CN102722549A - Cluster-based real-time rendering service of remote sensing data set - Google Patents
Cluster-based real-time rendering service of remote sensing data set Download PDFInfo
- Publication number
- CN102722549A CN102722549A CN2012101678272A CN201210167827A CN102722549A CN 102722549 A CN102722549 A CN 102722549A CN 2012101678272 A CN2012101678272 A CN 2012101678272A CN 201210167827 A CN201210167827 A CN 201210167827A CN 102722549 A CN102722549 A CN 102722549A
- Authority
- CN
- China
- Prior art keywords
- data
- rendering
- tile
- node
- computing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009877 rendering Methods 0.000 title claims abstract description 81
- 238000003860 storage Methods 0.000 claims abstract description 23
- 238000012216 screening Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 10
- 230000010354 integration Effects 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 2
- 238000012800 visualization Methods 0.000 abstract description 3
- 238000013523 data management Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000008520 organization Effects 0.000 abstract description 2
- 230000009897 systematic effect Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 238000013075 data extraction Methods 0.000 description 2
- 238000001983 electron spin resonance imaging Methods 0.000 description 2
- 241000501754 Astronotus ocellatus Species 0.000 description 1
- VQLYBLABXAHUDN-UHFFFAOYSA-N bis(4-fluorophenyl)-methyl-(1,2,4-triazol-1-ylmethyl)silane;methyl n-(1h-benzimidazol-2-yl)carbamate Chemical compound C1=CC=C2NC(NC(=O)OC)=NC2=C1.C=1C=C(F)C=CC=1[Si](C=1C=CC(F)=CC=1)(C)CN1C=NC=N1 VQLYBLABXAHUDN-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013079 data visualisation Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Processing Or Creating Images (AREA)
Abstract
本发明提供一种针对多源遥感数据集进行集群化快速渲染的系统性解决方案,特别是面向海量的遥感数据和不同类型的数据集,解决数据的分布式组织存储问题和多数据集的联合查询问题。首先部署适合海量遥感数据实时渲染系统的集群环境,由“计算-数据”一体的若干节点和中心服务器组成;客户端的瓦片渲染请求通过网络通道发往中心服务器,后者进行查询、筛选和后处理,得到该瓦片范围内的可见数据列表,并根据其存储位置确定最优的节点;节点读取各个数据对应的瓦片块,逐一叠加渲染到画布上,并发回给中心服务器;最后由中心服务器向客户端返回结果。本发明适用于二/三维地表渲染的纹理和地形瓦片生产、大规模遥感数据管理中的可视化等大规模应用领域。
The present invention provides a systematic solution for clustering and fast rendering of multi-source remote sensing data sets, especially for massive remote sensing data and different types of data sets, and solves the problem of distributed organization and storage of data and the combination of multiple data sets Query questions. First, deploy a cluster environment suitable for the real-time rendering system of massive remote sensing data, which is composed of a number of nodes integrating "computing and data" and a central server; the client's tile rendering request is sent to the central server through a network channel, and the latter performs query, screening and processing. processing to obtain the list of visible data within the tile range, and determine the optimal node according to its storage location; the node reads the tile blocks corresponding to each data, superimposes and renders them on the canvas one by one, and sends them back to the central server; finally, the The central server returns the result to the client. The invention is suitable for large-scale application fields such as texture and terrain tile production of two-dimensional/three-dimensional surface rendering, visualization in large-scale remote sensing data management, and the like.
Description
技术领域 technical field
本发明涉及集群计算技术和遥感数据可视化技术,具体地说,涉及遥感数据集的集群化瓦片数据渲染技术。本发明适用于全球范围海量遥感数据的实时渲染服务。The invention relates to cluster computing technology and remote sensing data visualization technology, in particular to clustered tile data rendering technology of remote sensing data sets. The invention is applicable to the real-time rendering service of massive remote sensing data in the world.
背景技术 Background technique
多源遥感数据的叠加渲染一般包括数据金字塔构建、瓦片画布创建、数据读取、顺序叠加绘制等技术过程。其中金字塔构建技术已运用得十分普遍,例如ESRI公司的ArcSDE,武汉大学的GeoImageDB,超图软件的SuperMap等都实现了影像的金字塔构建技术,提高了数据的抽取效率。然而,全球范围内的数据渲染涉及到多重数据源、多波段数据的抽取和叠加绘制、数据源更新及交互操作等问题,在很大程度上限制了渲染的实时性和实效性。目前的大多数系统采用了预先渲染和建立全球数据瓦片索引体系等策略,如Google地球、Skyline软件等,这些产品在显著提高瓦片调度效率和具备良好用户体验的同时,在数据更新的时效性和用户操作的专业化程度上存在着不足。相关的参考资料包括ArcSDE-The UniversalSpatial Server for ARC/INFO,An ESRI White Paper,April 1999;Fang Tao,Li Deren,Gong Jianya,Pi Minghong,Development and Implementation of Multiresolution and Seamless Image DatabaseSystem GeoImageDB,Journal of Wuhan Technical University of Surveying and Mapping,24(3),1999;http://earth.google.com/;http://www.skylineglobe.com等。The overlay rendering of multi-source remote sensing data generally includes technical processes such as data pyramid construction, tile canvas creation, data reading, and sequential overlay rendering. Among them, the pyramid construction technology has been widely used. For example, ArcSDE of ESRI, GeoImageDB of Wuhan University, and SuperMap of SuperMap software have all realized the pyramid construction technology of images and improved the efficiency of data extraction. However, global data rendering involves issues such as multiple data sources, multi-band data extraction and overlay drawing, data source update and interactive operation, which largely limits the real-time and effectiveness of rendering. Most of the current systems adopt strategies such as pre-rendering and establishing a global data tile index system, such as Google Earth and Skyline software. There are deficiencies in the degree of professionalism and user operation. Related references include ArcSDE-The UniversalSpatial Server for ARC/INFO, An ESRI White Paper, April 1999; Fang Tao, Li Deren, Gong Jianya, Pi Minghong, Development and Implementation of Multiresolution and Seamless Image DatabaseSystem GeoImageDB, Journal of Wu University of Surveying and Mapping, 24(3), 1999; http://earth.google.com/; http://www.skylineglobe.com, etc.
为了实现大规模全球真实遥感数据实时可视化服务,需要由集群计算环境支撑,具体涉及了集群管理技术、任务调度技术、分布式文件系统等关键技术。现有的主流技术,集群管理软件如OSCAR、ROCKS、Perceus、xCAT等,任务调度技术如LoadLeveler、Gearman、Hadoop、Control Tower、LVS等,分布式文件系统如MapReduce、Lustre等,都提供了集群计算环境的解决方案。但是,渲染计算任务具有大网络吞吐量、细计算粒度等特点,很难找到一种完全适合的技术方案。相关的参考资料包括http://www.rocksclusters.org;http://xcat.sourceforge.net/;http://hadoop.apache.org/等。In order to realize the real-time visualization service of large-scale global real remote sensing data, it needs to be supported by a cluster computing environment, which specifically involves key technologies such as cluster management technology, task scheduling technology, and distributed file system. Existing mainstream technologies, cluster management software such as OSCAR, ROCKS, Perceus, xCAT, etc., task scheduling technologies such as LoadLeveler, Gearman, Hadoop, Control Tower, LVS, etc., distributed file systems such as MapReduce, Lustre, etc., all provide cluster computing environmental solutions. However, rendering computing tasks have the characteristics of large network throughput and fine computing granularity, so it is difficult to find a completely suitable technical solution. Related references include http://www.rocksclusters.org; http://xcat.sourceforge.net/; http://hadoop.apache.org/, etc.
客户端和集群节点之间的渲染瓦片请求和瓦片数据回复需要通过网络传输,要求有快速、稳定的网络响应和特定的消息处理机制。MPI提供了标准化的网络通信机制,但是对于细粒度和快速响应的计算任务支持度不够。相关的参考资料包括http://www.open-mpi.org;http://www.mcs.anl.gov/research/projects/mpich2/等。The rendering tile request and tile data reply between the client and the cluster nodes need to be transmitted through the network, requiring fast and stable network response and a specific message processing mechanism. MPI provides a standardized network communication mechanism, but it does not support fine-grained and fast-response computing tasks enough. Related references include http://www.open-mpi.org; http://www.mcs.anl.gov/research/projects/mpich2/, etc.
除了分布式文件存储外,还需通过数据库系统建立遥感数据的元数据索引以及相应的空间索引,从而能在用户请求渲染瓦片时,快速地检索到对应的数据存储位置,并确定最优的计算节点。目前支持或部分支持OGR标准的数据库包括Oracle、MySQL、PostgreSQL等。相关的参考资料包括http://www.oracle.com;http://www.mysql.com/;http://www.postgresql.org/。In addition to distributed file storage, the metadata index and corresponding spatial index of remote sensing data need to be established through the database system, so that when the user requests to render tiles, the corresponding data storage location can be quickly retrieved and the optimal location can be determined. calculate node. Databases that currently support or partially support the OGR standard include Oracle, MySQL, PostgreSQL, etc. Related references include http://www.oracle.com; http://www.mysql.com/; http://www.postgresql.org/.
基于集群的全球范围遥感数据渲染服务系统同时涉及了多数据集的联合查询、细计算粒度划分、快速网络响应等内容,目前可见文献/专利中相互独立的研究较多,而从系统整体的角度提出解决方案的还未出现。The cluster-based global remote sensing data rendering service system also involves joint query of multiple data sets, fine-grained computing granularity, and fast network response. Currently, it can be seen that there are many independent studies in the literature/patents, but from the perspective of the system as a whole No solution has yet emerged.
发明内容 Contents of the invention
本发明的目的是提供一种针对海量多源遥感数据集进行集群化快速渲染的系统性解决方案,特别是面向海量的遥感数据和不同类型的数据集,解决数据的分布式组织存储问题、多数据集的联合查询问题和多模式并行计算问题。The purpose of the present invention is to provide a systematic solution for clustering and fast rendering of massive multi-source remote sensing data sets, especially for massive remote sensing data and different types of data sets, to solve the problem of distributed organization and storage of data, multiple Joint query problems of datasets and multi-mode parallel computing problems.
本发明的基本思路为:首先部署适合海量遥感数据实时渲染系统的集群环境,由“计算-数据”联合一体的若干节点和一个中心服务器组成,中心服务器同时部署保存所有进入集群的遥感数据元信息;客户端的瓦片渲染请求通过网络通道发往中心服务器时,后者进行SQL查询和后处理,得到该瓦片范围内的最上层所需渲染数据列表,确定渲染顺序,并根据这些数据的存储位置确定最优的节点;节点渲染时,读取各个数据文件,并载入瓦片所在范围、层级的数据,逐一叠加渲染到画布上,发回给中心服务器;最后由中心服务器返回结果。The basic idea of the present invention is as follows: first, deploy a cluster environment suitable for a real-time rendering system of massive remote sensing data, which is composed of several nodes integrating "computing-data" and a central server, and the central server deploys and saves all the meta information of remote sensing data entering the cluster at the same time ; When the client's tile rendering request is sent to the central server through the network channel, the latter performs SQL query and post-processing to obtain the list of rendering data required for the top layer within the tile range, determine the rendering order, and store the data according to the The position determines the optimal node; when the node is rendered, each data file is read, and the data of the range and level of the tile is loaded, superimposed and rendered on the canvas one by one, and sent back to the central server; finally, the central server returns the result.
本发明的技术方案提供了一种基于集群的遥感数据集实时渲染系统,具体包含以下的实施步骤:The technical solution of the present invention provides a cluster-based real-time rendering system for remote sensing data sets, which specifically includes the following implementation steps:
1)构建集群环境,架设若干计算和存储一体的节点,每个节点包括一台多核工作站,并挂载存储磁盘阵列,节点间用高速局域网络连接;部署一台多核服务器,安装关系型数据库,通过局域网络与各个节点连接;1) Construct a cluster environment, set up several nodes integrating computing and storage, each node includes a multi-core workstation, and mount a storage disk array, connect the nodes with a high-speed local area network; deploy a multi-core server, install a relational database, Connect to each node through a local area network;
2)遥感数据进入集群后,将作为一个整体被放置于一个节点的存储阵列中(或以冗余的方式放在多个节点中),同时提取其元信息,存储到服务器的数据库中,作为数据查询条件;2) After the remote sensing data enters the cluster, it will be placed in the storage array of a node as a whole (or placed in multiple nodes in a redundant manner), and its meta information will be extracted at the same time, stored in the database of the server, as Data query conditions;
3)对于一个瓦片,按照视点的层级、空间的位置、瓦片的大小三种指标,确定其唯一的编号,它所表示的空间范围也是确定的;3) For a tile, its unique number is determined according to the three indicators of viewpoint level, spatial position, and tile size, and the spatial range it represents is also determined;
4)瓦片渲染请求由客户端通过网络发给中心服务器,前者建立优先级机制并维护请求队列,后者则以多线程的方式并行处理每个瓦片渲染请求;4) The tile rendering request is sent from the client to the central server through the network. The former establishes a priority mechanism and maintains a request queue, and the latter processes each tile rendering request in parallel in a multi-threaded manner;
5)服务器通过支持空间索引的数据库,在所有数据集中查找出该空间范围内的数据,再执行数据筛选算法,根据数据集类型、时间等规则对数据进行排序,并剔除被覆盖在下层的数据,即获得了需要渲染的经过排序的数据列表及其对应的存储位置信息;5) The server finds the data within the spatial range in all data sets through the database that supports spatial indexing, and then executes the data screening algorithm, sorts the data according to the data set type, time and other rules, and eliminates the data that is covered in the lower layer , that is, the sorted data list to be rendered and its corresponding storage location information are obtained;
6)依据已经生成的数据列表,选取列表中数据分布最多的那个节点作为计算节点(“计算-数据”一体化),并将渲染任务分配到该节点;6) According to the generated data list, select the node with the most data distribution in the list as the computing node ("computing-data" integration), and assign the rendering task to this node;
7)计算节点中一个瓦片的渲染过程为:创建画布,按照数据列表自底向上的顺序,依次读取瓦片范围内的数据块,将没有数据的部分置为透明,渲染到画布中;7) The rendering process of a tile in the computing node is: create a canvas, read the data blocks in the tile range in sequence according to the order of the data list from bottom to top, set the part without data to transparent, and render it into the canvas;
8)将渲染好的瓦片数据传回中心服务器,通过中心服务器返回给客户端;8) Send the rendered tile data back to the central server, and return it to the client through the central server;
9)步骤4)~8)完成了单个瓦片的渲染,将不同的渲染任务分布到各个节点中进行计算,同时以多线程的方式进行服务端的查询操作和节点端的渲染计算,即实现了集群化的并行渲染过程,对外提供实时的渲染服务。9) Steps 4) to 8) complete the rendering of a single tile, distribute different rendering tasks to each node for calculation, and at the same time perform query operations on the server side and rendering calculations on the node side in a multi-threaded manner, that is, the cluster is realized The optimized parallel rendering process provides real-time rendering services externally.
上述步骤的特征在于:The above steps are characterized by:
步骤1)、步骤2)部署了一个计算与数据一体化的集群环境,数据作为一个整体进行存储,不同数据分散存储在各个存储节点(同时也是计算节点)中,由中心服务器的关系型数据库统一管理其元信息;实现快速数据查询的同时,便于将计算任务分配到数据所在的节点,对于数据密集型的渲染任务,大大减少了计算时数据的网络吞吐量。 Step 1) and Step 2) deploy a cluster environment that integrates computing and data, and the data is stored as a whole, and different data are scattered and stored in each storage node (also a computing node), and are unified by the relational database of the central server Manage its meta-information; while realizing fast data query, it is convenient to assign computing tasks to the nodes where the data is located. For data-intensive rendering tasks, the network throughput of data during computing is greatly reduced.
步骤4)对于瓦片请求建立优先级缓存机制,优先处理最需要得到的瓦片渲染请求并随时剔除已废弃的请求,提高了实时性。 Step 4) Establish a priority caching mechanism for tile requests, give priority to processing the most needed tile rendering requests and remove discarded requests at any time, improving real-time performance.
步骤5)的数据筛选算法,筛选出了最上层用户能看到的数据列表,剔除了大部分被覆盖在下层的数据,避免渲染时无用的数据读取和绘制操作,节省了计算量和数据吞吐量。 The data screening algorithm in step 5) screens out the data list that the top-level user can see, and eliminates most of the data that is covered in the lower layer, avoiding useless data reading and drawing operations during rendering, saving calculation and data throughput.
步骤5)、步骤6)的数据查询、数据筛选、确定节点过程对于每个瓦片是独立的操作,在服务端以多线程的方式实现任务级并行化;同样,步骤7)的渲染过程也在计算节点端实现了并行化;结合步骤9)所述的整体过程,即为本发明的渲染流程集群实现方式,体现了细粒度任务划分、“计算-数据”一体化和“集群+多核”的多模式并行计算特征。 The data query, data screening, and node determination processes in step 5) and step 6) are independent operations for each tile, and task-level parallelization is realized in a multi-threaded manner on the server side; similarly, the rendering process in step 7) is also Parallelization is realized at the computing node side; combined with the overall process described in step 9), it is the rendering process cluster implementation method of the present invention, which embodies fine-grained task division, "computing-data" integration and "cluster + multi-core" The multi-mode parallel computing feature.
本发明与现有技术相比具有如下特点:(1)由于计算和数据绑定,并进行以数据为牵引的计算任务调度,能够有效避免由于频繁的数据网络吞吐而造成的网络拥堵,充分发挥存储和计算的效率和性能;(2)数据的元信息集中存放,实现了快速查询、定位和筛选;(3)多线程的数据查询和“集群+多核”的渲染计算模式,形成了有效且独特的并行化实时渲染流程。Compared with the prior art, the present invention has the following characteristics: (1) Due to the binding of calculation and data, and the scheduling of calculation tasks driven by data, it can effectively avoid network congestion caused by frequent data network throughput, and fully utilize The efficiency and performance of storage and computing; (2) Centralized storage of data meta-information enables fast query, positioning and screening; (3) Multi-threaded data query and "cluster + multi-core" rendering computing mode form an effective and Unique parallelized real-time rendering pipeline.
附图说明 Description of drawings
图1计算和存储绑定的集群结构Figure 1 The cluster structure of computing and storage binding
图2数据的元信息字段内容Figure 2 Contents of metadata field of data
图3本发明的全球范围瓦片划分及编号方式Fig. 3 global tile division and numbering method of the present invention
其中,图3-(1)表示第0级全球范围瓦片划分及编号,图3-(2)表示第1级全球范围瓦片划分及编号;Among them, Figure 3-(1) shows the division and numbering of global tiles at level 0, and Figure 3-(2) shows the division and numbering of tiles at
图4遥感数据集并行渲染流程Figure 4 Parallel rendering process of remote sensing datasets
图5渲染请求优先级定义Figure 5 Rendering request priority definition
图6瓦片请求队列缓存维护流程Figure 6 Tile request queue cache maintenance process
图7数据筛选示意图Figure 7 Schematic diagram of data screening
图8渲染效果图Figure 8 rendering rendering
具体实施方式 Detailed ways
图1是本发明所使用的集群环境拓扑结构:中心服务器安装MySQL数据库,管理集群中遥感数据的元信息,通过普通以太网(百兆)与集群节点连接;每个集群节点由一个计算刀片和一个磁盘存储阵列组成,节点间由高速以太网(千兆)相连。对于系统中的每个遥感数据,其元信息所包括的内容(见图2)有:数据集类型、数据名称、获取时间、数据的有效空间范围、存储节点、路径。前四项用于查询瓦片空间范围内的数据,后两项用于解析数据对应的存储位置及路径。其中,“数据集类型”标识了不同的数据类型,例如OrthorLandsatTM5表示TM5的正射影像数据集;“数据名称”是该数据在系统中的唯一标识;“获取时间”是指该数据的拍摄时间;“数据的有效空间范围”是指该数据的有效影像的经纬度坐标范围,用多边形表示并存储于数据库的空间字段中;“存储节点”指该数据所在存储节点的编号;“路径”是指该数据的存储路径。Fig. 1 is the used cluster environment topology of the present invention: the central server installs the MySQL database, manages the meta-information of the remote sensing data in the cluster, and is connected with the cluster nodes by common Ethernet (100M); each cluster node consists of a computing blade and It consists of a disk storage array, and the nodes are connected by high-speed Ethernet (Gigabit). For each remote sensing data in the system, its meta-information includes the following contents (see Figure 2): data set type, data name, acquisition time, effective spatial range of data, storage nodes, and paths. The first four items are used to query the data within the tile space, and the last two items are used to resolve the corresponding storage location and path of the data. Among them, "dataset type" identifies different data types, for example, OrthorLandsatTM5 indicates the orthophoto dataset of TM5; "data name" is the unique identification of the data in the system; "acquisition time" refers to the shooting time of the data ; "valid spatial range of the data" refers to the longitude and latitude coordinate range of the effective image of the data, which is represented by a polygon and stored in the spatial field of the database; "storage node" refers to the number of the storage node where the data is located; "path" refers to The storage path of the data.
在遥感数据入库时,会按照其空间范围分区归类存储于节点中,例如按照经度范围(-180°~180°)划分为8个区域,同一区域范围内的数据都将被存放在同一个节点中。这样的策略能尽量保证在渲染计算时,所需要访问的数据存放在本地磁盘中,减少网络吞吐量。When the remote sensing data is stored in the database, it will be classified and stored in nodes according to its spatial range. For example, it will be divided into 8 regions according to the longitude range (-180°~180°), and the data in the same region will be stored in the same node. in a node. Such a strategy can try to ensure that the data that needs to be accessed is stored in the local disk during rendering calculations, reducing network throughput.
图3示意了本发明所使用的瓦片划分方式,所使用的瓦片尺寸为256像素×256像素,具体划分方式如下:Fig. 3 illustrates the tile division method used in the present invention, and the tile size used is 256 pixels × 256 pixels, and the specific division method is as follows:
①将全球按照经纬度投影(经度范围-180°~180°,纬度范围-90°~90°)划分为2行4列的8个瓦片,作为第0级(见图3-(1)),即视觉上的最顶层;用一个3维向量(X,Y,D)对每个瓦片进行编号,X表示瓦片的列号,Y表示瓦片的行号,D表示瓦片的层级;例如(2,1,0)表示第2列,第1行,第0级的瓦片,而根据第0级划分规则,可计算出该瓦片的地理范围为(经度0°~90°,纬度-90°~0°)。① Divide the world into 8 tiles with 2 rows and 4 columns according to the latitude and longitude projection (longitude range -180°~180°, latitude range -90°~90°), as level 0 (see Figure 3-(1)) , that is, the visual topmost layer; use a 3-dimensional vector (X, Y, D) to number each tile, X represents the column number of the tile, Y represents the row number of the tile, and D represents the level of the tile ; For example, (2, 1, 0) means the tile of the 2nd column, the 1st row, and the 0th level, and according to the division rules of the 0th level, the geographical range of the tile can be calculated as (longitude 0°~90° , latitude -90°~0°).
②按照四叉树的原则向下划分第1级瓦片,即第0级中的一个瓦片对应第1级中表示相同地理范围的4个瓦片(见图3-(2)),例如第0级的(2,1,0)瓦片对应于第1级的(4,2,1)、(5,2,1)、(4,3,1)、(5,3,1)四个瓦片;一般地,若某瓦片编号为(x,y,d),则其对应的下一级的4个瓦片编号分别为:② Divide the first-level tiles downwards according to the principle of quadtree, that is, one tile in the 0th level corresponds to 4 tiles in the first level that represent the same geographical range (see Figure 3-(2)), for example (2, 1, 0) tiles at level 0 correspond to (4, 2, 1), (5, 2, 1), (4, 3, 1), (5, 3, 1) at
(2x,2y,d+1)(2x+1,2y,d+1)(2x,2y+1,d+1)(2x+1,2y+1,d+1)(2x, 2y, d+1) (2x+1, 2y, d+1) (2x, 2y+1, d+1) (2x+1, 2y+1, d+1)
而根据上述规则,该瓦片所覆盖的地理范围为:According to the above rules, the geographical range covered by the tile is:
经度范围: Longitude range:
纬度范围: Latitude range:
③按照上述规则进行第2级~第19级瓦片编号,由于瓦片的尺寸固定,因此层级数越大,该层的瓦片数就越多,其像素分辨率也就越高,所表现出的图像也越精细。③ According to the above rules, tiles from
确定了瓦片的编号规则后,渲染服务将以提供图像瓦片的形式提供(见图4),其总体流程中存在如下三个关键点:After the tile numbering rules are determined, the rendering service will be provided in the form of image tiles (see Figure 4). There are three key points in the overall process:
(1)客户端以按照优先级策略(见下文)维护瓦片请求;(1) The client maintains the tile request according to the priority strategy (see below);
(2)中心服务器维护一个瓦片请求的缓存,并以多线程的方式按序处理请求,对于每个请求经过数据查询、数据筛选、选择节点的操作,确定了该瓦片需要渲染的数据列表;(2) The central server maintains a cache of tile requests, and processes the requests sequentially in a multi-threaded manner. For each request, after data query, data filtering, and node selection operations, the data list to be rendered for the tile is determined. ;
(3)渲染节点维护一个渲染任务的缓存,并以多线程的方式逐一处理缓存中的渲染任务,充分发挥“计算-数据”一体化的运算效率。(3) The rendering node maintains a cache of rendering tasks, and processes the rendering tasks in the cache one by one in a multi-threaded manner, giving full play to the computing efficiency of "calculation-data" integration.
图5示意了本发明设计的优先级变量,它按照一定的策略产生,具体遵循三个原则:Fig. 5 illustrates the priority variable of the present invention design, and it produces according to certain strategy, specifically follows three principles:
<1>当前激活的视点内的瓦片优先级最高;<1> The tiles in the currently activated viewpoint have the highest priority;
<2>瓦片请求按照进入缓存的时间顺序递减,即越早进入缓存的优先级越低;<2> Tile requests are decremented according to the order of time they enter the cache, that is, the earlier they enter the cache, the lower the priority;
<3>其余为用户自定义优先级,按照纵向的瓦片层级和横向的空间方位来定义。<3>The rest are user-defined priorities, which are defined according to the vertical tile level and horizontal spatial orientation.
按照以上原则,定义一共24位组成的优先级数值,最高1位表示当前激活的视图视点,中间18位表示时间戳,后5位表示用户自定义的优先级。其中,中间18位将随着时间的推移而递减,直至为0时将该请求从缓存中移除。According to the above principles, define a priority value consisting of 24 bits in total. The highest bit indicates the currently activated view point, the middle 18 bits indicate the timestamp, and the last 5 bits indicate the user-defined priority. Wherein, the middle 18 bits will decrement as time goes by, and the request will be removed from the cache until it is 0.
如图6所示,瓦片请求的优先级处理流程如下:As shown in Figure 6, the priority processing flow of tile requests is as follows:
(1)客户端模块维护两个队列:请求队列和正在渲染列表。请求队列维护客户端调用请求接口时传入的所有请求,优先级最高的请求将被发送到渲染服务,并进入正在渲染列表。(1) The client module maintains two queues: the request queue and the rendering list. The request queue maintains all incoming requests when the client calls the request interface, and the request with the highest priority will be sent to the rendering service and entered into the rendering list.
(2)当新的请求进入时,若请求队列和正在渲染列表中已经存在该请求,则直接结束返回;否则执行步骤(3)。(2) When a new request comes in, if the request already exists in the request queue and the rendering list, it will end and return directly; otherwise, step (3) will be executed.
(3)若请求队列已满则先移除其中优先级最低的请求,然后为新到请求赋予时间优先级区间的数值为3000,并将其放入请求队列。(3) If the request queue is full, first remove the request with the lowest priority, and then assign a time priority interval value of 3000 to the new incoming request, and put it into the request queue.
(4)判断正在渲染列表是否已到最大请求个数,若尚未达到,则将请求队列中优先级最高的请求发往服务器,同时将其从请求队列中移除,放入正在渲染列表;否则结束返回。(4) Determine whether the maximum number of requests in the rendering list has been reached. If not, send the request with the highest priority in the request queue to the server, remove it from the request queue, and put it into the rendering list; otherwise End returns.
(5)当渲染结果从服务器返回时,从已发送列表移除该请求并通过回调方式返回给上层,然后执行步骤(4)。(5) When the rendering result is returned from the server, remove the request from the sent list and return it to the upper layer through a callback, and then perform step (4).
这里需要说明的是,正在渲染列表由节点的渲染能力确定,其具体数值为:What needs to be explained here is that the rendering list is determined by the rendering capability of the node, and its specific value is:
其中Nummax为正在渲染列表的最大请求个数,n为节点个数,NThreadi是第i个节点所使用的线程数。其中n和NThreadi的值在系统启动并初始化后获得,并实时更新。这样保证了发往服务器的渲染瓦片请求是当前最需要得到的,体现了实时性。Among them, Num max is the maximum number of requests that are rendering the list, n is the number of nodes, and NThread i is the number of threads used by the i-th node. Among them, the values of n and NThread i are obtained after the system is started and initialized, and updated in real time. This ensures that the rendering tile request sent to the server is the most needed at present, reflecting real-time performance.
在中心服务器,所有客户端瓦片请求将进入缓存队列,由多线程并行地处理。首先通过前文所记载“瓦片编号-地理范围”的计算公式获得瓦片的地理范围;再按顺序查找出此范围内所有覆盖到的数据,并根据数据类型和数据获取时间进行排序,其规则是先根据数据类型进行大类排序,再在同类数据内部根据时间由近到远进行排序,其中数据类型的排列顺序按照其分辨率由高到低进行,分辨率高的在上层;然后以及各个数据的有效数据范围进行基于可见性的筛选;最后根据筛选后的数据列表,选择拥有数据最多的节点,并将查询结果和渲染任务信息发往该节点。On the central server, all client tile requests will enter the cache queue and be processed in parallel by multiple threads. First, obtain the geographical range of the tile through the calculation formula of "tile number-geographical range" described above; then find out all the covered data in this range in order, and sort them according to the data type and data acquisition time, the rules It is to sort the data types firstly, and then sort the same type of data according to the time from near to far. The data types are sorted according to their resolutions from high to low, and the high resolution is on the upper layer; then and each The effective data range of the data is filtered based on visibility; finally, according to the filtered data list, the node with the most data is selected, and the query results and rendering task information are sent to this node.
在上述查询处理流程中,数据筛选算法的筛选原则见图7所示。图中虚线方框为瓦片的范围,假设数据查询和排序后的结果依次是①~⑤,那么按照可见度排序,⑤被剔除,①~④被选中作为最后需要渲染的数据。In the above query processing flow, the screening principle of the data screening algorithm is shown in Figure 7. The dotted box in the figure is the range of tiles. Assuming that the results of data query and sorting are ①~⑤, then sorted according to the visibility, ⑤ will be eliminated, and ①~④ will be selected as the final data to be rendered.
在节点的渲染线程中,程序依次从数据列表中获得相应地址,从影像金字塔中读取和采样瓦片范围内的数据片段,并将无效部分填充为透明,渲染到画布上,最后提取最终的渲染结果,并压缩发回服务器,进而返回给客户端。In the rendering thread of the node, the program obtains the corresponding address from the data list in turn, reads and samples the data fragments within the tile range from the image pyramid, fills the invalid part with transparency, renders it to the canvas, and finally extracts the final Render the result, compress it and send it back to the server, and then return it to the client.
图8列举了两个瓦片的渲染效果和二/三维地表渲染的应用效果,左上图的瓦片编号为(380,67,7),上层为“近红外-红-绿”波段组合的SPOT5影像数据,下层为“近红外-红-绿”波段组合的TM5影像数据,其渲染速度为1353毫秒;右下图的瓦片编号为(1521,262,9),上层为真彩色的QUICKBIRD影像数据,下层为“近红外-红-绿”波段组合的SPOT5影像数据,其渲染速度为745毫秒;中图为二维客户端的视图效果;下图为三维客户端的视图效果。Figure 8 lists the rendering effect of two tiles and the application effect of 2D/3D surface rendering. The tile number in the upper left picture is (380, 67, 7), and the upper layer is SPOT5 with the combination of "near-infrared-red-green" bands Image data, the lower layer is the TM5 image data of the combination of "near infrared-red-green" bands, and its rendering speed is 1353 milliseconds; the tile number of the lower right image is (1521, 262, 9), and the upper layer is the true color QUICKBIRD image Data, the lower layer is the SPOT5 image data of the combination of "near-infrared-red-green" bands, and its rendering speed is 745 milliseconds; the middle picture is the view effect of the 2D client; the bottom picture is the view effect of the 3D client.
本发明的平均瓦片渲染速度为1秒/瓦片以内,经过集群并行处理,瓦片服务的平均响应速度为80毫秒/瓦片以内,达到了实时的效果。本发明适用于二/三维地表渲染的纹理和地形瓦片生产、大规模遥感数据管理中的可视化等大规模应用领域。The average tile rendering speed of the present invention is within 1 second/tile, and through cluster parallel processing, the average response speed of the tile service is within 80 milliseconds/tile, achieving a real-time effect. The invention is suitable for large-scale application fields such as texture and terrain tile production of two-dimensional/three-dimensional surface rendering, visualization in large-scale remote sensing data management, and the like.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101678272A CN102722549A (en) | 2012-05-28 | 2012-05-28 | Cluster-based real-time rendering service of remote sensing data set |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101678272A CN102722549A (en) | 2012-05-28 | 2012-05-28 | Cluster-based real-time rendering service of remote sensing data set |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102722549A true CN102722549A (en) | 2012-10-10 |
Family
ID=46948310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101678272A Pending CN102722549A (en) | 2012-05-28 | 2012-05-28 | Cluster-based real-time rendering service of remote sensing data set |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102722549A (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103324475A (en) * | 2013-05-28 | 2013-09-25 | 机械工业第六设计研究院有限公司 | Building information model (BIM) rendering optimization system and method based on IFC standard |
CN103455356A (en) * | 2013-09-05 | 2013-12-18 | 中国计量学院 | Concurrence loading and rendering method of 3D (three-dimensional) models on multi-core mobile device |
CN103617645A (en) * | 2013-12-06 | 2014-03-05 | 广州博冠信息科技有限公司 | Method and device for rendering |
CN104239224A (en) * | 2014-09-02 | 2014-12-24 | 华中科技大学 | Data management method based on rendering application data access characteristics |
CN104270437A (en) * | 2014-09-25 | 2015-01-07 | 中国科学院大学 | Mass data processing and visualization system and method of distributed hybrid architecture |
CN104978357A (en) * | 2014-04-10 | 2015-10-14 | 阿里巴巴集团控股有限公司 | Data visualized display method and data visualized display device |
CN105718480A (en) * | 2014-12-05 | 2016-06-29 | 星际空间(天津)科技发展有限公司 | Method for scheduling massive three-dimensional data on basis of geographic information |
CN105824843A (en) * | 2015-01-08 | 2016-08-03 | 中国移动通信集团河南有限公司 | Geographic information system map rendering method and device |
CN106204699A (en) * | 2014-12-18 | 2016-12-07 | 联发科技股份有限公司 | 3D drawing processing circuit and deep processing method thereof |
CN106599158A (en) * | 2016-12-07 | 2017-04-26 | 国家海洋局第二海洋研究所 | Quick query method of typhoon sea area Argo information based on space-time dual approximate index |
CN106815343A (en) * | 2017-01-16 | 2017-06-09 | 上海小海龟科技有限公司 | A kind of data processing method and data processing equipment |
CN107274471A (en) * | 2017-06-15 | 2017-10-20 | 深圳市彬讯科技有限公司 | It is a kind of to dispatch system based on rendering parallel multipriority queue offline in real time |
CN107274470A (en) * | 2017-06-15 | 2017-10-20 | 深圳市彬讯科技有限公司 | It is a kind of based on rendering parallel multipriority queue dispatching method offline in real time |
CN107302570A (en) * | 2017-06-09 | 2017-10-27 | 东华大学 | A kind of monitoring of tools cloud component design method based on Priority Queues and Canvas technologies |
CN108133044A (en) * | 2018-01-12 | 2018-06-08 | 适普远景遥感信息技术(北京)有限公司 | Space big data three-dimensional visualization method and platform based on attribute separation |
CN108351804A (en) * | 2015-11-12 | 2018-07-31 | 西门子股份公司 | Man-machine interface based on model(HMI) |
CN108664306A (en) * | 2018-05-08 | 2018-10-16 | 广东亿迅科技有限公司 | Browser vector graphics rendering intent and device based on canvas Yu R trees space |
CN109299298A (en) * | 2018-09-19 | 2019-02-01 | 北京悦图遥感科技发展有限公司 | Construction method, device, application method and the system of image fusion model |
CN110490964A (en) * | 2018-05-11 | 2019-11-22 | 普天信息技术有限公司 | A kind of nodal hierarchy renders topological rendering method and device |
CN110764849A (en) * | 2018-07-25 | 2020-02-07 | 优视科技有限公司 | Rendering method and device for user interface, client device and electronic device |
CN111192339A (en) * | 2018-11-15 | 2020-05-22 | 千寻位置网络有限公司 | Rendering method and device of geographic position data |
CN111383312A (en) * | 2020-03-20 | 2020-07-07 | 厦门渊亭信息科技有限公司 | Large-scale knowledge graph visualization method and device based on particle system |
CN113450442A (en) * | 2021-06-28 | 2021-09-28 | 特力惠信息科技股份有限公司 | Mixed rendering method for massive three-dimensional scene data |
CN114036311A (en) * | 2021-11-08 | 2022-02-11 | 北京邮电大学 | Time sequence visual development method and system based on knowledge graph |
CN114463476A (en) * | 2022-04-11 | 2022-05-10 | 中国空气动力研究与发展中心计算空气动力研究所 | Visual parallel rendering method, device and system and storage medium |
CN114522420A (en) * | 2022-02-16 | 2022-05-24 | 网易(杭州)网络有限公司 | Game data processing method and device, computer equipment and storage medium |
CN116578584A (en) * | 2023-07-13 | 2023-08-11 | 北京地林伟业科技股份有限公司 | Method and system for publishing billion-level element thematic map on large scale |
CN117349467A (en) * | 2023-12-04 | 2024-01-05 | 国家基础地理信息中心 | Multi-scale dynamic service method, device and storage medium for remote sensing image map |
CN117851459A (en) * | 2024-03-08 | 2024-04-09 | 江苏金恒信息科技股份有限公司 | Data processing method based on multi-level cache under industrial data acquisition |
CN118394962A (en) * | 2024-06-25 | 2024-07-26 | 武汉国遥新天地信息技术有限公司 | Multi-source remote sensing data global digital tree model simulation data compression storage method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101388043A (en) * | 2008-09-26 | 2009-03-18 | 北京航空航天大学 | A OGC high-performance remote sensing image map service method based on small block pictures |
CN101872492A (en) * | 2010-06-09 | 2010-10-27 | 中国科学院深圳先进技术研究院 | Realization method of multi-angle map for 3D simulated city |
CN101887595A (en) * | 2009-05-14 | 2010-11-17 | 武汉如临其境科技创意有限公司 | Three-dimensional digital earth-space data organizing and rendering method based on quad-tree index |
US20120105227A1 (en) * | 2008-04-24 | 2012-05-03 | Rite-Solutions, Inc. | Distributed sensor network using existing infrastructure |
-
2012
- 2012-05-28 CN CN2012101678272A patent/CN102722549A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120105227A1 (en) * | 2008-04-24 | 2012-05-03 | Rite-Solutions, Inc. | Distributed sensor network using existing infrastructure |
CN101388043A (en) * | 2008-09-26 | 2009-03-18 | 北京航空航天大学 | A OGC high-performance remote sensing image map service method based on small block pictures |
CN101887595A (en) * | 2009-05-14 | 2010-11-17 | 武汉如临其境科技创意有限公司 | Three-dimensional digital earth-space data organizing and rendering method based on quad-tree index |
CN101872492A (en) * | 2010-06-09 | 2010-10-27 | 中国科学院深圳先进技术研究院 | Realization method of multi-angle map for 3D simulated city |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103324475A (en) * | 2013-05-28 | 2013-09-25 | 机械工业第六设计研究院有限公司 | Building information model (BIM) rendering optimization system and method based on IFC standard |
CN103455356B (en) * | 2013-09-05 | 2017-02-08 | 中国计量学院 | Concurrence loading and rendering method of 3D (three-dimensional) models on multi-core mobile device |
CN103455356A (en) * | 2013-09-05 | 2013-12-18 | 中国计量学院 | Concurrence loading and rendering method of 3D (three-dimensional) models on multi-core mobile device |
CN103617645A (en) * | 2013-12-06 | 2014-03-05 | 广州博冠信息科技有限公司 | Method and device for rendering |
CN104978357B (en) * | 2014-04-10 | 2018-08-24 | 阿里巴巴集团控股有限公司 | A kind of data visualization shows method and apparatus |
CN104978357A (en) * | 2014-04-10 | 2015-10-14 | 阿里巴巴集团控股有限公司 | Data visualized display method and data visualized display device |
CN104239224A (en) * | 2014-09-02 | 2014-12-24 | 华中科技大学 | Data management method based on rendering application data access characteristics |
CN104239224B (en) * | 2014-09-02 | 2017-03-08 | 华中科技大学 | A kind of based on the data managing method for rendering application data access feature |
CN104270437A (en) * | 2014-09-25 | 2015-01-07 | 中国科学院大学 | Mass data processing and visualization system and method of distributed hybrid architecture |
CN104270437B (en) * | 2014-09-25 | 2017-08-25 | 中国科学院大学 | The mass data processing of distributed mixed architecture and visualization system and method |
CN105718480A (en) * | 2014-12-05 | 2016-06-29 | 星际空间(天津)科技发展有限公司 | Method for scheduling massive three-dimensional data on basis of geographic information |
CN105718480B (en) * | 2014-12-05 | 2019-03-22 | 星际空间(天津)科技发展有限公司 | A method of the magnanimity three-dimensional data scheduling based on geography information |
CN106204699A (en) * | 2014-12-18 | 2016-12-07 | 联发科技股份有限公司 | 3D drawing processing circuit and deep processing method thereof |
CN105824843A (en) * | 2015-01-08 | 2016-08-03 | 中国移动通信集团河南有限公司 | Geographic information system map rendering method and device |
CN105824843B (en) * | 2015-01-08 | 2020-05-01 | 中国移动通信集团河南有限公司 | Map rendering method and device for geographic information system |
CN108351804B (en) * | 2015-11-12 | 2022-06-07 | 西门子股份公司 | Model-based human-machine interface system and method |
CN108351804A (en) * | 2015-11-12 | 2018-07-31 | 西门子股份公司 | Man-machine interface based on model(HMI) |
CN106599158A (en) * | 2016-12-07 | 2017-04-26 | 国家海洋局第二海洋研究所 | Quick query method of typhoon sea area Argo information based on space-time dual approximate index |
CN106815343B (en) * | 2017-01-16 | 2020-06-05 | 上海小海龟科技有限公司 | Data processing method and data processing device |
CN106815343A (en) * | 2017-01-16 | 2017-06-09 | 上海小海龟科技有限公司 | A kind of data processing method and data processing equipment |
CN107302570A (en) * | 2017-06-09 | 2017-10-27 | 东华大学 | A kind of monitoring of tools cloud component design method based on Priority Queues and Canvas technologies |
CN107302570B (en) * | 2017-06-09 | 2020-05-26 | 东华大学 | Equipment monitoring cloud component design method based on priority queue and Canvas technology |
CN107274470A (en) * | 2017-06-15 | 2017-10-20 | 深圳市彬讯科技有限公司 | It is a kind of based on rendering parallel multipriority queue dispatching method offline in real time |
CN107274471A (en) * | 2017-06-15 | 2017-10-20 | 深圳市彬讯科技有限公司 | It is a kind of to dispatch system based on rendering parallel multipriority queue offline in real time |
CN107274470B (en) * | 2017-06-15 | 2020-10-09 | 深圳市彬讯科技有限公司 | Multi-priority queue scheduling method based on real-time offline rendering parallelism |
CN108133044A (en) * | 2018-01-12 | 2018-06-08 | 适普远景遥感信息技术(北京)有限公司 | Space big data three-dimensional visualization method and platform based on attribute separation |
CN108664306A (en) * | 2018-05-08 | 2018-10-16 | 广东亿迅科技有限公司 | Browser vector graphics rendering intent and device based on canvas Yu R trees space |
CN110490964A (en) * | 2018-05-11 | 2019-11-22 | 普天信息技术有限公司 | A kind of nodal hierarchy renders topological rendering method and device |
CN110764849A (en) * | 2018-07-25 | 2020-02-07 | 优视科技有限公司 | Rendering method and device for user interface, client device and electronic device |
CN109299298A (en) * | 2018-09-19 | 2019-02-01 | 北京悦图遥感科技发展有限公司 | Construction method, device, application method and the system of image fusion model |
CN111192339B (en) * | 2018-11-15 | 2024-03-29 | 千寻位置网络有限公司 | Geographic position data rendering method and device |
CN111192339A (en) * | 2018-11-15 | 2020-05-22 | 千寻位置网络有限公司 | Rendering method and device of geographic position data |
CN111383312B (en) * | 2020-03-20 | 2023-03-31 | 厦门渊亭信息科技有限公司 | Large-scale knowledge graph visualization method based on particle system |
CN111383312A (en) * | 2020-03-20 | 2020-07-07 | 厦门渊亭信息科技有限公司 | Large-scale knowledge graph visualization method and device based on particle system |
CN113450442A (en) * | 2021-06-28 | 2021-09-28 | 特力惠信息科技股份有限公司 | Mixed rendering method for massive three-dimensional scene data |
CN113450442B (en) * | 2021-06-28 | 2024-11-08 | 特力惠信息科技股份有限公司 | A hybrid rendering method for massive 3D scene data |
CN114036311A (en) * | 2021-11-08 | 2022-02-11 | 北京邮电大学 | Time sequence visual development method and system based on knowledge graph |
CN114522420A (en) * | 2022-02-16 | 2022-05-24 | 网易(杭州)网络有限公司 | Game data processing method and device, computer equipment and storage medium |
CN114522420B (en) * | 2022-02-16 | 2024-12-03 | 网易(杭州)网络有限公司 | Game data processing method, device, computer equipment and storage medium |
CN114463476A (en) * | 2022-04-11 | 2022-05-10 | 中国空气动力研究与发展中心计算空气动力研究所 | Visual parallel rendering method, device and system and storage medium |
CN114463476B (en) * | 2022-04-11 | 2022-06-28 | 中国空气动力研究与发展中心计算空气动力研究所 | Visual parallel rendering method, device and system and storage medium |
CN116578584B (en) * | 2023-07-13 | 2023-09-15 | 北京地林伟业科技股份有限公司 | Method and system for publishing billion-level element thematic map on large scale |
CN116578584A (en) * | 2023-07-13 | 2023-08-11 | 北京地林伟业科技股份有限公司 | Method and system for publishing billion-level element thematic map on large scale |
CN117349467B (en) * | 2023-12-04 | 2024-02-06 | 国家基础地理信息中心 | Multi-scale dynamic service method, device and storage medium for remote sensing image map |
CN117349467A (en) * | 2023-12-04 | 2024-01-05 | 国家基础地理信息中心 | Multi-scale dynamic service method, device and storage medium for remote sensing image map |
CN117851459A (en) * | 2024-03-08 | 2024-04-09 | 江苏金恒信息科技股份有限公司 | Data processing method based on multi-level cache under industrial data acquisition |
CN117851459B (en) * | 2024-03-08 | 2024-06-07 | 江苏金恒信息科技股份有限公司 | Data processing method based on multi-level cache under industrial data acquisition |
CN118394962A (en) * | 2024-06-25 | 2024-07-26 | 武汉国遥新天地信息技术有限公司 | Multi-source remote sensing data global digital tree model simulation data compression storage method |
CN118394962B (en) * | 2024-06-25 | 2024-09-13 | 武汉国遥新天地信息技术有限公司 | Multi-source remote sensing data global digital tree model simulation data compression storage method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102722549A (en) | Cluster-based real-time rendering service of remote sensing data set | |
CN110502594B (en) | Real-time fusion and online updating method for map tiles of remote sensing image | |
CN108133044B (en) | Spatial big data three-dimensional visualization method and platform based on attribute separation | |
US10262392B2 (en) | Distributed and parallelized visualization framework | |
CN103281376B (en) | The automatic buffer memory construction method of magnanimity sequential remote sensing image under a kind of cloud environment | |
CN103942306B (en) | Three-dimensional city model self-adaption scheduling method | |
CN103309943A (en) | Three-dimensional geographic information platform and topographic data processing method thereof | |
CN110321443B (en) | Three-dimensional live-action model database construction method and device and data service system | |
CN102708156B (en) | Remote sensing data processing system | |
CN101702245B (en) | A Scalable General 3D Landscape Simulation System | |
CN101719148B (en) | Storage method, device, system and query system for three-dimensional spatial information | |
CN115238015A (en) | Space-time big data platform based on micro-service | |
CN103279526A (en) | WebGIS three-dimensional lunar system based on ActiveX and realizing method of WebGIS three-dimensional lunar system | |
CN107563955A (en) | A kind of parallel map dicing method and system based on GPU | |
CN113626550A (en) | Image tile map service method based on triple bidirectional index and optimized cache | |
CN107391258A (en) | A kind of portable remote sensing image real time processing system of software and hardware one | |
Jing et al. | An improved distributed storage and query for remote sensing data | |
CN112085826A (en) | Efficient three-dimensional space grid rendering method and device | |
Zhang | Speeding up large-scale geospatial polygon rasterization on GPGPUs | |
CN110427446A (en) | A kind of huge image data service release quickly and browsing method and system | |
CN104699826B (en) | A kind of the pyramid laminar storage method and Spatial Database Systems of image data | |
CN111090759B (en) | Algorithm for cross-stage loading of massive real-scene big data | |
US8995789B2 (en) | Efficient collaging of a large image | |
CN103106254A (en) | Parallel splicing method of polygonal vector data files | |
CN115641404B (en) | Mobile rapid modeling system based on live-action three-dimensional modeling technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121010 |