fusion method
CN103529705A (en) * 2013-10-16 2014-01-22 北京七星华创电子股份有限公司 Dissipation non-fragile control method and device of LPCVD (Low Pressure Chemical Vapor Deposition) equipment
CN103885451A (en) * 2014-03-29 2014-06-25 北京航空航天大学 Novel anti-interference attitude control circuit resolving system
CN103900559A (en) * 2014-03-29 2014-07-02 北京航空航天大学 High precision attitude resolving system based on interference estimation
CN103900559B (en) * 2014-03-29 2016-08-17 北京航空航天大学 A kind of high-precision attitude resolving system based on Interference Estimation
CN103885451B (en) * 2014-03-29 2017-01-25 北京航空航天大学 Novel anti-interference attitude control circuit resolving system
CN104192322A (en) * 2014-07-22 2014-12-10 北京航空航天大学 Planet power descending branch anti-interference guidance control method with online track generation function
CN104503428A (en) * 2014-11-25 2015-04-08 中国民航大学 Anti-interference time-variant fault diagnosis method of civil aircraft automatic flight control system
CN105700351B (en) * 2016-01-21 2018-11-06 北京理工大学 The Active Fault-tolerant Control Method of servo-drive system
CN105700351A (en) * 2016-01-21 2016-06-22 北京理工大学 Active fault tolerance control method for servo system
CN105629988A (en) * 2016-03-31 2016-06-01 北京航空航天大学 Anti-interference attitude control method of drag-free satellite
CN108710303A (en) * 2018-07-25 2018-10-26 西北工业大学 Spacecraft relative attitude control method containing multi-source disturbance and actuator saturation
CN108983801A (en) * 2018-08-14 2018-12-11 北京航空航天大学 A kind of anti-interference attitude control method of spacecraft based on counteraction flyback dynamic characteristic
CN108983801B (en) * 2018-08-14 2021-05-28 北京航空航天大学 A Spacecraft Anti-jamming Attitude Control Method Based on Dynamic Characteristics of Reaction Flywheel
CN109885075A (en) * 2019-03-06 2019-06-14 扬州大学 A Fault Tolerant Control Method for Satellite Attitude Anti-jamming Based on T-S Fuzzy Modeling
CN109991848A (en) * 2019-03-28 2019-07-09 鲁东大学 Anti-interference control method and device
CN109991848B (en) * 2019-03-28 2022-02-01 鲁东大学 Anti-interference control method and device
CN111472468A (en) * 2020-04-17 2020-07-31 南通大学 Shock absorption control method for high-rise buildings based on distributed fault diagnosis and cooperative fault tolerance
CN111472468B (en) * 2020-04-17 2021-10-12 南通大学 Shock absorption control method for high-rise buildings based on distributed fault diagnosis and cooperative fault tolerance

Also Published As

Publication number Publication date
CN102749852B (en) 2014-07-02

Similar Documents

Publication Publication Date Title
CN102749852B (en) Fault-tolerant anti-interference control method for multisource interference system
Hu et al. Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode
CN103116357B (en) A kind of sliding-mode control with anti-interference fault freedom
CN104049640B (en) Unmanned vehicle attitude robust fault tolerant control method based on Neural Network Observer
CN106292681B (en) A satellite active fault-tolerant control method based on observer and online control assignment
CN108153322B (en) A kind of spacecraft attitude tracking adaptive fault tolerant control method for the rotary inertia considering time-varying
CN104022742B (en) Attitude of flight vehicle robust inverting fault tolerant control method based on Neural Network Observer
CN107121961B (en) A kind of spacecraft attitude fault tolerant control method based on iterative learning interference observer
CN106020221B (en) A kind of anti-interference gesture stability verification platform and verification method based on output feedback
CN108181807B (en) A kind of satellite initial state stage self-adapted tolerance attitude control method
CN105843240A (en) Spacecraft attitude integral sliding mode fault tolerance control method taking consideration of performer fault
CN105867401A (en) Spacecraft posture fault tolerance control method of single gimbal control moment gyroscope groups
CN106647693A (en) Rigid spacecraft performer multi-fault diagnosis and fault tolerance control method
CN103676918B (en) A kind of satellite executing mechanism method for diagnosing faults based on Unknown Input Observer
CN109885075A (en) A Fault Tolerant Control Method for Satellite Attitude Anti-jamming Based on T-S Fuzzy Modeling
CN111258221B (en) Spacecraft fault-tolerant control method based on self-adaptive sliding mode theory
CN110850887A (en) A composite dynamic inverse anti-jamming attitude control method for quadrotor UAV
CN107272639A (en) Detection, estimation and its adjusting method of rigid spacecraft reaction wheel failure
CN109765920A (en) A control method for spacecraft attitude fault tolerance integrating fault observer and control allocation strategy
Sanyal et al. Guidance and control for spacecraft autonomous chasing and close proximity maneuvers
Gao et al. Fault-tolerant control for a near space vehicle with a stuck actuator fault based on a Takagi-Sugeno fuzzy model
CN109018442B (en) Novel low-cost satellite three-axis attitude time-sharing decoupling high-multiplexing air injection control method
Mallavalli et al. An Observer-based Backstepping Integral Nonsingular Fast Terminal Sliding Mode Fault Tolerant Control Design for Quadrotors Under Different Types of Actuator Faults
CN105739511A (en) Under-actuated spacecraft hover asymptotic control method for lacking of trace control
Holguin et al. Guidance and control for spacecraft autonomous rendezvous and proximity maneuvers using a geometric mechanics framework

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant