CN102749852A - Fault-tolerant anti-interference control method for multisource interference system - Google Patents

Fault-tolerant anti-interference control method for multisource interference system Download PDF

Info

Publication number
CN102749852A
CN102749852A CN2012102586742A CN201210258674A CN102749852A CN 102749852 A CN102749852 A CN 102749852A CN 2012102586742 A CN2012102586742 A CN 2012102586742A CN 201210258674 A CN201210258674 A CN 201210258674A CN 102749852 A CN102749852 A CN 102749852A
Authority
CN
China
Prior art keywords
mtd
mrow
msub
mtr
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102586742A
Other languages
Chinese (zh)
Other versions
CN102749852B (en
Inventor
郭雷
乔建忠
李小凤
曹松银
雷燕婕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201210258674.2A priority Critical patent/CN102749852B/en
Publication of CN102749852A publication Critical patent/CN102749852A/en
Application granted granted Critical
Publication of CN102749852B publication Critical patent/CN102749852B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

The invention relates to a fault-tolerant anti-interference control method for a multisource interference system. Aiming at the multisource interference system containing time-varying faults, modeling interference and non-modeling random interference, a fault-tolerant anti-interference controller is designed. The fault-tolerant anti-interference control method comprises the following steps of: firstly, designing a fault diagnosis observer to estimate and counteract the time-varying faults in the system; secondly, designing an interference observer to estimate and counteract the modeling interference in the multisource interference system; thirdly, designing a robust H infinity state feedback controller to inhibit the non-modeling random interference, fault estimation errors and interference estimation errors in the multisource interference system; and finally, designing the fault-tolerant anti-interference controller based on the fault diagnosis observer, the interference observer and the robust H infinity state feedback controller. The method has the advantages of high anti-interference performance, significant fault-tolerant performance, high working reliability and the like and can be used for altitude control subsystems in the fields of aviation and aerospace.

Description

Fault-tolerant anti-interference control method of multi-source interference system
Technical Field
The invention relates to a fault-tolerant anti-interference control method, in particular to a fault-tolerant anti-interference control method of a multi-source interference system, which can be used for fault diagnosis and fault-tolerant anti-interference control of the multi-source interference system, such as an attitude control subsystem of an aerospace system of a satellite, a missile, an airplane and the like.
Background
In recent years, with the development of aerospace technology, the structural and task requirements of the aircraft are increasingly complex, the requirements on control precision and stability are higher and higher, and the failure occurrence probability of the aircraft is higher and higher. For example, through statistics and analysis of 764 spacecraft which were successfully launched at home and abroad in 1990-2001, 121 failed, which accounts for 15.8% of the total number of the spacecraft, some students found. The reliability of aircraft operation, the maintainability and the effectiveness of on-orbit flight have become a major research focus in the field of aerospace. Fault-tolerant control and fault detection and diagnosis open up a new way for improving the reliability, maintainability and effectiveness of the system. In addition, with the increasing complexity of the aircraft structure and task requirements, more and more factors influencing the attitude control precision and stability of the aircraft are mainly summarized as the following points: external environment disturbance moment, vibration of a flywheel of an actuating mechanism in the star body, friction of the flywheel, air injection momentum unloading, sensor measurement noise, uncertainty of a system model and the like.
Aiming at the series of problems, when time-varying energy bounded faults exist in the system but no interference exists, domestic and foreign scholars put forward a plurality of effective methods and obtain certain effects. However, considering that the interference is not present and is not present in the actual system, a single fault consideration may cause a series of problems, and particularly, the attitude control accuracy and stability of the system cannot be guaranteed. On the basis, the situation that time-varying faults and interference exist in the system at the same time becomes a research direction, and domestic and foreign scholars propose a series of solutions, such as HOptimization technology and H based on internal mold structureA controller, etc. However, the existing method considers the interference as norm bounded quantity to suppress on the basis of designing the observer to estimate the fault, and such a processing method has the following disadvantages: first of allAll interferences in the system are regarded as norm bounded quantities to be inhibited, namely the interferences existing in the system are regarded as a whole to be processed, the information of the intra-system part modeling interferences is ignored or the interference information which can be obtained by a physical measurement means is not fully utilized, the system resources are not fully utilized, and the high-precision attitude control is difficult to realize; secondly, all the interferences in the system are regarded as norm bounding quantities to be suppressed, so that the conservatism of the system is bound to be increased, and the high-precision attitude control is difficult to realize.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: aiming at a multi-source interference system, the defects of the prior art are overcome, the fault-tolerant anti-interference control method with interference cancellation and inhibition performance is provided, the problems of interference cancellation, interference inhibition, fault diagnosis and fault-tolerant control of the multi-source interference system are solved, and the control precision and stability of the system are improved.
The technical solution of the invention is as follows: a fault-tolerant anti-interference control method of a multi-source interference system is characterized by comprising the following steps:
firstly, designing a fault diagnosis observer to estimate and counteract time-varying faults in a system; secondly, designing a disturbance observer to estimate and counteract modelable disturbance in the multi-source disturbance system; thirdly, design robust HThe state feedback controller inhibits unmoldable random interference, fault estimation errors and interference estimation errors in the multi-source interference system; finally, based on fault diagnosis observer, disturbance observer and robust HA state feedback controller, which is designed as a fault-tolerant anti-interference controller; the method comprises the following specific steps:
firstly, building a dynamic model containing a multi-source interference system, and writing a state space expression
Aiming at a multi-source interference system containing time-varying faults, modelable interference and unmodeled random interference, a system dynamics model is built and written into a state space expression as follows:
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Ax</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein x (t) is the state variable of the multi-source interference system, u (t) is the control input, d1(t) modelable interference, F (t) time-varying fault, d2(t) unmoldable random interference, A, E, B1And B2Is a matrix of known dimensions and is,
Figure BDA00001926355000022
for system nonlinear terms and satisfying the Lipschitz condition, the external model describes the disturbance d1(t) from the following external interference model ∑1Represents:
<math> <mrow> <msub> <mi>&Sigma;</mi> <mn>1</mn> </msub> <mo>:</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>d</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Vw</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Ww</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein W (t) is a state variable of the modelable interference model, V is an output matrix of the modelable interference model, W represents a system matrix of the modelable interference model, delta (t) is the non-modelable random interference with bounded energy, and B3A gain array of random interference is unmoldable.
Second, designing a fault diagnosis observer
Aiming at the time-varying fault F (t) in the multi-source interference system, a fault diagnosis observer is designed to estimate the time-varying fault F (t) in real time, and an estimated value is obtained
Figure BDA00001926355000032
Further obtainError of fault estimation
Figure BDA00001926355000033
Thirdly, designing a disturbance observer
Modeling disturbance d in multi-source disturbance system1(t) designing a disturbance observer to estimate the disturbance observer in real time and obtaining an estimated value
Figure BDA00001926355000034
Further obtaining interference estimation error Is an estimate of w (t).
The fourth step, design robust HState feedback controller
For unmoldable random disturbance d in multi-source disturbance system2(t) error of failure estimation eF(t) and interference estimation error ew(t), designing robust HThe state feedback controller restrains the state feedback, and the controller structure is as follows:
uf(t)=Mx(t)
wherein u isf(t) is robust HAnd (4) inputting state feedback control, wherein M is a gain array of the feedback controller in an undetermined state.
Fifthly, designing a fault-tolerant anti-interference controller
Designing fault-tolerant anti-interference controller to time-varying fault F (t) and modelable interference d in system1(t) counteracting, unmodeled random interference d2(t) error of failure estimation eF(t) and interference estimation error ew(t) suppressing, wherein the fault-tolerant anti-interference controller has the following structure:
u ( t ) = u f ( t ) - F ^ ( t ) - d ^ 1 ( t )
the multi-source interference system can be expressed as:
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>A</mi> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>M</mi> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>V</mi> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
the systematic estimation error equation for organizing the modelable interference model and the systematic estimation error equation for the time-varying fault are as follows:
<math> <mrow> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <mi>V</mi> <mo>)</mo> </mrow> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>LB</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>KB</mi> <mn>1</mn> </msub> <mi>V</mi> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>KB</mi> <mn>1</mn> </msub> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>KB</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mover> <mi>F</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
combining the multi-source interference system, the system estimation error equation of the time-varying fault and the system estimation error equation of the modeling interference to obtain a closed-loop system:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>A</mi> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>M</mi> </mtd> <mtd> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>V</mi> </mtd> <mtd> <msub> <mi>B</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>W</mi> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <mi>V</mi> </mtd> <mtd> <msub> <mi>LB</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>KB</mi> <mn>1</mn> </msub> <mi>V</mi> </mtd> <mtd> <msub> <mi>KB</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>B</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>LB</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>KB</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mover> <mi>F</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>E</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>f</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mo>&infin;</mo> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>1</mn> </msub> </mtd> <mtd> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
wherein z is(t) is HPerformance reference output, [ C ]0C1C2]Is HAnd (5) outputting a matrix with adjustable performance.
Sixth, gain matrix solution
Solving a fault-tolerant anti-interference controller gain array of the multi-source interference system by using a convex optimization algorithm; initial values x (0), e are givenw(0) And eF(0) Adjustable output matrix [ C ]0C1C2]The non-linear weight parameter lambda, the interference suppression degree gamma1、γ2And gamma3Solving the following convex optimization problem:
min x T ( 0 ) e T ( 0 ) P 1 P 2 x T ( 0 ) e T ( 0 ) T
<math> <mrow> <mi>&Phi;</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&Phi;</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>G</mi> </mtd> <mtd> <mo>-</mo> <mi>E</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>B</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mn>18</mn> </msub> </mtd> <mtd> <msub> <mi>P</mi> <mn>1</mn> </msub> <msubsup> <mi>C</mi> <mn>0</mn> <mi>T</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mn>22</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>P</mi> <mn>2</mn> </msub> <msub> <mi>H</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> <msub> <mi>B</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>P</mi> <mn>2</mn> </msub> <msub> <mi>H</mi> <mn>2</mn> </msub> </mtd> <mtd> <mi>&lambda;</mi> <msup> <mrow> <mo>(</mo> <mi>U</mi> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>G</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> <mtd> <msup> <mi>C</mi> <mi>T</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msup> <mi>&lambda;</mi> <mn>2</mn> </msup> <mi>I</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&lambda;</mi> <msup> <mrow> <mo>(</mo> <mi>UE</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msubsup> <mi>&gamma;</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msubsup> <mi>&gamma;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&lambda;</mi> <msup> <mrow> <mo>(</mo> <msub> <mi>UB</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msubsup> <mi>&gamma;</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mi>I</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <mi>I</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <mi>I</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein e (0) ═ ew(0)eF(0)]T11=(AP1+B1R1)+(AP1+B1R1)T22=(P2W1+R2B1G)+(P2W1+R2B1G)T18=λ(AP1+B1R1)T,C=[C1C2],G=[EI],H1=[B3 0]T,H2=[0 1]T(ii) a Symbol represents the symmetric block of the corresponding part in the symmetric matrix, and P is obtained by solving1、P2、R1And R2The gain array of the disturbance observer and the fault diagnosis observer is L K = P 2 - 1 R 2 , The state feedback controller gain array is
The structure of the fault diagnosis observer in the step 2 is as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&tau;</mi> <mo>-</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&tau;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>KB</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>-</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>K</mi> <mo>[</mo> <mi>Ax</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <msub> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>]</mo> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,k is a gain matrix of the fault diagnosis observer to be determined, and epsilon (t) is an auxiliary variable.
The structure of the disturbance observer in the step 3 is as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>V</mi> <mover> <mi>w</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>w</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Lx</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>v</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <mi>V</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Lx</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>L</mi> <mo>[</mo> <mi>Ax</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>]</mo> </mtd> </mtr> </mtable> </mfenced> </math>
wherein, V (t) is an auxiliary variable, L is a gain matrix of the interference observer to be determined, V is an output matrix of the modelable interference model, and W represents a system array of the modelable interference model.
Compared with the prior art, the invention has the advantages that:
(1) the invention relates to a fault-tolerant anti-interference control method of a multi-source interference system, which is a composite layered anti-interference control method.A feedforward part of a controller consists of a fault diagnosis observer and an interference observer and is used for estimating and offsetting time-varying faults and modelable interference in the system, and a feedback part of the controller consists of a robust HThe state feedback controller is formed and designedThe controller enables the system to have more fine fault diagnosis and fault-tolerant control capability.
(2) The method has strong robustness on interference, and under the condition that multi-source interference such as time-varying fault with bounded change rate, modelable interference, unmoldable random interference and the like exists at the same time, the fault diagnosis observer in the method can estimate and cancel the time-varying fault, the interference observer can estimate and cancel the modelable interference, and the robustness H is highThe state feedback controller inhibits unmoldable random interference, fault estimation errors and interference estimation errors, and solves the problem of high conservation caused by the existing method that the interference is regarded as norm bounded quantity to be inhibited.
Drawings
Fig. 1 is a design flow chart of a fault-tolerant anti-interference control method based on a multi-source interference system according to the present invention.
Detailed Description
As shown in fig. 1, the implementation steps of the present invention are as follows (the satellite attitude determination and control system is taken as an example to illustrate the implementation of the method):
1. building a dynamic model containing a multi-source interference system and writing a state space expression
When the Euler angle between the micro-nano satellite body coordinate system and the orbit coordinate system is small, the following satellite linear attitude dynamics and kinematics models can be obtained:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>J</mi> <mn>1</mn> </msub> <mover> <mi>&phi;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>-</mo> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>J</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mover> <mi>&psi;</mi> <mo>&CenterDot;</mo> </mover> <mo>+</mo> <mn>4</mn> <msup> <mi>n</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>J</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mi>&phi;</mi> <mo>=</mo> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>J</mi> <mn>2</mn> </msub> <mover> <mi>&theta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>+</mo> <mn>3</mn> <msup> <mi>n</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>J</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mi>&theta;</mi> <mo>=</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>J</mi> <mn>3</mn> </msub> <mover> <mi>&psi;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>J</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mo>+</mo> <msup> <mi>n</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>J</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mi>&psi;</mi> <mo>=</mo> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
in the above formula, J1,J2,J3The rotational inertia is three axes, n is the satellite orbit angular velocity, phi, theta and psi are three axes Euler angles between the satellite body coordinate system and the orbit coordinate system;
Figure BDA00001926355000062
respectively, the three-axis euler angular rates;
Figure BDA00001926355000063
respectively, three-axis euler angular acceleration; u. of1,u2,u3Three-axis control moment respectively; f (T) is a time-varying fault, Td1,Td2,Td3Disturbance moments (including disturbance moments due to sensor or actuator failure) of three axes respectively;
uncertainty of the micro-nano satellite model mainly comes from uncertainty of rotational inertia, an inertia matrix is extracted from the attitude dynamics model by considering the uncertainty of the rotational inertia, and the above formula can be converted into the following form:
<math> <mrow> <mrow> <mo>(</mo> <mi>M</mi> <mo>+</mo> <mi>&Delta;M</mi> <mo>)</mo> </mrow> <mover> <mi>p</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mi>C</mi> <mo>+</mo> <mi>&Delta;C</mi> <mo>)</mo> </mrow> <mover> <mi>p</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mi>S</mi> <mo>+</mo> <mi>&Delta;S</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>B</mi> <mi>u</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mi>w</mi> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein the state variable p (t) is [ phi, theta, psi]TIs a three-axis Euler angle,
Figure BDA00001926355000065
is the three-axis euler angular velocity,
Figure BDA00001926355000066
is the three-axis Euler angular acceleration, d1(t) modelable interference, d2(t) is an energy bounded, unmodeled random (i.e., L)2Norm of
Figure BDA00001926355000067
Bounded) interference, BuAssigning a matrix to the control inputs, BwA matrix is allocated to unmodeled random disturbance inputs, M, C, S are known moments of inertia, Δ M, Δ C, Δ S are uncertain moments of inertia due to disturbances, M = I 1 0 0 0 I 2 0 0 0 I 3 , <math> <mrow> <mi>C</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&omega;</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> <math> <mrow> <mi>S</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>4</mn> <msup> <mi>&omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> <msup> <mi>&omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msup> <mi>&omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math> B u = B w = 1 0 0 0 1 0 0 0 1 , the above formula is arranged and converted into a state space model as shown in the following formula:
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Ax</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein the state variables of the multisource interference system <math> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mi>t</mi> </msubsup> <msub> <mi>e</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mi>d&tau;</mi> </mtd> <mtd> <msub> <mi>e</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>q</mi> </msub> </mtd> </mtr> </mtable> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> eq(t)=p(t)-pp(t),pp(t) is ginsengTaking the track signal u (t) as control input, A, E, B1And B2Is a matrix of known dimensions and is, A = 0 1 0 0 0 1 0 - M - 1 S - M - 1 C , <math> <mrow> <mi>E</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>&Delta;S</mi> </mtd> <mtd> <msup> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>&Delta;C</mi> </mtd> <mtd> <msup> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>&Delta;M</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> B 1 = 0 0 M - 1 B u , B 2 = 0 0 M - 1 B w , the nonlinear term f: (
Figure BDA00001926355000078
(t)) meets the Lipschitz condition, namely that the known Lipschitz parameter array U belongs to R3×3Such that the following inequality holds:
<math> <mrow> <mo>|</mo> <mo>|</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> <mo>&le;</mo> <mo>|</mo> <mo>|</mo> <mi>U</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> </mrow> </math>
wherein,for any two states in the system state set, the external model describes the disturbance d1(t) from the following external interference model ∑1Represents:
<math> <mrow> <msub> <mi>&Sigma;</mi> <mn>1</mn> </msub> <mo>:</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>d</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Vw</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Ww</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein W (t) is a state variable of the modelable interference model, V is an output matrix of the modelable interference model, W represents a system matrix of the modelable interference model, and δ (t) is an energy-bounded unmoldable random (i.e., L)2Norm of
Figure BDA000019263550000712
Bounded) interference, B3An energy-bounded interference gain array for the unmoldable interference model.
2. Design fault diagnosis observer
Aiming at a time-varying fault F (t) in a multi-source interference system, a fault diagnosis observer is designed as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&tau;</mi> <mo>-</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&tau;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>KB</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>-</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>K</mi> <mo>[</mo> <mi>Ax</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <msub> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>]</mo> </mtd> </mtr> </mtable> </mfenced> </math>
wherein ε (t) is an auxiliary variable,k is a gain matrix of the fault diagnosis observer to be determined, and the gain matrix is obtained through the subsequent step 6, so that a fault estimation error is obtained
Figure BDA000019263550000715
3. Design disturbance observer
Modeling interference d in multi-source interference system1(t), designing a disturbance observer as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>V</mi> <mover> <mi>w</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>w</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Lx</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>v</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <mi>V</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Lx</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>L</mi> <mo>[</mo> <mi>Ax</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>]</mo> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,for modellable disturbance d1(ii) an estimate of the value of (t),
Figure BDA00001926355000083
is the estimated value of w (t), v (t) is an auxiliary variable, L is a gain matrix of the disturbance observer to be determined, and the estimated error of the fault is obtained through the subsequent step 6 e w ( t ) = w ( t ) - w ^ ( t ) .
4. Design robust HState feedback controller
For unmoldable random disturbance d in multi-source disturbance system2(t) error of failure estimation eF(t) and interference estimation error ew(t) design robustness HThe state feedback controller restrains the state feedback, and the controller structure is as follows:
uf(t)=Mx(t)
wherein u isfAnd (t) is a state feedback controller, and M is a gain array of the feedback controller to be determined.
5. Designing fault-tolerant anti-interference controller
Based on interference observer, fault diagnosis observer and robust HThe state feedback controller is designed as follows:
u ( t ) = u f ( t ) - d ^ 1 ( t ) - F ^ ( t )
The multi-source interference system can be expressed as:
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>A</mi> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>M</mi> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>V</mi> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
the systematic estimation error equation for organizing the modelable disturbance model and the systematic estimation error equation for the rate-of-change bounded time-varying fault are as follows:
<math> <mrow> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <mi>V</mi> <mo>)</mo> </mrow> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>LB</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>KB</mi> <mn>1</mn> </msub> <mi>V</mi> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>KB</mi> <mn>1</mn> </msub> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>KB</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mover> <mi>F</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
combining the multi-source interference system, the system estimation error of the modeling interference model and the system estimation error equation of the time-varying fault to obtain a closed-loop system:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>A</mi> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>M</mi> </mtd> <mtd> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>V</mi> </mtd> <mtd> <msub> <mi>B</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>W</mi> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <mi>V</mi> </mtd> <mtd> <msub> <mi>LB</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>KB</mi> <mn>1</mn> </msub> <mi>V</mi> </mtd> <mtd> <msub> <mi>KB</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>B</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>LB</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>KB</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mover> <mi>F</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>E</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>f</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mo>&infin;</mo> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>1</mn> </msub> </mtd> <mtd> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
wherein z is(t) is HPerformance reference output, [ C ]0C1C2]Is HAnd (5) outputting a matrix with adjustable performance.
6. Gain matrix solving
Solving a fault-tolerant anti-interference controller gain array of the multi-source interference system by using a convex optimization algorithm; initial values x (0), e are givenw(0) And eF(0) Adjustable output matrix [ C ]0C1C2]The non-linear weight parameter lambda, the interference suppression degree gamma1、γ2And gamma3Solving the following convex optimization problem:
min x T ( 0 ) e T ( 0 ) P 1 P 2 x T ( 0 ) e T ( 0 ) T
<math> <mrow> <mi>&Phi;</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&Phi;</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>G</mi> </mtd> <mtd> <mo>-</mo> <mi>E</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>B</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mn>18</mn> </msub> </mtd> <mtd> <msub> <mi>P</mi> <mn>1</mn> </msub> <msubsup> <mi>C</mi> <mn>0</mn> <mi>T</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mn>22</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>P</mi> <mn>2</mn> </msub> <msub> <mi>H</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> <msub> <mi>B</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>P</mi> <mn>2</mn> </msub> <msub> <mi>H</mi> <mn>2</mn> </msub> </mtd> <mtd> <mi>&lambda;</mi> <msup> <mrow> <mo>(</mo> <mi>U</mi> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>G</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> <mtd> <msup> <mi>C</mi> <mi>T</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msup> <mi>&lambda;</mi> <mn>2</mn> </msup> <mi>I</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&lambda;</mi> <msup> <mrow> <mo>(</mo> <mi>UE</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msubsup> <mi>&gamma;</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msubsup> <mi>&gamma;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&lambda;</mi> <msup> <mrow> <mo>(</mo> <msub> <mi>UB</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msubsup> <mi>&gamma;</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mi>I</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <mi>I</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <mi>I</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein e (0) ═ ew(0)eF(0)]T11=(AP1+B1R1)+(AP1+B1R1)T22=(P2W1+R2B1G)+(P2W1+R2B1G)T18=λ(AP1+B1R1)T,C=[C1C2],G=[E I],H1=[B3 0]T,H2=[0 1]T(ii) a Symbol represents the symmetric block of the corresponding part in the symmetric matrix, and P is obtained by solving1、P2、R1And R2The gain array of the disturbance observer and the fault diagnosis observer is L K = P 2 - 1 R 2 , The state feedback controller gain array is
Figure BDA00001926355000095
Those skilled in the art will appreciate that the invention may be practiced without these specific details.

Claims (3)

1. A fault-tolerant anti-interference control method of a multi-source interference system is characterized by comprising the following steps: firstly, designing a fault diagnosis observer to estimate and counteract time-varying faults in a system; secondly, designing a disturbance observer to estimate and counteract modelable disturbance in the multi-source disturbance system; thirdly, design robust HThe state feedback controller inhibits unmoldable random interference, fault estimation errors and interference estimation errors in the multi-source interference system; finally, based on fault diagnosis observer, disturbance observer and robust HState feedback controller, design fault-tolerant anti-jammingA controller; the method comprises the following specific steps:
firstly, building a dynamic model containing a multi-source interference system, and writing a state space expression
Aiming at a multi-source interference system containing time-varying faults, modelable interference and unmodeled random interference, a system dynamics model is built and written into a state space expression as follows:
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Ax</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein x (t) is the state variable of the multi-source interference system, u (t) is the control input, d1(t) modelable interference, F (t) time-varying fault, d2(t) unmoldable random interference, A, E, B1And B2Is a matrix of known dimensions and is,for system nonlinear terms and satisfying the Lipschitz condition, the external model describes the disturbance d1(t) from the following external interference model ∑1Represents:
<math> <mrow> <msub> <mi>&Sigma;</mi> <mn>1</mn> </msub> <mo>:</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>d</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Vw</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Ww</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein W (t) is a state variable of the modelable interference model, V is an output matrix of the modelable interference model, W represents a system matrix of the modelable interference model, delta (t) is the non-modelable random interference with bounded energy, and B3A gain array for unmoldable random interference;
second, designing a fault diagnosis observer
For time varying in multi-source jamming systemsAnd designing a fault diagnosis observer to estimate the fault in real time and obtaining an estimated value
Figure FDA00001926354900014
Further obtain the fault estimation error
Thirdly, designing a disturbance observer
Modeling disturbance d in multi-source disturbance system1(t) designing a disturbance observer to estimate the disturbance observer in real time and obtaining an estimated valueFurther obtaining interference estimation error
Figure FDA00001926354900022
Is an estimate of w (t);
the fourth step, design robust HState feedback controller
For unmoldable random disturbance d in multi-source disturbance system2(t) error of failure estimation eF(t) and interference estimation error ew(t), designing robust HThe state feedback controller restrains the state feedback, and the controller structure is as follows:
uf(t)=Mx(t)
wherein u isf(t) is robust HA state feedback control input, wherein M is a gain array of a feedback controller in an undetermined state;
fifthly, designing a fault-tolerant anti-interference controller
Designing fault-tolerant anti-interference controller to time-varying fault F (t) and modelable interference d in system1(t) counteracting, unmodeled random interference d2(t) error of failure estimation eF(t) and interference estimation error ew(t) suppression, fault tolerant anti-jamming controlThe structure of the device is as follows:
u ( t ) = u f ( t ) - F ^ ( t ) - d ^ 1 ( t )
the multi-source interference system can be expressed as:
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>A</mi> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>M</mi> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>V</mi> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
the systematic estimation error equation for organizing the modelable interference model and the systematic estimation error equation for the time-varying fault are as follows:
<math> <mrow> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <mi>V</mi> <mo>)</mo> </mrow> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>LB</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>KB</mi> <mn>1</mn> </msub> <mi>V</mi> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>KB</mi> <mn>1</mn> </msub> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>KB</mi> <mn>2</mn> </msub> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mover> <mi>F</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
combining the multi-source interference system, the system estimation error equation of the time-varying fault and the system estimation error equation of the modeling interference to obtain a closed-loop system:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>e</mi> <mo>&CenterDot;</mo> </mover> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>A</mi> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>M</mi> </mtd> <mtd> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>V</mi> </mtd> <mtd> <msub> <mi>B</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>W</mi> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <mi>V</mi> </mtd> <mtd> <msub> <mi>LB</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>KB</mi> <mn>1</mn> </msub> <mi>V</mi> </mtd> <mtd> <msub> <mi>KB</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>B</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>LB</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>KB</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>d</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mover> <mi>F</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>E</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>f</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mo>&infin;</mo> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>1</mn> </msub> </mtd> <mtd> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
wherein z is(t) is HPerformance reference output, [ C ]0C1C2]Is HA performance adjustable output matrix;
sixth, gain matrix solution
Solving a fault-tolerant anti-interference controller gain array of the multi-source interference system by using a convex optimization algorithm; initial values x (0), e are givenw(0) And eF(0) Adjustable output matrix [ C ]0C1C2]The non-linear weight parameter lambda, the interference suppression degree gamma1、γ2And gamma3Solving the following convex optimization problem:
min x T ( 0 ) e T ( 0 ) P 1 P 2 x T ( 0 ) e T ( 0 ) T
<math> <mrow> <mi>&Phi;</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&Phi;</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>G</mi> </mtd> <mtd> <mo>-</mo> <mi>E</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>B</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mn>18</mn> </msub> </mtd> <mtd> <msub> <mi>P</mi> <mn>1</mn> </msub> <msubsup> <mi>C</mi> <mn>0</mn> <mi>T</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mn>22</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>P</mi> <mn>2</mn> </msub> <msub> <mi>H</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> <msub> <mi>B</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>P</mi> <mn>2</mn> </msub> <msub> <mi>H</mi> <mn>2</mn> </msub> </mtd> <mtd> <mi>&lambda;</mi> <msup> <mrow> <mo>(</mo> <mi>U</mi> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>G</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> <mtd> <msup> <mi>C</mi> <mi>T</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msup> <mi>&lambda;</mi> <mn>2</mn> </msup> <mi>I</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&lambda;</mi> <msup> <mrow> <mo>(</mo> <mi>UE</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msubsup> <mi>&gamma;</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msubsup> <mi>&gamma;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&lambda;</mi> <msup> <mrow> <mo>(</mo> <msub> <mi>UB</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <msubsup> <mi>&gamma;</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mi>I</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <mi>I</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>*</mo> </mtd> <mtd> <mo>-</mo> <mi>I</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein e (0) ═ ew(0)eF(0)]T11=(AP1+B1R1)+(AP1+B1R1)T22=(P2W1+R2B1G)+(P2W1+R2B1G)T18=λ(AP1+B1R1)T,C=[C1 C2],G=[E I],H1=[B3 0]T,H2=[0 1]T(ii) a Symbol represents the symmetric block of the corresponding part in the symmetric matrix, and P is obtained by solving1、P2、R1And R2The gain array of the disturbance observer and the fault diagnosis observer is L K = P 2 - 1 R 2 , The state feedback controller gain array is
Figure FDA00001926354900034
2. The fault-tolerant anti-interference control method of the multi-source interference system according to claim 1, characterized in that: the structure of the fault diagnosis observer in the step 2 is as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&tau;</mi> <mo>-</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&tau;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>KB</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>-</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>K</mi> <mo>[</mo> <mi>Ax</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <msub> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>]</mo> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,
Figure FDA00001926354900036
k is a gain matrix of the fault diagnosis observer to be determined, and epsilon (t) is an auxiliary variable.
3. The fault-tolerant anti-interference control method of the multi-source interference system according to claim 1, characterized in that: the structure of the disturbance observer in the step 3 is as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>V</mi> <mover> <mi>w</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>w</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Lx</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>v</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>+</mo> <msub> <mi>LB</mi> <mn>1</mn> </msub> <mi>V</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Lx</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>L</mi> <mo>[</mo> <mi>Ax</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>Ef</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>]</mo> </mtd> </mtr> </mtable> </mfenced> </math>
wherein, V (t) is an auxiliary variable, L is a gain matrix of the interference observer to be determined, V is an output matrix of the modelable interference model, and W represents a system array of the modelable interference model.
CN201210258674.2A 2012-07-24 2012-07-24 Fault-tolerant anti-interference control method for multisource interference system Active CN102749852B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210258674.2A CN102749852B (en) 2012-07-24 2012-07-24 Fault-tolerant anti-interference control method for multisource interference system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210258674.2A CN102749852B (en) 2012-07-24 2012-07-24 Fault-tolerant anti-interference control method for multisource interference system

Publications (2)

Publication Number Publication Date
CN102749852A true CN102749852A (en) 2012-10-24
CN102749852B CN102749852B (en) 2014-07-02

Family

ID=47030136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210258674.2A Active CN102749852B (en) 2012-07-24 2012-07-24 Fault-tolerant anti-interference control method for multisource interference system

Country Status (1)

Country Link
CN (1) CN102749852B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116357A (en) * 2013-03-14 2013-05-22 郭雷 Sliding-mode control method with anti-interference fault-tolerance performance
CN103135553A (en) * 2013-01-21 2013-06-05 南京航空航天大学 Four-rotor aircraft fault-tolerant control method
CN103488080A (en) * 2013-09-09 2014-01-01 河北科技师范学院 Lunar rover coordinated drive self-adaption fault-tolerant control method based on hierarchical fuzzy system
CN103529705A (en) * 2013-10-16 2014-01-22 北京七星华创电子股份有限公司 Dissipation non-fragile control method and device of LPCVD (Low Pressure Chemical Vapor Deposition) equipment
CN103885451A (en) * 2014-03-29 2014-06-25 北京航空航天大学 Novel anti-interference attitude control circuit resolving system
CN103900559A (en) * 2014-03-29 2014-07-02 北京航空航天大学 High precision attitude resolving system based on interference estimation
CN104102128A (en) * 2013-04-09 2014-10-15 中国人民解放军第二炮兵工程大学 Anti-interference attitude control method suitable for miniaturized unmanned aircraft
CN104192322A (en) * 2014-07-22 2014-12-10 北京航空航天大学 Planet power descending branch anti-interference guidance control method with online track generation function
CN104503428A (en) * 2014-11-25 2015-04-08 中国民航大学 Anti-interference time-variant fault diagnosis method of civil aircraft automatic flight control system
CN105629988A (en) * 2016-03-31 2016-06-01 北京航空航天大学 Anti-interference attitude control method of drag-free satellite
CN105700351A (en) * 2016-01-21 2016-06-22 北京理工大学 Active fault tolerance control method for servo system
CN108710303A (en) * 2018-07-25 2018-10-26 西北工业大学 Spacecraft relative attitude control method containing multi-source disturbance and actuator saturation
CN108983801A (en) * 2018-08-14 2018-12-11 北京航空航天大学 A kind of anti-interference attitude control method of spacecraft based on counteraction flyback dynamic characteristic
CN109885075A (en) * 2019-03-06 2019-06-14 扬州大学 A kind of anti-interference fault tolerant control method of attitude of satellite based on T-S obscurity model building
CN109991848A (en) * 2019-03-28 2019-07-09 鲁东大学 Anti-interference control method and device
CN111472468A (en) * 2020-04-17 2020-07-31 南通大学 High-rise building damping control method based on distributed fault diagnosis and collaborative fault tolerance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107450328B (en) * 2017-10-12 2018-08-14 北京航空航天大学 A kind of anti-interference fault tolerant control method based on E-S sliding mode observers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188972A1 (en) * 2006-10-11 2008-08-07 Fisher-Rosemount Systems, Inc. Method and System for Detecting Faults in a Process Plant
CN101571704A (en) * 2009-06-18 2009-11-04 北京航空航天大学 Composite layered anti-interference controller
CN101572533A (en) * 2009-06-18 2009-11-04 北京航空航天大学 Composite layered anti-interference filter
CN101895501A (en) * 2010-07-15 2010-11-24 中国科学技术大学 Discontinuous orthogonal frequency division multiplexing anti-interference synchronous method based on channelizing pre-filtering
CN102298390A (en) * 2011-06-24 2011-12-28 北京航空航天大学 Anti-disturbance flexible spacecraft attitude and vibration composite control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188972A1 (en) * 2006-10-11 2008-08-07 Fisher-Rosemount Systems, Inc. Method and System for Detecting Faults in a Process Plant
CN101571704A (en) * 2009-06-18 2009-11-04 北京航空航天大学 Composite layered anti-interference controller
CN101572533A (en) * 2009-06-18 2009-11-04 北京航空航天大学 Composite layered anti-interference filter
CN101895501A (en) * 2010-07-15 2010-11-24 中国科学技术大学 Discontinuous orthogonal frequency division multiplexing anti-interference synchronous method based on channelizing pre-filtering
CN102298390A (en) * 2011-06-24 2011-12-28 北京航空航天大学 Anti-disturbance flexible spacecraft attitude and vibration composite control method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135553B (en) * 2013-01-21 2015-06-17 南京航空航天大学 Four-rotor aircraft fault-tolerant control method
CN103135553A (en) * 2013-01-21 2013-06-05 南京航空航天大学 Four-rotor aircraft fault-tolerant control method
CN103116357A (en) * 2013-03-14 2013-05-22 郭雷 Sliding-mode control method with anti-interference fault-tolerance performance
CN103116357B (en) * 2013-03-14 2016-05-11 北京航空航天大学 A kind of sliding-mode control with anti-interference fault freedom
CN104102128A (en) * 2013-04-09 2014-10-15 中国人民解放军第二炮兵工程大学 Anti-interference attitude control method suitable for miniaturized unmanned aircraft
CN103488080A (en) * 2013-09-09 2014-01-01 河北科技师范学院 Lunar rover coordinated drive self-adaption fault-tolerant control method based on hierarchical fuzzy system
CN103488080B (en) * 2013-09-09 2015-11-11 河北科技师范学院 Moon craft based on layered fuzzy system is coordinated to drive adaptive fusion method
CN103529705A (en) * 2013-10-16 2014-01-22 北京七星华创电子股份有限公司 Dissipation non-fragile control method and device of LPCVD (Low Pressure Chemical Vapor Deposition) equipment
CN103885451A (en) * 2014-03-29 2014-06-25 北京航空航天大学 Novel anti-interference attitude control circuit resolving system
CN103900559A (en) * 2014-03-29 2014-07-02 北京航空航天大学 High precision attitude resolving system based on interference estimation
CN103900559B (en) * 2014-03-29 2016-08-17 北京航空航天大学 A kind of high-precision attitude resolving system based on Interference Estimation
CN103885451B (en) * 2014-03-29 2017-01-25 北京航空航天大学 Novel anti-interference attitude control circuit resolving system
CN104192322A (en) * 2014-07-22 2014-12-10 北京航空航天大学 Planet power descending branch anti-interference guidance control method with online track generation function
CN104503428A (en) * 2014-11-25 2015-04-08 中国民航大学 Anti-interference time-variant fault diagnosis method of civil aircraft automatic flight control system
CN105700351B (en) * 2016-01-21 2018-11-06 北京理工大学 The Active Fault-tolerant Control Method of servo-drive system
CN105700351A (en) * 2016-01-21 2016-06-22 北京理工大学 Active fault tolerance control method for servo system
CN105629988A (en) * 2016-03-31 2016-06-01 北京航空航天大学 Anti-interference attitude control method of drag-free satellite
CN108710303A (en) * 2018-07-25 2018-10-26 西北工业大学 Spacecraft relative attitude control method containing multi-source disturbance and actuator saturation
CN108983801A (en) * 2018-08-14 2018-12-11 北京航空航天大学 A kind of anti-interference attitude control method of spacecraft based on counteraction flyback dynamic characteristic
CN108983801B (en) * 2018-08-14 2021-05-28 北京航空航天大学 Anti-interference attitude control method for spacecraft based on dynamic characteristics of reaction flywheel
CN109885075A (en) * 2019-03-06 2019-06-14 扬州大学 A kind of anti-interference fault tolerant control method of attitude of satellite based on T-S obscurity model building
CN109991848A (en) * 2019-03-28 2019-07-09 鲁东大学 Anti-interference control method and device
CN109991848B (en) * 2019-03-28 2022-02-01 鲁东大学 Anti-interference control method and device
CN111472468A (en) * 2020-04-17 2020-07-31 南通大学 High-rise building damping control method based on distributed fault diagnosis and collaborative fault tolerance
CN111472468B (en) * 2020-04-17 2021-10-12 南通大学 High-rise building damping control method based on distributed fault diagnosis and collaborative fault tolerance

Also Published As

Publication number Publication date
CN102749852B (en) 2014-07-02

Similar Documents

Publication Publication Date Title
CN102749852B (en) Fault-tolerant anti-interference control method for multisource interference system
CN103116357B (en) A kind of sliding-mode control with anti-interference fault freedom
Hu et al. Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode
Jiang et al. Adaptive fault-tolerant tracking control of near-space vehicle using Takagi–Sugeno fuzzy models
CN107450324A (en) Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint
CN108415255B (en) A kind of anti-interference attitude control method of spacecraft under executing agency is impaired
CN103838145B (en) VTOL aircraft Robust Fault-Tolerant Control Systems based on cascade observer and method
CN106020221B (en) A kind of anti-interference gesture stability verification platform and verification method based on output feedback
Xu et al. Fault tolerant formations control of UAVs subject to permanent and intermittent faults
CN110850887B (en) Composite dynamic inverse anti-interference attitude control method for quad-rotor unmanned aerial vehicle
CN108180910B (en) One kind being based on the uncertain aircraft quick high accuracy method of guidance of aerodynamic parameter
Wang et al. Nonlinear hierarchy-structured predictive control design for a generic hypersonic vehicle
CN107121961A (en) A kind of spacecraft attitude fault tolerant control method based on iterative learning interference observer
CN106527137A (en) Observer-based quadrotor unmanned aerial vehicle fault-tolerant control method
CN103676918B (en) A kind of satellite executing mechanism method for diagnosing faults based on Unknown Input Observer
CN105629986B (en) A kind of anti-interference filtration method without towing attitude of satellite passage
CN107450328A (en) A kind of anti-interference fault tolerant control method based on E S sliding mode observers
CN109885075A (en) A kind of anti-interference fault tolerant control method of attitude of satellite based on T-S obscurity model building
Hu et al. Fuzzy reliable tracking control for flexible air-breathing hypersonic vehicles
CN105629988A (en) Anti-interference attitude control method of drag-free satellite
Suh et al. Virtual Deformation Control of the X 56A Model with Simulated Fiber Optic Sensors
CN103863578B (en) Mars landing device jet thrust device and control moment gyroscope combined control system
CN105629739A (en) Output feedback anti-interference control method of drag-free satellite relative displacement channel
CN116923730B (en) Spacecraft attitude active fault-tolerant control method with self-adjusting preset performance constraint
CN116360258A (en) Hypersonic deformed aircraft anti-interference control method based on fixed time convergence

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant