CN102721553B - 有支座沉降和温度变化时基于应变监测的松弛索识别方法 - Google Patents

有支座沉降和温度变化时基于应变监测的松弛索识别方法 Download PDF

Info

Publication number
CN102721553B
CN102721553B CN201210171051.1A CN201210171051A CN102721553B CN 102721553 B CN102721553 B CN 102721553B CN 201210171051 A CN201210171051 A CN 201210171051A CN 102721553 B CN102721553 B CN 102721553B
Authority
CN
China
Prior art keywords
cable structure
cable
temperature
vector
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210171051.1A
Other languages
English (en)
Other versions
CN102721553A (zh
Inventor
韩玉林
王芳
韩佳邑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201210171051.1A priority Critical patent/CN102721553B/zh
Publication of CN102721553A publication Critical patent/CN102721553A/zh
Application granted granted Critical
Publication of CN102721553B publication Critical patent/CN102721553B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

有支座沉降和温度变化时基于应变监测的松弛索识别方法基于应变监测,通过监测支座平移位移、索结构温度和环境温度来决定是否需要更新索结构的力学计算基准模型,得到计入支座平移位移、索结构温度和环境温度的索结构的力学计算基准模型,在此模型的基础上计算获得单位损伤被监测量变化矩阵。依据被监测量当前数值向量同被监测量当前初始数值向量、单位损伤被监测量变化矩阵、单位损伤标量和待求的索系统当前名义损伤向量间存在的近似线性关系算出索系统当前名义损伤向量的非劣解,在使用无损检测方法鉴别出真实受损索后,剩下的有健康问题的索就是松弛索。

Description

有支座沉降和温度变化时基于应变监测的松弛索识别方法
技术领域
斜拉桥、悬索桥、桁架结构等结构有一个共同点,就是它们有许多承受拉伸载荷的部件,如斜拉索、主缆、吊索、拉杆等等,该类结构的共同点是以索、缆或仅承受拉伸载荷的杆件为支承部件,为方便起见本方法将该类结构表述为“索结构”。随着环境温度的变化,索结构的温度也会发生变化,在索结构温度发生变化时,本方法基于应变监测来识别索结构的支承系统(指所有承载索、及所有起支承作用的仅承受拉伸载荷的杆件,为方便起见,本专利将该类结构的全部支承部件统一称为“索系统”,但实际上索系统不仅仅指支承索,也包括仅承受拉伸载荷的杆件,本方法中用“支承索”这一名词指称所有承载索及所有起支承作用的仅承受拉伸载荷的杆件)中的需调整索力的支承索(对桁架结构就是指受损的仅承受拉伸载荷的杆件),属工程结构健康监测领域。
背景技术
索系统通常是索结构(特别是大型索结构,例如大型斜拉桥、悬索桥)的关键组成部分,由于松弛等原因,新结构竣工一段时间后支承索的索力通常会发生变化,结构长期服役后其支承索的松弛也会引起支承索索力的变化,这些变化都将引起结构内力的变化,对结构的安全造成不良影响,严重时将会引起结构的失效,因此准确及时地识别需调整索力的支承索是非常必要的。
支承索系统的健康状态发生变化(例如发生松弛、损伤等)后,会引起结构的可测量参数的变化,例如索结构的变形或应变会发生变化,实际上应变的变化包含了索系统的健康状态信息,也就是说可以利用结构应变数据判断结构的健康状态,可以基于应变监测(本方法将被监测的应变称为“被监测量”,后面提到“被监测量”就是指被监测的应变)来识别受损索(本方法也称之为有健康问题的支承索,指支承索受损、松弛或兼而有之)。被监测量除了受索系统健康状态的影响外,还会受索结构温度变化(常常会发生)和索结构支座平移位移(沉降是平移位移在重力方向的分量)的影响,在索结构温度发生变化和索结构支座发生平移位移的条件下,如果能够基于对被监测量的监测来实现对有健康问题的支承索的识别,对索结构的安全具有重要的价值,目前还没有一种公开的、有效的健康监测系统和方法解决了此问题。
在索结构有支座沉降和温度变化时,为了能对索结构的索系统的健康状态有可靠的监测和判断,必须有一个能够合理有效的建立每一个被监测量变化同索系统中所有索的健康状况间的关系的方法,基于该方法建立的健康监测系统可以给出更可信的索系统的健康评估。
发明内容
技术问题:本方法的目的是在索结构有支座沉降和温度变化时,针对索结构中索系统的健康监测问题,公开了一种基于应变监测的、能够合理有效地监测索结构中索系统的健康监测方法。
依据支承索的索力变化的原因,可将支承索的索力变化分为两种情况:一是支承索受到了损伤,例如支承索出现了局部裂纹和锈蚀等等;二是支承索并无损伤,但索力也发生了变化,出现这种变化的主要原因之一是支承索自由状态(此时索张力也称索力为0)下的索长度(称为自由长度,本方法专指支承索两支承端点间的那段索的自由长度)发生了变化。本方法的主要目的之一就是要识别出自由长度发生了变化的支承索,并识别出它们的自由长度的改变量,此改变量为该索的索力调整提供了直接依据。支承索自由长度发生变化的原因不是单一的,为了方便,本方法将自由长度发生变化的支承索统称为松弛索。在本方法中用索系统健康监测系统指松弛索识别系统,用索系统健康评估方法指松弛索识别方法,或者说在本方法在“健康监测”通常可用“松弛索识别”替代。
技术方案:本方法由三部分组成。分别是建立索系统健康监测系统所需的知识库和参量的方法、基于知识库(含参量)和实测被监测量的索系统健康状态评估方法、健康监测系统的软件和硬件部分。
本方法的第一部分:建立索系统健康监测系统所需的知识库和参量的方法。具体如下:
1.首先确定“本方法的索结构的温度测量计算方法”。由于索结构的温度可能是变化的,例如索结构的不同部位的温度是随着日照强度的变化而变化、随着环境温度的变化而变化的,索结构的表面与内部的温度有时可能是随时间变化的,索结构的表面与内部的温度可能是不同的,索结构的表面与内部的温度差是随时间变化的,这就使得考虑温度条件时的索结构的力学计算和监测相当复杂,为简化问题、减少计算量和降低测量成本,更是为了提高计算精度,本方法提出“本方法的索结构的温度测量计算方法”,具体如下:
第一步,查询或实测得到索结构组成材料及索结构所处环境的随温度变化的传热学参数,利用索结构的设计图、竣工图和索结构的几何实测数据,利用这些数据和参数建立索结构的传热学计算模型。查询索结构所在地不少于2年的近年来的气象资料,统计得到这段时间内的阴天数量记为T个阴天,统计得到T个阴天中每一个阴天的0时至次日日出时刻后30分钟之间的最高气温与最低气温,日出时刻是指根据地球自转和公转规律确定的气象学上的日出时刻,可以查询资料或通过常规气象学计算得到所需的每一日的日出时刻,每一个阴天的0时至次日日出时刻后30分钟之间的最高气温减去最低气温称为该阴天的日气温的最大温差,有T个阴天,就有T个阴天的日气温的最大温差,取T个阴天的日气温的最大温差中的最大值为参考日温差,参考日温差记为ΔTr。查询索结构所在地和所在海拔区间不少于2年的近年来的气象资料或实测得到索结构所处环境的温度随时间和海拔高度的变化数据和变化规律,计算得到索结构所在地和所在海拔区间不少于2年的近年来的索结构所处环境的温度关于海拔高度的最大变化率ΔTh,为方便叙述取ΔTh的单位为℃/m。在索结构的表面上取“R个索结构表面点”,后面将通过实测得到这R个索结构表面点的温度,称实测得到的温度数据为“R个索结构表面温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这R个索结构表面点的温度,就称计算得到的温度数据为“R个索结构表面温度计算数据”。在索结构的表面上取“R个索结构表面点”时,“R个索结构表面点”的数量与分布必须满足的条件在后面叙述。从索结构所处的最低海拔到最高海拔之间,在索结构上均布选取不少于三个不同的海拔高度,在每一个选取的海拔高度处、在水平面与索结构表面的交线处至少选取两个点,从选取点处引索结构表面的外法线,所有选取的外法线方向称为“测量索结构沿壁厚的温度分布的方向”,测量索结构沿壁厚的温度分布的方向与“水平面与索结构表面的交线”相交,在选取的测量索结构沿壁厚的温度分布的方向中必须包括索结构的向阳面外法线方向和索结构的背阴面外法线方向,沿每一个测量索结构沿壁厚的温度分布的方向在索结构中均布选取不少于三个点,特别的,对于支承索沿每一个测量索结构沿壁厚的温度分布的方向仅仅取一个点,即仅仅测量支承索的表面点的温度,测量所有被选取点的温度,测得的温度称为“索结构沿厚度的温度分布数据”,其中沿与同一“水平面与索结构表面的交线”相交的、“测量索结构沿壁厚的温度分布的方向”测量获得的“索结构沿厚度的温度分布数据”,在本方法中称为“相同海拔高度索结构沿厚度的温度分布数据”,设选取了H个不同的海拔高度,在每一个海拔高度处,选取了B个测量索结构沿壁厚的温度分布的方向,沿每个测量索结构沿壁厚的温度分布的方向在索结构中选取了E个点,其中H和E都不小于3,B不小于2,特别的,对于支承索E等于1,计索结构上“测量索结构沿厚度的温度分布数据的点”的总数为HBE个,后面将通过实测得到这HBE个“测量索结构沿厚度的温度分布数据的点”的温度,称实测得到的温度数据为“HBE个索结构沿厚度温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这HBE个测量索结构沿厚度的温度分布数据的点的温度,就称计算得到的温度数据为“HBE个索结构沿厚度温度计算数据”;本方法中将在每一个选取的海拔高度处“相同海拔高度索结构沿厚度的温度分布数据”的个数温度分布数据”。在索结构所在地按照气象学测量气温要求选取一个位置,将在此位置实测得到符合气象学测量气温要求的索结构所在环境的气温;在索结构所在地的空旷无遮挡处选取一个位置,该位置应当在全年的每一日都能得到该地所能得到的该日的最充分的日照,在该位置安放一块碳钢材质的平板,称为参考平板,该参考平板的一面向阳,称为向阳面,参考平板的向阳面是粗糙的和深色的,参考平板的向阳面应当在全年的每一日都能得到一块平板在该地所能得到的该日的最充分的日照,参考平板的非向阳面覆有保温材料,将实时监测得到参考平板的向阳面的温度。本方法中对同一个量实时监测的任何两次测量之间的时间间隔不得大于30分钟,测量记录数据的时刻称为实际记录数据时刻。
第二步,实时监测得到上述R个索结构表面点的R个索结构表面温度实测数据,同时实时监测得到前面定义的索结构沿厚度的温度分布数据,同时实时监测得到符合气象学测量气温要求的索结构所在环境的气温数据;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据序列,索结构所在环境的气温实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据按照时间先后顺序排列,找到索结构所在环境的气温实测数据序列中的最高温度和最低温度,用索结构所在环境的气温实测数据序列中的最高温度减去最低温度得到索结构所在环境的当日日出时刻到次日日出时刻后30分钟之间的最大温差,记为ΔTemax;由索结构所在环境的气温实测数据序列通过常规数学计算得到索结构所在环境的气温关于时间的变化率,该变化率也随着时间变化;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据序列,参考平板的向阳面的温度的实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据按照时间先后顺序排列,找到参考平板的向阳面的温度的实测数据序列中的最高温度和最低温度,用参考平板的向阳面的温度的实测数据序列中的最高温度减去最低温度得到参考平板的向阳面的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,记为ΔTpmax;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的所有R个索结构表面点的索结构表面温度实测数据序列,有R个索结构表面点就有R个索结构表面温度实测数据序列,每一个索结构表面温度实测数据序列由一个索结构表面点的当日日出时刻到次日日出时刻后30分钟之间的索结构表面温度实测数据按照时间先后顺序排列,找到每一个索结构表面温度实测数据序列中的最高温度和最低温度,用每一个索结构表面温度实测数据序列中的最高温度减去最低温度得到每一个索结构表面点的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,有R个索结构表面点就有R个当日日出时刻到次日日出时刻后30分钟之间的最大温差数值,其中的最大值记为ΔTsmax;由每一索结构表面温度实测数据序列通过常规数学计算得到每一个索结构表面点的温度关于时间的变化率,每一个索结构表面点的温度关于时间的变化率也随着时间变化。通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的、在同一时刻、HBE个“索结构沿厚度的温度分布数据”后,计算在每一个选取的海拔高度处共计BE个“相同海拔高度索结构沿厚度的温度分布数据”中的最高温度与最低温度的差值,这个差值的绝对值称为“相同海拔高度处索结构厚度方向最大温差”,选取了H个不同的海拔高度就有H个“相同海拔高度处索结构厚度方向最大温差”,称这H个“相同海拔高度处索结构厚度方向最大温差”中的最大值为“索结构厚度方向最大温差”,记为ΔTtmax
第三步,测量计算获得索结构稳态温度数据;首先,确定获得索结构稳态温度数据的时刻,与决定获得索结构稳态温度数据的时刻相关的条件有六项,第一项条件是获得索结构稳态温度数据的时刻介于当日日落时刻到次日日出时刻后30分钟之间,日落时刻是指根据地球自转和公转规律确定的气象学上的日落时刻,可以查询资料或通过常规气象学计算得到所需的每一日的日落时刻;第二项条件的a条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,参考平板最大温差ΔTpmax和索结构表面最大温差ΔTsmax都不大于5摄氏度;第二项条件的b条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,在前面测量计算得到的环境最大误差ΔTemax不大于参考日温差ΔTr,且参考平板最大温差ΔTpmax减去2摄氏度后不大于ΔTemax,且索结构表面最大温差ΔTsmax不大于ΔTpmax;只需满足第二项的a条件和b条件中的一项就称为满足第二项条件;第三项条件是在获得索结构稳态温度数据的时刻,索结构所在环境的气温关于时间的变化率的绝对值不大于每小时0.1摄氏度;第四项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的温度关于时间的变化率的绝对值不大于每小时0.1摄氏度;第五项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的索结构表面温度实测数据为当日日出时刻到次日日出时刻后30分钟之间的极小值;第六项条件是在获得索结构稳态温度数据的时刻,“索结构厚度方向最大温差”ΔTtmax不大于1摄氏度;本方法利用上述六项条件,将下列三种时刻中的任意一种称为“获得索结构稳态温度数据的数学时刻”,第一种时刻是满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第五项条件的时刻,第二种时刻是仅仅满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第六项条件的时刻,第三种时刻是同时满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第六项条件的时刻;当获得索结构稳态温度数据的数学时刻就是本方法中实际记录数据时刻中的一个时,获得索结构稳态温度数据的时刻就是获得索结构稳态温度数据的数学时刻;如果获得索结构稳态温度数据的数学时刻不是本方法中实际记录数据时刻中的任一个时刻,则取本方法最接近于获得索结构稳态温度数据的数学时刻的那个实际记录数据的时刻为获得索结构稳态温度数据的时刻;本方法将使用在获得索结构稳态温度数据的时刻测量记录的量进行索结构相关健康监测分析;本方法近似认为获得索结构稳态温度数据的时刻的索结构温度场处于稳态,即此时刻的索结构温度不随时间变化,此时刻就是本方法的“获得索结构稳态温度数据的时刻”;然后,根据索结构传热特性,利用获得索结构稳态温度数据的时刻的“R个索结构表面温度实测数据”和“HBE个索结构沿厚度温度实测数据”,利用索结构的传热学计算模型,通过常规传热计算得到在获得索结构稳态温度数据的时刻的索结构的温度分布,此时索结构的温度场按稳态进行计算,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据包括索结构上R个索结构表面点的计算温度,R个索结构表面点的计算温度称为R个索结构稳态表面温度计算数据,还包括索结构在前面选定的HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度,HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度称为“HBE个索结构沿厚度温度计算数据”,当R个索结构表面温度实测数据与R个索结构稳态表面温度计算数据对应相等时,且“HBE个索结构沿厚度温度实测数据”与“HBE个索结构沿厚度温度计算数据”对应相等时,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据在本方法中称为“索结构稳态温度数据”,此时的“R个索结构表面温度实测数据”称为“R个索结构稳态表面温度实测数据”,“HBE个索结构沿厚度温度实测数据”称为“HBE个索结构沿厚度稳态温度实测数据”;在索结构的表面上取“R个索结构表面点”时,“R个索结构表面点”的数量与分布必须满足三个条件,第一个条件是当索结构温度场处于稳态时,当索结构表面上任意一点的温度是通过“R个索结构表面点”中与索结构表面上该任意点相邻的点的实测温度线性插值得到时,线性插值得到的索结构表面上该任意点的温度与索结构表面上该任意点的实际温度的误差不大于5%;索结构表面包括支承索表面;第二个条件是“R个索结构表面点”中在同一海拔高度的点的数量不小于4,且“R个索结构表面点”中在同一海拔高度的点沿着索结构表面均布;“R个索结构表面点”沿海拔高度的所有两两相邻索结构表面点的海拔高度之差的绝对值中的最大值Δh不大于0.2℃除以ΔTh得到的数值,为方便叙述取ΔTh的单位为℃/m,为方便叙述取Δh的单位为m;“R个索结构表面点”沿海拔高度的两两相邻索结构表面点的定义是指只考虑海拔高度时,在“R个索结构表面点”中不存在一个索结构表面点,该索结构表面点的海拔高度数值介于两两相邻索结构表面点的海拔高度数值之间;第三个条件是查询或按气象学常规计算得到索结构所在地和所在海拔区间的日照规律,再根据索结构的几何特征及方位数据,在索结构上找到全年受日照时间最充分的那些表面点的位置,“R个索结构表面点”中至少有一个索结构表面点是索结构上全年受日照时间最充分的那些表面点中的一个点。
2.建立索结构的初始力学计算基准模型Ao(例如有限元基准模型)和当前初始力学计算基准模型At o(例如有限元基准模型)的方法,建立与Ao对应的被监测量初始数值向量Co的方法,建立与At o对应的被监测量当前初始数值向量Ct o的方法。在本方法中Ao和Co是不变的。At o和Ct o是不断更新的。建立Ao和Co、建立和更新At o和Ct o的方法如下。
设共有N根支承索,首先确定支承索的编号规则,按此规则将索结构中所有的支承索编号,该编号在后续步骤中将用于生成向量和矩阵。“结构的全部被监测的应变数据”可由结构上K个指定点的、及每个指定点的L个指定方向的应变来描述,结构应变数据的变化就是K个指定点的所有应变的变化。每次共有M(M=K×L)个应变测量值或计算值来表征结构应变信息。K和M不得小于支承索的数量N。
为方便起见,在本方法中将“结构的被监测的应变数据”简称为“被监测量”。在后面提到“被监测量的某某矩阵或某某向量”时,也可读成“应变的某某矩阵或某某向量”。
建立初始力学计算基准模型Ao时,在索结构竣工之时,或者在建立健康监测(受损索识别)系统前,按照“本方法的索结构的温度测量计算方法”测量计算得到“索结构稳态温度数据”(可以用常规温度测量方法测量,例如使用热电阻测量),此时的“索结构稳态温度数据”用向量To表示,称为初始索结构稳态温度数据向量To。在实测得到To的同时,也就是在获得索结构稳态温度数据的时刻的同一时刻,使用常规方法直接测量计算得到索结构的所有被监测量的初始数。使用常规方法(查资料或实测)得到索结构所使用的各种材料的随温度变化的物理参数(例如热膨胀系数)和力学性能参数(例如弹性模量、泊松比);在实测计算得到初始索结构稳态温度数据向量To的同时,也就是在获得索结构稳态温度数据的时刻的同一时刻,使用常规方法实测计算得到索结构的实测计算数据。索结构的实测计算数据包括支承索的无损检测数据等能够表达索的健康状态的数据、索结构初始几何数据、索力数据、拉杆拉力数据、索结构支座坐标数据、索结构模态数据、结构应变数据、结构角度测量数据、结构空间坐标测量数据等实测数据。索结构的初始几何数据可以是所有索的端点的空间坐标数据加上结构上一系列的点的空间坐标数据,目的在于根据这些坐标数据确定索结构的几何特征。对斜拉桥而言,初始几何数据可以是所有索的端点的空间坐标数据加上桥梁两端上若干点的空间坐标数据,这就是所谓的桥型数据。利用支承索的无损检测数据等能够表达索的健康状态的数据建立索系统初始损伤向量do(如式(1)所示),用do表示索结构(用初始力学计算基准模型Ao表示)的索系统的初始健康状态。如果没有索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者可以认为结构初始状态为无损伤状态时,向量do的各元素数值取0。利用索结构的设计图、竣工图和初始索结构的实测数据、支承索的无损检测数据、索结构所使用的各种材料的随温度变化的物理和力学性能参数和初始索结构稳态温度数据向量To,利用力学方法(例如有限元法)计入“索结构稳态温度数据”建立初始力学计算基准模型Ao。对应于Ao的索结构支座坐标数据组成初始索结构支座坐标向量Uo
do=[do1 do2···doj···doN]T    (1)
式(1)中doj(j=1,2,3,.......,N)表示初始力学计算基准模型Ao中的索系统的第j根索的初始损伤值,doj为0时表示第j根索无损伤,为100%时表示该索彻底丧失承载能力,介于0与100%之间时表示第j根索丧失相应比例的承载能力,T表示向量的转置(后同)。
在实测得到To的同时,也就是在获得索结构稳态温度数据的时刻的同一时刻,使用常规方法直接测量计算得到的索结构的所有被监测量的初始数值,组成被监测量初始数值向量Co(见式(2))。要求在获得Ao的同时获得Co,被监测量初始数值向量Co表示对应于Ao的“被监测量”的具体数值。因在前述条件下,基于索结构的计算基准模型计算所得的被监测量可靠地接近于初始被监测量的实测数据,在后面的叙述中,将用同一符号来表示该计算值和实测值。
Co=[Co1 Co2···Coj···CoM]T    (2)
式(2)中Coj(j=1,2,3,.......,M)是索结构中第j个被监测量的初始量,该分量依据编号规则对应于特定的第j个被监测量。
不论用何种方法获得初始力学计算基准模型Ao,计入“索结构稳态温度数据”(即初始索结构稳态温度数据向量To)、基于Ao计算得到的索结构计算数据必须非常接近其实测数据,误差一般不得大于5%。这样可保证利用Ao计算所得的模拟情况下的索力计算数据、应变计算数据、索结构形状计算数据和位移计算数据、索结构角度数据、索结构空间坐标数据等,可靠地接近所模拟情况真实发生时的实测数据。模型Ao中支承索的健康状态用索系统初始损伤向量do表示,索结构索结构稳态温度数据用初始索结构稳态温度数据向量To表示。由于基于Ao计算得到所有被监测量的计算数值非常接近所有被监测量的初始数值(实测得到),所以也可以用在Ao的基础上、进行力学计算得到的、Ao的每一个被监测量的计算数值组成被监测量初始数值向量Co。可以说To、Uo和do是Ao的参数,Co由Ao的力学计算结果组成。
建立和更新当前初始力学计算基准模型At o的方法是:在初始时刻(也就是第一次建立At o时),At o就等于Ao,At o对应的“索结构稳态温度数据”记为“当前初始索结构稳态温度数据向量Tt o”,在初始时刻,Tt o就等于To,向量Tt o的定义方式与向量To的定义方式相同。对应于索结构的当前初始力学计算基准模型At o的索结构支座坐标数据组成当前初始索结构支座坐标向量Ut o,在初始时刻也就是第一次建立索结构的当前初始力学计算基准模型At o时,Ut o就等于Uo。At o的支承索的初始健康状态与Ao的支承索的健康状态相同,也用索系统初始损伤向量do表示,在后面的循环过程中At o的支承索的初始健康状态始终用索系统初始损伤向量do表示;索结构处于At o状态时,本方法用被监测量当前初始数值向量Ct o表示所有被监测量的具体数值,Ct o的元素与Co的元素一一对应,分别表示所有被监测量在索结构处于At o和Ao两种状态时的具体数值。在初始时刻,Ct o就等于Co,Tt o、Ut o和do是At o的参数,Ct o由At o的力学计算结果组成;在索结构服役过程中,按照“本方法的索结构的温度测量计算方法”不断实测计算获得“索结构稳态温度数据”的当前数据(称为“当前索结构稳态温度数据向量Tt”,向量Tt的定义方式与向量To的定义方式相同);在得到向量Tt的同时,实测得到索结构支座坐标当前数据,所有索结构支座坐标当前数据组成当前索结构实测支座坐标向量Ut;如果Tt等于Tt o且Ut等于Ut o,则不需要对At o进行更新,否则需要对At o、Ut o和Tt o进行更新,更新方法是:第一步计算Ut与Uo的差,Ut与Uo的差就是索结构支座关于初始位置的当前支座平移位移,用支座平移位移向量V表示支座平移位移,支座平移位移向量V中的元素与支座平移位移分量之间是一一对应关系,支座平移位移向量V中一个元素的数值对应于一个指定支座的一个指定方向的位移,其中支座平移位移在重力方向的分量就是支座沉降量;第二步计算Tt与To的差,Tt与To的差就是当前索结构稳态温度数据关于初始索结构稳态温度数据的变化,Tt与To的差用稳态温度变化向量S表示,S等于Tt减去To,S表示索结构稳态温度数据的变化;第三步先对Ao中的索结构支座施加当前支座平移位移约束,当前支座平移位移约束的数值就取自支座平移位移向量V中对应元素的数值,再对Ao中的索结构施加温度变化,施加的温度变化的数值就取自稳态温度变化向量S,对Ao中索结构支座施加支座平移位移约束且对Ao中的索结构施加的温度变化后得到更新的当前初始力学计算基准模型At o,更新At o的同时,Ut o所有元素数值也用Ut所有元素数值对应代替,即更新了Ut o,Tt o所有元素数值也用Tt的所有元素数值对应代替,即更新了Tt o,这样就得到了正确地对应于At o的Tt o;更新Ct o的方法是:当更新At o后,通过力学计算得到At o中所有被监测量的、当前的具体数值,这些具体数值组成Ct o
索结构中所有被监测量的当前值组成被监测量当前数值向量C(定义见式(3))。
C=[C1 C2···Cj···CM]T    (3)
式(3)中Cj(j=1,2,3,.......,M)是索结构中第j个被监测量的当前值,该分量Cj依据编号规则与Coj对应于同一“被监测量”。在实测得到当前索结构稳态温度数据向量Tt的同一时刻,实测得到索结构的所有被监测量的当前实测数值,组成被监测量当前数值向量C。
3.建立和更新索结构单位损伤被监测量变化矩阵ΔC的方法。
索结构单位损伤被监测量变化矩阵ΔC是不断更新的,即在更新当前初始力学计算基准模型At o和被监测量当前初始数值向量Ct o的同时,更新索结构单位损伤被监测量变化矩阵ΔC。具体方法如下:
在索结构的当前初始力学计算基准模型At o的基础上进行若干次计算,计算次数数值上等于所有支承索的数量。每一次计算假设索系统中只有一根支承索在初始损伤(用向量do的对应元素表示)的基础上再增加单位损伤Du(例如取5%、10%、20%或30%等损伤为单位损伤),每一次计算中出现损伤的索不同于其它次计算中出现损伤的索,每一次计算都利用力学方法(例如有限元法)计算索结构的所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前向量(当假设第i根索有单位损伤时,可用式(4)表示被监测量计算当前向量);每一次计算得到被监测量计算当前向量减去被监测量当前初始数值向量Ct o,所得向量就是此条件下(以有单位损伤的支承索的位置或编号等为标记)的被监测量变化向量(当第i根索有单位损伤时,用δCi表示被监测量变化向量,定义见式(5)),被监测量变化向量的每一元素表示由于计算时假定有单位损伤的那根索的单位损伤而引起的该元素所对应的被监测量的改变量;有N根索就有N个被监测量变化向量,由于有N个被监测量,所以每个被监测量变化向量有N个元素,由这N个被监测量变化向量依次组成有M×N个元素的单位损伤被监测量变化矩阵ΔC,ΔC的定义如式(6)所示。
C t i = C t 1 i C t 2 i . . . C tj i . . . C tM i T - - - ( 4 )
式(4)中元素(i=1,2,3,......,N;j=1,2,3,.......,M)表示由于第i根索有单位损伤时,依据编号规则所对应的第j个被监测量的当前计算量。
δC i = C t i - C o t - - - ( 5 )
ΔC = ΔC 1,1 ΔC 1,2 . ΔC 1 , i . ΔC 1 , N ΔC 2,1 ΔC 2,2 . ΔC 2 , i . ΔC 2 , N . . . . . . ΔC j , 1 ΔC j , 2 . ΔC j , i . ΔC j , N . . . . . . ΔC M , 1 ΔC M , 2 . ΔC M , i . ΔC M , N - - - ( 6 )
式(6)中ΔCj,i(i=1,2,3,.......,N;j=1,2,3,.......,M)表示仅由于第i根索有单位损伤而引起的、依据编号规则所对应的第j个被监测量的计算当前数值的变化(代数值)。被监测量变化向量δCi实际上是矩阵ΔC中的一列,也就是说式(6)也可以写成式(7)。
ΔC=[δC1δC2···δCi···δCN]    (7)
4.被监测量当前数值向量C(计算或实测)同被监测量当前初始数值向量Ct o、单位损伤被监测量变化矩阵ΔC、单位损伤标量DU和索系统当前名义损伤向量d间的近似线性关系,如式(8)或式(9)所示。索系统当前名义损伤向量d的定义参见式(10)。
C = C o t + 1 D u ΔC · d - - - ( 8 )
C - C o t = 1 D u ΔC · d - - - ( 9 )
d=[d1 d2···di···dN]T    (10)
式(10)中di(i=1,2,3,.......,N)是索系统中第i根索(或拉杆)的当前名义损伤。
若设索损伤为100%时表示索彻底丧失承载能力,那么当实际损伤不太大时(例如不大于30%的损伤),由于索结构材料仍然处在线弹性阶段,索结构的变形也较小,式(8)或式(9)所表示的这样一种线性关系同实际情况的误差较小。用式(11)定义的线性关系误差向量e表示式(8)或式(9)所示线性关系的误差。
e = abs ( 1 D u ΔC · d - C + C o t ) - - - ( 11 )
式(11)中abs()是取绝对值函数,对括号内求得的向量的每一个元素取绝对值。
本方法的第二部分:基于知识库(含参量)和实测被监测量的索系统健康状态评估方法。
由于式(8)或式(9)所表示的线性关系存在一定误差,因此不能简单根据式(8)或式(9)和实测被监测量当前数值向量C来直接求解得到索系统当前名义损伤向量d。如果这样做了,得到的索系统当前名义损伤向量d中的元素甚至会出现较大的负值,也就是负损伤,这明显是不合理的。因此获得索系统当前名义损伤向量d的可接受的解(即带有合理误差,但可以比较准确的从索系统中确定受损索的位置及其损伤程度)成为一个合理的解决方法,可用式(12)来表达这一方法。
abs ( 1 D u ΔC · d - C + C o t ) ≤ g - - - ( 12 )
式(12)中abs()是取绝对值函数,向量g描述偏离理想线性关系(式(8)或式(9))的合理偏差,由式(13)定义。
g=[g1 g2···gj···gM]T    (13)
式(13)中gj(j=1,2,3,.......,M)描述了偏离式(8)或式(9)所示的理想线性关系的最大允许偏差。向量g可根据式(11)定义的误差向量e试算选定。
在被监测量当前初始数值向量Ct o、单位损伤被监测量变化矩阵ΔC、实测被监测量当前数值向量C和单位损伤Du(计算ΔC前设定,是标量)已知时,可以利用合适的算法(例如多目标优化算法)求解式(12),获得索系统当前名义损伤向量d的可接受的解。
定义索系统当前实际损伤向量da(见式(14)),索系统当前实际损伤向量da的元素可以根据式(15)计算得到,也就是得到了索当前实际损伤向量da,从而可由da确定受损索的位置和损伤程度,也就是实现了索系统的健康监测,实现了受损索识别。
d a = d 1 a d 2 a . . . d j a . . . d N a T - - - ( 14 )
式(14)中da j(j=1,2,3,.......,N)表示第j根索的实际损伤值,其定义见式(15),da j为0时表示第j根索无损伤,为100%时表示该索彻底丧失承载能力,介于0与100%之间时表示第j根索丧失相应比例的承载能力,向量da的元素的编号规则与式(1)中向量do的元素的编号规则相同。
d j a = 1 - ( 1 - d oj ) ( 1 - d j ) - - - ( 15 )
式(15)中doj(i=1,2,3,4,…;j=1,2,3,.......,N)是向量do的第j个元素,dj是向量d的第j个元素。从而确定受损索的位置和损伤程度。
下面叙述得到了索系统当前实际损伤向量da后,如何确定松弛索的位置和松弛程度。
设索系统中共有N根支承索,结构索力数据由N根支承索的索力来描述。可用“初始索力向量Fo”表示索结构中所有支承索的初始索力(定义见式(16))。
Fo=[Fo1 Fo2···Foj···FoN]T    (16)
式(16)中Fo(j=1,2,3,.......,N)是索结构中第j根支承索的初始索力,该元素依据编号规则对应于指定支承索的索力。向量Fo是常量。在实测得到To的同一时刻,使用常规方法直接测量计算得到所有支承索的索力数据,所有这些索力数据组成初始索力向量Fo。在建立索结构的初始力学计算基准模型Ao时实际上使用了向量Fo
本方法中用“当前索力向量F”表示实测得到的索结构中所有支承索的当前索力(定义见式(17))。
F=[F1 F2···Fj···FN]T    (17)
式(17)中Fj(j=1,2,3,.......,N)是索结构中第j根支承索的当前索力。在实测得到当前索结构稳态温度数据向量Tt的同一时刻,实测得到索结构中所有支承索的索力数据,所有这些索力数据组成当前索力向量F。向量F的元素与向量Fo的元素的编号规则相同。依据前面的叙述,向量Tt o等于向量Tt
本方法中,在支承索初始状态下,在索结构的稳态温度数据用初始索结构稳态温度数据向量To表示时,且支承索处于自由状态(自由状态指索力为0,后同)时,支承索的长度称为初始自由长度,用“初始自由长度向量lo”表示索结构中所有支承索的初始自由长度(定义见式(18))。依据“本方法的索结构的温度测量计算方法”通过向量To可以确定在得到向量To时刻的所有支承索的温度分布。
lo=[lo1 lo2···loj···loN]T    (18)
式(18)中loj(j=1,2,3,.......,N)是索结构中第j根支承索的初始自由长度。向量lo是常量,在开始时确定后,就不再变化。
类似的,在支承索初始状态下,在索结构的稳态温度数据用初始索结构稳态温度数据向量To表示时,且支承索处于自由状态时,支承索的横截面面积称为初始自由横截面面积,用“初始自由横截面面积向量Ao”表示索结构中所有支承索的初始自由横截面面积(定义见式(19)),支承索的单位长度的重量称为初始自由单位长度的重量,用“初始自由单位长度的重量向量ωo”表示索结构中所有支承索的初始自由单位长度的重量(定义见式(20))。
Ao=[Ao1 Ao2···Aoj···AoN]T    (19)
式(19)中Aoj(j=1,2,3,.......,N)是索结构中第j根支承索的初始自由横截面面积。向量Ao是常量,在开始时确定后,就不再变化。
ωo=[ωo1 ωo2···ωoj···ωoN]T    (20)
式(20)中ωoj(j=1,2,3,.......,N)是索结构中第j根支承索的初始自由自由单位长度的重量。向量ωo是常量,在开始时确定后,就不再变化。
本方法中,在索结构的稳态温度数据用当前初始索结构稳态温度数据向量Tt o表示时,用“当前初始自由长度向量lt o”表示索结构中所有支承索的当前初始自由长度(定义见式(21),指假设支承索索力为0时,考虑了热膨胀系数和温度变化对支承索自由长度的影响后,初始自由长度向量lo和初始索结构稳态温度数据向量To表示的支承索在温度用当前初始索结构稳态温度数据向量Tt o表示时的支承索自由长度)。依据“本方法的索结构的温度测量计算方法”,通过向量Tt o可以确定在得到向量Tt o时刻的所有支承索的温度分布。
l o t = l o 1 t l o 2 t . . . l oj t . . . l oN t T - - - ( 21 )
式(21)中lt oj(j=1,2,3,.......,N)是在索结构的稳态温度数据用当前初始索结构稳态温度数据向量Tt o表示时,索结构中第j根支承索的当前初始自由长度,可以利用支承索的热膨胀系数、loj、To和Tt o通过常规物理计算得到lt oj
向量F的元素、向量lo的元素、向量lt o的元素、向量Ao的元素、向量ωo的元素与向量Fo的元素的编号规则相同,这些向量的相同编号的元素表示同一个支承索的不同信息。
本方法中,在索结构的稳态温度数据用当前初始索结构稳态温度数据向量Tt o表示时,用“当前自由长度向量l”表示索结构中所有支承索的当前自由长度(定义见式(22),此时支承索可能是完好的,也可能是受损的,也可能是松弛的)。
l=[l1 l2···lj···lN]T    (22)
式(22)中lj(j=1,2,3,.......,N)是索结构中第j根支承索的当前自由长度。
本方法中,用“自由长度改变向量Δl”(或称支承索当前松弛程度向量)表示索结构中所有支承索的自由长度的改变量(定义见式(23)和式(24))。
Δl=[Δl1 Δl2···Δlj···ΔlN]T    (23)
式(23)中Δlj(j=1,2,3,.......,N)是当前索结构中第j根支承索的自由长度的改变量,其定义见式(24),Δlj不为0的索为松弛索,Δlj的数值为索的松弛量,并表示索系统第j根支承索的当前松弛程度,也是调整索力时该索的索长调整量。
Δl j = l j - l oj t - - - ( 24 )
在本方法中通过将松弛索同受损索进行力学等效来进行松弛索的松弛程度识别,等效的力学条件是:
一、两等效的索的无松弛和无损伤时的初始自由长度、几何特性参数及材料的力学特性参数相同;
二、松弛或损伤后,两等效的松弛索和损伤索的索力和变形后的总长相同。
满足上述两个等效条件时,这样的两根支承索在结构中的力学功能就是完全相同的,即如果用等效的受损索代替松弛索后,索结构不会发生任何变化,反之亦然。
得到了索系统当前实际损伤向量da后,da的第j个元素da j(j=1,2,3,.......,N)表示第j根索的实际损伤值,其定义见式(15),虽然将di j称为第j根索的实际损伤值或第j根索的实际损伤程度,但由于第j根索可能是受损也可能是松弛,所以da的第j个元素da j表示的第j根索的实际损伤值实际上是第j根索的实际等效损伤值,当第j根索实际上是受损时,da j就表示的第j根索的实际损伤值,当第j根索实际上是松弛时,da j就表示的第j根索的与松弛等效的实际损伤值,为叙述方便,在本方法中称da j为0时表示第j根索无损伤,为100%时表示该索彻底丧失承载能力,介于0与100%之间时表示第j根索丧失相应比例的承载能力,通过索系统当前实际损伤向量da就可以识别出健康状态出现问题的支承索,但这些健康状态出现问题的支承索中有些是受损了,有些是松弛了,如果第j个支承索实际上是发生松弛了(其当前松弛程度用Δlj定义),那么松弛的第j个支承索的当前松弛程度Δlj(Δlj的定义见式(23))同等效的受损索的当前实际损伤程度da j之间的关系由前述两项力学等效条件确定。Δlj同da j之间的具体关系可以采用多种方法实现,例如可以直接根据前述等效条件确定(参见式(25)),也可采用基于Ernst等效弹性模量代替式(25)中的E进行修正后确定(参见式(26)),也可以采用基于有限元法的试算法等其它方法来确定。
Δl j t = d j a 1 - d j a F j E j t A j t + F j l oj t - - - ( 25 )
Δl j t = d j a 1 - d j a F j [ E j t 1 + ( ω j t l jx t ) 2 A j t E j t 12 ( F j ) 3 ] A j t + F j l oj t - - - ( 26 )
式(25)和式(26)中Et j是在索结构的稳态温度数据用当前初始索结构稳态温度数据向量Tt o表示时,第j个支承索的弹性模量,At j是在索结构的稳态温度数据用当前初始索结构稳态温度数据向量Tt o表示时,第j个支承索的横截面面积,Fj是在索结构的稳态温度数据用当前初始索结构稳态温度数据向量Tt o表示时,第j个支承索的当前索力,da j是第j个支承索的当前实际损伤程度,ωt j是在索结构的稳态温度数据用当前初始索结构稳态温度数据向量Tt o表示时,第j个支承索的单位长度的重量,lt jx是在索结构的稳态温度数据用当前初始索结构稳态温度数据向量Tt o表示时,第j个支承索的两个支承端点的水平距离。Et j可以根据查或实测第j个支承索的材料特性数据得到,At j和ωt j可以根据第j个支承索的热膨胀系数、Aoj、ωoj、Fj、To和Tt o通过常规物理和力学计算得到。式(26)中[]内的项是该支承索的Ernst等效弹性模量,由式(25)或式(26)可以就可以确定支承索当前松弛程度向量Δl。式(26)是对式(25)的修正。
本方法的第三部分:健康监测系统的软件和硬件部分。
硬件部分包括监测系统(包括被监测量监测系统、温度监测系统、索力监测系统、支承索两支承端点的水平距离监测系统、索结构支座坐标监测系统)、信号采集器和计算机等。要求实时监测获得所需温度的实测数据,要求同时实时监测每一个被监测量、同时实时监测每一个支承索的索力、同时实时监测每一个支承索两支承端点的水平距离、同时实时监测每一个索结构支座坐标的数据。
软件应当能够完成本方法中所需要的、可以用计算机实现的监测、记录、控制、存储、计算、通知、报警等功能。
本方法具体包括:
a.设共有N根支承索,首先确定支承索的编号规则,按此规则将索结构中所有的支承索编号,该编号在后续步骤中将用于生成向量和矩阵;确定指定的被监测点,被监测点即表征索结构应变信息的所有指定点,并给所有指定点编号;确定被监测点的被监测的应变方向,并给所有指定的被监测应变编号;“被监测应变编号”在后续步骤中将用于生成向量和矩阵;“索结构的全部被监测的应变数据”由上述所有被监测应变组成;本方法将“索结构的被监测的应变数据”简称为“被监测量”;被监测点的数量不得小于支承索的数量;所有被监测量的数量之和不得小于支承索的数量;本方法中对同一个量实时监测的任何两次测量之间的时间间隔不得大于30分钟,测量记录数据的时刻称为实际记录数据时刻;
b.本方法定义“本方法的索结构的温度测量计算方法”按步骤b1至b3进行;
b1:查询或实测得到索结构组成材料及索结构所处环境的随温度变化的传热学参数,利用索结构的设计图、竣工图和索结构的几何实测数据,利用这些数据和参数建立索结构的传热学计算模型;查询索结构所在地不少于2年的近年来的气象资料,统计得到这段时间内的阴天数量记为T个阴天,在本方法中将白天不能见到太阳的一整日称为阴天,统计得到T个阴天中每一个阴天的0时至次日日出时刻后30分钟之间的最高气温与最低气温,日出时刻是指根据地球自转和公转规律确定的气象学上的日出时刻,不表示当天一定可以看见太阳,可以查询资料或通过常规气象学计算得到所需的每一日的日出时刻,每一个阴天的0时至次日日出时刻后30分钟之间的最高气温减去最低气温称为该阴天的日气温的最大温差,有T个阴天,就有T个阴天的日气温的最大温差,取T个阴天的日气温的最大温差中的最大值为参考日温差,参考日温差记为ΔTr;查询索结构所在地和所在海拔区间不少于2年的近年来的气象资料或实测得到索结构所处环境的温度随时间和海拔高度的变化数据和变化规律,计算得到索结构所在地和所在海拔区间不少于2年的近年来的索结构所处环境的温度关于海拔高度的最大变化率ΔTh,为方便叙述取ΔTh的单位为℃/m;在索结构的表面上取“R个索结构表面点”,取“R个索结构表面点”的具体原则在步骤b3中叙述,后面将通过实测得到这R个索结构表面点的温度,称实测得到的温度数据为“R个索结构表面温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这R个索结构表面点的温度,就称计算得到的温度数据为“R个索结构表面温度计算数据”;从索结构所处的最低海拔到最高海拔之间,在索结构上均布选取不少于三个不同的海拔高度,在每一个选取的海拔高度处、在水平面与索结构表面的交线处至少选取两个点,从选取点处引索结构表面的外法线,所有选取的外法线方向称为“测量索结构沿壁厚的温度分布的方向”,测量索结构沿壁厚的温度分布的方向与“水平面与索结构表面的交线”相交,在选取的测量索结构沿壁厚的温度分布的方向中必须包括索结构的向阳面外法线方向和索结构的背阴面外法线方向,沿每一个测量索结构沿壁厚的温度分布的方向在索结构中均布选取不少于三个点,特别的,对于支承索沿每一个测量索结构沿壁厚的温度分布的方向仅仅取一个点,即仅仅测量支承索的表面点的温度,测量所有被选取点的温度,测得的温度称为“索结构沿厚度的温度分布数据”,其中沿与同一“水平面与索结构表面的交线”相交的、“测量索结构沿壁厚的温度分布的方向”测量获得的“索结构沿厚度的温度分布数据”,在本方法中称为“相同海拔高度索结构沿厚度的温度分布数据”,设选取了H个不同的海拔高度,在每一个海拔高度处,选取了B个测量索结构沿壁厚的温度分布的方向,沿每个测量索结构沿壁厚的温度分布的方向在索结构中选取了E个点,其中H和E都不小于3,B不小于2,特别的,对于支承索E等于1,计索结构上“测量索结构沿厚度的温度分布数据的点”的总数为HBE个,后面将通过实测得到这HBE个“测量索结构沿厚度的温度分布数据的点”的温度,称实测得到的温度数据为“HBE个索结构沿厚度温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这HBE个测量索结构沿厚度的温度分布数据的点的温度,就称计算得到的温度数据为“HBE个索结构沿厚度温度计算数据”;本方法中将在每一个选取的海拔高度处“相同海拔高度索结构沿厚度的温度分布数据”的个数温度分布数据”;在索结构所在地按照气象学测量气温要求选取一个位置,将在此位置实测得到符合气象学测量气温要求的索结构所在环境的气温;在索结构所在地的空旷无遮挡处选取一个位置,该位置应当在全年的每一日都能得到该地所能得到的该日的最充分的日照,在该位置安放一块碳钢材质的平板,称为参考平板,参考平板与地面不可接触,参考平板离地面距离不小于1.5米,该参考平板的一面向阳,称为向阳面,参考平板的向阳面是粗糙的和深色的,参考平板的向阳面应当在全年的每一日都能得到一块平板在该地所能得到的该日的最充分的日照,参考平板的非向阳面覆有保温材料,将实时监测得到参考平板的向阳面的温度;
b2:实时监测得到上述R个索结构表面点的R个索结构表面温度实测数据,同时实时监测得到前面定义的索结构沿厚度的温度分布数据,同时实时监测得到符合气象学测量气温要求的索结构所在环境的气温数据;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据序列,索结构所在环境的气温实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据按照时间先后顺序排列,找到索结构所在环境的气温实测数据序列中的最高温度和最低温度,用索结构所在环境的气温实测数据序列中的最高温度减去最低温度得到索结构所在环境的当日日出时刻到次日日出时刻后30分钟之间的最大温差,称为环境最大温差,记为ΔTemax;由索结构所在环境的气温实测数据序列通过常规数学计算得到索结构所在环境的气温关于时间的变化率,该变化率也随着时间变化;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据序列,参考平板的向阳面的温度的实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据按照时间先后顺序排列,找到参考平板的向阳面的温度的实测数据序列中的最高温度和最低温度,用参考平板的向阳面的温度的实测数据序列中的最高温度减去最低温度得到参考平板的向阳面的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,称为参考平板最大温差,记为ΔTpmax;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的所有R个索结构表面点的索结构表面温度实测数据序列,有R个索结构表面点就有R个索结构表面温度实测数据序列,每一个索结构表面温度实测数据序列由一个索结构表面点的当日日出时刻到次日日出时刻后30分钟之间的索结构表面温度实测数据按照时间先后顺序排列,找到每一个索结构表面温度实测数据序列中的最高温度和最低温度,用每一个索结构表面温度实测数据序列中的最高温度减去最低温度得到每一个索结构表面点的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,有R个索结构表面点就有R个当日日出时刻到次日日出时刻后30分钟之间的最大温差数值,其中的最大值称为索结构表面最大温差,记为ΔTsmax;由每一索结构表面温度实测数据序列通过常规数学计算得到每一个索结构表面点的温度关于时间的变化率,每一个索结构表面点的温度关于时间的变化率也随着时间变化;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的、在同一时刻、HBE个“索结构沿厚度的温度分布数据”后,计算在每一个选取的海拔高度处共计BE个“相同海拔高度索结构沿厚度的温度分布数据”中的最高温度与最低温度的差值,这个差值的绝对值称为“相同海拔高度处索结构厚度方向最大温差”,选取了H个不同的海拔高度就有H个“相同海拔高度处索结构厚度方向最大温差”,称这H个“相同海拔高度处索结构厚度方向最大温差”中的最大值为“索结构厚度方向最大温差”,记为ΔTtmax
b3:测量计算获得索结构稳态温度数据;首先,确定获得索结构稳态温度数据的时刻,与决定获得索结构稳态温度数据的时刻相关的条件有六项,第一项条件是获得索结构稳态温度数据的时刻介于当日日落时刻到次日日出时刻后30分钟之间,日落时刻是指根据地球自转和公转规律确定的气象学上的日落时刻,可以查询资料或通过常规气象学计算得到所需的每一日的日落时刻;第二项条件的a条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,参考平板最大温差ΔTpmax和索结构表面最大温差ΔTsmax都不大于5摄氏度;第二项条件的b条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,在前面测量计算得到的环境最大误差ΔTemax不大于参考日温差ΔTr,且参考平板最大温差ΔTpmax减去2摄氏度后不大于ΔTemax,且索结构表面最大温差ΔTsmax不大于ΔTpmax;只需满足第二项的a条件和b条件中的一项就称为满足第二项条件;第三项条件是在获得索结构稳态温度数据的时刻,索结构所在环境的气温关于时间的变化率的绝对值不大于每小时0.1摄氏度;第四项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的温度关于时间的变化率的绝对值不大于每小时0.1摄氏度;第五项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的索结构表面温度实测数据为当日日出时刻到次日日出时刻后30分钟之间的极小值;第六项条件是在获得索结构稳态温度数据的时刻,“索结构厚度方向最大温差”ΔTtmax不大于1摄氏度;本方法利用上述六项条件,将下列三种时刻中的任意一种称为“获得索结构稳态温度数据的数学时刻”,第一种时刻是满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第五项条件的时刻,第二种时刻是仅仅满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第六项条件的时刻,第三种时刻是同时满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第六项条件的时刻;当获得索结构稳态温度数据的数学时刻就是本方法中实际记录数据时刻中的一个时,获得索结构稳态温度数据的时刻就是获得索结构稳态温度数据的数学时刻;如果获得索结构稳态温度数据的数学时刻不是本方法中实际记录数据时刻中的任一个时刻,则取本方法最接近于获得索结构稳态温度数据的数学时刻的那个实际记录数据的时刻为获得索结构稳态温度数据的时刻;本方法将使用在获得索结构稳态温度数据的时刻测量记录的量进行索结构相关健康监测分析;本方法近似认为获得索结构稳态温度数据的时刻的索结构温度场处于稳态,即此时刻的索结构温度不随时间变化,此时刻就是本方法的“获得索结构稳态温度数据的时刻”;然后,根据索结构传热特性,利用获得索结构稳态温度数据的时刻的“R个索结构表面温度实测数据”和“HBE个索结构沿厚度温度实测数据”,利用索结构的传热学计算模型,通过常规传热计算得到在获得索结构稳态温度数据的时刻的索结构的温度分布,此时索结构的温度场按稳态进行计算,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据包括索结构上R个索结构表面点的计算温度,R个索结构表面点的计算温度称为R个索结构稳态表面温度计算数据,还包括索结构在前面选定的HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度,HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度称为“HBE个索结构沿厚度温度计算数据”,当R个索结构表面温度实测数据与R个索结构稳态表面温度计算数据对应相等时,且“HBE个索结构沿厚度温度实测数据”与“HBE个索结构沿厚度温度计算数据”对应相等时,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据在本方法中称为“索结构稳态温度数据”,此时的“R个索结构表面温度实测数据”称为“R个索结构稳态表面温度实测数据”,“HBE个索结构沿厚度温度实测数据”称为“HBE个索结构沿厚度稳态温度实测数据”;在索结构的表面上取“R个索结构表面点”时,“R个索结构表面点”的数量与分布必须满足三个条件,第一个条件是当索结构温度场处于稳态时,当索结构表面上任意一点的温度是通过“R个索结构表面点”中与索结构表面上该任意点相邻的点的实测温度线性插值得到时,线性插值得到的索结构表面上该任意点的温度与索结构表面上该任意点的实际温度的误差不大于5%;索结构表面包括支承索表面;第二个条件是“R个索结构表面点”中在同一海拔高度的点的数量不小于4,且“R个索结构表面点”中在同一海拔高度的点沿着索结构表面均布;“R个索结构表面点”沿海拔高度的所有两两相邻索结构表面点的海拔高度之差的绝对值中的最大值Δh不大于0.2℃除以ΔTh得到的数值,为方便叙述取ΔTh的单位为℃/m,为方便叙述取Δh的单位为m;“R个索结构表面点”沿海拔高度的两两相邻索结构表面点的定义是指只考虑海拔高度时,在“R个索结构表面点”中不存在一个索结构表面点,该索结构表面点的海拔高度数值介于两两相邻索结构表面点的海拔高度数值之间;第三个条件是查询或按气象学常规计算得到索结构所在地和所在海拔区间的日照规律,再根据索结构的几何特征及方位数据,在索结构上找到全年受日照时间最充分的那些表面点的位置,“R个索结构表面点”中至少有一个索结构表面点是索结构上全年受日照时间最充分的那些表面点中的一个点;
c.按照“本方法的索结构的温度测量计算方法”直接测量计算得到初始状态下的索结构稳态温度数据,初始状态下的索结构稳态温度数据称为初始索结构稳态温度数据,记为“初始索结构稳态温度数据向量To”;实测或查资料得到索结构所使用的各种材料的随温度变化的物理和力学性能参数;在实测得到初始索结构稳态温度数据向量To的同一时刻,直接测量计算得到所有支承索的初始索力,组成初始索力向量Fo;依据索结构设计数据、竣工数据得到所有支承索在自由状态即索力为0时的长度、在自由状态时的横截面面积和在自由状态时的单位长度的重量,以及获得这三种数据时所有支承索的温度,在此基础上利用所有支承索的随温度变化的物理性能参数和力学性能参数,按照常规物理计算得到所有支承索在初始索结构稳态温度数据向量To条件下的索力为0时所有支承索的长度、索力为0时所有支承索的横截面面积以及索力为0时所有支承索的单位长度的重量,依次组成支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量,支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同;在实测得到To的同时,也就是在获得初始索结构稳态温度数据向量To的时刻的同一时刻,直接测量计算得到初始索结构的实测数据,初始索结构的实测数据包括表达支承索的健康状态的无损检测数据、所有被监测量的初始数值、所有支承索的初始索力数据、初始索结构模态数据、初始索结构应变数据、初始索结构几何数据、初始索结构支座坐标数据、初始索结构角度数据、初始索结构空间坐标数据;所有被监测量的初始数值组成被监测量初始数值向量Co;利用能表达支承索的健康状态的无损检测数据建立索系统初始损伤向量do,索系统初始损伤向量do的元素个数等于N,do的元素与支承索是一一对应关系,索系统初始损伤向量do的元素数值不小于0、不大于100%,do的元素数值代表对应支承索的损伤程度,若索系统初始损伤向量do的某一元素的数值为0,表示该元素所对应的支承索是完好的、没有问题的,若其数值为100%,则表示该元素所对应的支承索完全丧失了承载能力,若其数值介于0和100%之间,则表示该支承索丧失了相应比例的承载能力,如果没有支承索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者认为索结构初始状态为无损伤状态时,向量do的各元素数值取0;若do的某一元素的数值不为0,则表示该元素所对应的支承索是有问题的,在本方法中该支承索可能是受损也可能是松弛,当该支承索是受损时,该元素数值表示其对应的支承索的损伤程度,若该支承索是松弛时,该元素数值表示其对应的支承索的初始等效损伤程度;索系统初始损伤向量do的元素的编号规则与初始索力向量Fo的元素的编号规则相同;初始索结构支座坐标数据组成初始索结构支座坐标向量Uo
d.根据索结构的设计图、竣工图和初始索结构的实测数据、支承索的无损检测数据、索结构所使用的各种材料的随温度变化的物理和力学性能参数、初始索结构支座坐标向量Uo、初始索结构稳态温度数据向量To和和前面步骤得到的所有的索结构数据,建立计入“索结构稳态温度数据”的索结构的初始力学计算基准模型Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异不得大于5%;对应于Ao的“索结构稳态温度数据”就是“初始索结构稳态温度数据向量To”;对应于Ao的索结构支座坐标数据就是初始索结构支座坐标向量Uo;对应于Ao的支承索健康状态用索系统初始损伤向量do表示;对应于Ao的所有被监测量的初始数值用被监测量初始数值向量Co表示;第一次建立计入“索结构稳态温度数据”的索结构的当前初始力学计算基准模型At o、被监测量当前初始数值向量Ct o和“当前初始索结构稳态温度数据向量Tt o”;第一次建立索结构的当前初始力学计算基准模型At o和被监测量当前初始数值向量Ct o时,索结构的当前初始力学计算基准模型At o就等于索结构的初始力学计算基准模型Ao,被监测量当前初始数值向量Ct o就等于被监测量初始数值向量Co;At o对应的“索结构稳态温度数据”称为“当前初始索结构稳态温度数据”,记为“当前初始索结构稳态温度数据向量Tt o”,第一次建立索结构的当前初始力学计算基准模型At o时,Tt o就等于To;对应于索结构的当前初始力学计算基准模型At o的索结构支座坐标数据组成当前初始索结构支座坐标向量Ut o,第一次建立索结构的当前初始力学计算基准模型At o时,Ut o就等于Uo;At o的支承索的初始健康状态与Ao的支承索的健康状态相同,也用索系统初始损伤向量do表示,在后面的循环过程中At o的支承索的初始健康状态始终用索系统初始损伤向量do表示;当To、Uo和do是Ao的参数时,由Ao的力学计算结果得到的所有被监测量的初始数值与Co表示的所有被监测量的初始数值相同,因此也可以说Co由Ao的力学计算结果组成,当Tt o、Ut o和do是At o的参数时,Ct o由At o的力学计算结果组成;在本方法中Ao、Uo、Co、do和To是不变的;
e.从这里进入由第e步到第o步的循环;在索结构服役过程中,不断按照“本方法的索结构的温度测量计算方法”不断实测计算获得“索结构稳态温度数据”的当前数据,“索结构稳态温度数据”的当前数据称为“当前索结构稳态温度数据”,记为“当前索结构稳态温度数据向量Tt”,向量Tt的定义方式与向量To的定义方式相同;在实测得到当前索结构稳态温度数据向量Tt的同一时刻,实测得到索结构中所有支承索的索力数据,所有这些索力数据组成当前索力向量F,向量F的元素与向量Fo的元素的编号规则相同;在实测得到当前索结构稳态温度数据向量Tt的同一时刻,实测计算得到所有支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离,所有支承索的两个支承端点水平距离数据组成当前支承索两支承端点水平距离向量,当前支承索两支承端点水平距离向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同;在实测得到当前索结构稳态温度数据向量Tt的同一时刻,实测得到索结构支座坐标当前数据,所有索结构支座坐标当前数据组成当前索结构实测支座坐标向量Ut
f.根据当前索结构实测支座坐标向量Ut和当前索结构稳态温度数据向量Tt,按照步骤f1至f3更新当前初始力学计算基准模型At o、当前初始索结构支座坐标向量Ut o、被监测量当前初始数值向量Ct o和当前初始索结构稳态温度数据向量Tt o
f1.分别比较Ut与Ut o、Tt与Tt o,如果Ut等于Ut o且Tt等于Tt o,则At o、Ut o、Ct o和Tt o保持不变;否则需要按下列步骤对At o、Ut o和Tt o进行更新;
f2.计算Ut与Uo的差,Ut与Uo的差就是索结构支座关于初始位置的当前支座平移位移,用支座平移位移向量V表示支座平移位移,V等于Ut减去Uo,支座平移位移向量V中的元素与支座平移位移分量之间是一一对应关系,支座平移位移向量V中一个元素的数值对应于一个指定支座的一个指定方向的平移位移,其中支座平移位移在重力方向的分量就是支座沉降量;计算Tt与To的差,Tt与To的差就是当前索结构稳态温度数据关于初始索结构稳态温度数据的变化,Tt与To的差用稳态温度变化向量S表示,S等于Tt减去To,S表示索结构稳态温度数据的变化;
f3.先对Ao中的索结构支座施加当前支座平移位移约束,当前支座平移位移约束的数值就取自支座平移位移向量V中对应元素的数值,再对Ao中的索结构施加温度变化,施加的温度变化的数值就取自稳态温度变化向量S,对Ao中索结构支座施加支座平移位移约束且对Ao中的索结构施加的温度变化后得到更新的当前初始力学计算基准模型At o,更新At o的同时,Ut o所有元素数值也用Ut所有元素数值对应代替,即更新了Ut o,Tt o所有元素数值也用Tt的所有元素数值对应代替,即更新了Tt o,这样就得到了正确地对应于At o的Tt o和Ut o;更新Ct o的方法是:当更新At o后,通过力学计算得到At o中所有被监测量的、当前的具体数值,这些具体数值组成Ct o;At o的支承索的初始健康状态始终用索系统初始损伤向量do表示;
g.在当前初始力学计算基准模型At o的基础上按照步骤g1至g4进行若干次力学计算,通过计算获得索结构单位损伤被监测量变化矩阵ΔC和单位损伤标量Du
g1.索结构单位损伤被监测量变化矩阵ΔC是不断更新的,即在更新当前初始力学计算基准模型At o、当前初始索结构支座坐标向量Ut o、被监测量当前初始数值向量Ct o和当前初始索结构稳态温度数据向量Tt o之后,必须接着更新索结构单位损伤被监测量变化矩阵ΔC和单位损伤标量Du
g2.在索结构的当前初始力学计算基准模型At o的基础上进行若干次力学计算,计算次数数值上等于所有索的数量,有N根支承索就有N次计算,每一次计算假设索系统中只有一根支承索有单位损伤标量Du,每一次计算中出现损伤的索不同于其它次计算中出现损伤的索,每一次计算得到索结构中所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前向量,被监测量计算当前向量的元素编号规则与被监测量初始数值向量Co的元素编号规则相同;
g3.每一次计算得到的被监测量计算当前向量减去被监测量当前初始数值向量Ct o得到一个被监测量变化向量;有N根支承索就有N个被监测量变化向量;
g4.由这N个被监测量变化向量依次组成有N列的索结构单位损伤被监测量变化矩阵ΔC;索结构单位损伤被监测量变化矩阵ΔC的每一列对应于一个被监测量变化向量;
h.在实测得到当前索结构稳态温度数据向量Tt的同时,实测得到在获得当前索结构稳态温度数据向量Tt的时刻的同一时刻的索结构的所有被监测量的当前实测数值,组成被监测量当前数值向量C;被监测量当前数值向量C和被监测量当前初始数值向量Ct o与被监测量初始数值向量Co的定义方式相同,三个向量的相同编号的元素表示同一被监测量在不同时刻的具体数值;
i.定义索系统当前名义损伤向量d,索系统当前名义损伤向量d的元素个数等于支承索的数量,索系统当前名义损伤向量d的元素和支承索之间是一一对应关系,索系统当前名义损伤向量d的元素数值代表对应支承索的名义损伤程度或名义健康状态;向量d的元素的编号规则与向量do的元素的编号规则相同;
j.依据被监测量当前数值向量C同被监测量当前初始数值向量Ct o、索结构单位损伤被监测量变化矩阵ΔC、单位损伤标量Du和待求的索系统当前名义损伤向量d间存在的近似线性关系,该近似线性关系可表达为式1,式1中除d外的其它量均为已知,求解式1就可以算出索系统当前名义损伤向量d;
C = C o t + 1 D u ΔC · d 式1
k.定义索系统当前实际损伤向量da,索系统当前实际损伤向量da的元素个数等于支承索的数量,索系统当前实际损伤向量da的元素和支承索之间是一一对应关系,索系统当前实际损伤向量da的元素数值代表对应支承索的实际损伤程度或实际健康状态;向量da的元素的编号规则与向量do的元素的编号规则相同;
l.利用式2表达的索系统当前实际损伤向量da的第j个元素da j同索系统初始损伤向量do的第j个元素doj和索系统当前名义损伤向量d的第j个元素dj间的关系,计算得到索系统当前实际损伤向量da的所有元素;
d j a = 1 - ( 1 - d oj ) ( 1 - d j ) 式2
式2中j=1,2,3,.......,N,da j为0时表示第j根支承索无健康问题,da j数值不为0时表示第j根支承索是有健康问题的支承索,有健康问题的支承索可能是松弛索、也可能是受损索,其数值反应了松弛或损伤的程度;索系统当前实际损伤向量da的元素数值不小于0、不大于100%,索系统当前实际损伤向量da的元素数值代表对应支承索的损伤程度,若索系统当前实际损伤向量da的某一元素的数值为0,表示该元素所对应的支承索是完好的,若其数值为100%,则表示该元素所对应的支承索完全丧失了承载能力,若其数值介于0和100%之间,则表示该元素所对应的支承索是有健康问题的,在本方法中该支承索的健康问题可能是受损了也可能是松弛了,当该支承索是受损时,该元素数值表示其对应的支承索的损伤程度,若该支承索是松弛时,该元素数值表示其对应的支承索的与其松弛程度力学等效的当前实际等效损伤程度;
m.从第l步中识别出的有问题的支承索中鉴别出受损索,剩下的就是松弛索;
n.利用在当前索结构稳态温度数据向量Tt条件下的在第l步获得的索系统当前实际损伤向量da得到松弛索的与其松弛程度力学等效的当前实际等效损伤程度,利用在第e步获得的在当前索结构稳态温度数据向量Tt条件下的当前索力向量F和当前支承索两支承端点水平距离向量,利用在第c步获得的在初始索结构稳态温度数据向量To条件下的支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量,利用当前索结构稳态温度数据向量Tt表示的支承索当前稳态温度数据,利用在第c步获得的在初始索结构稳态温度数据向量To表示的支承索初始稳态温度数据,利用在第c步获得的索结构所使用的各种材料的随温度变化的物理和力学性能参数,计入温度变化对支承索物理、力学和几何参数的影响,通过将松弛索同受损索进行力学等效来计算松弛索的、与当前实际等效损伤程度等效的松弛程度,等效的力学条件是:一、两等效的索的无松弛和无损伤时的初始自由长度、几何特性参数、密度及材料的力学特性参数相同;二、松弛或损伤后,两等效的松弛索和损伤索的索力和变形后的总长相同;满足上述两个等效条件时,这样的两根支承索在索结构中的力学功能就是完全相同的,即如果用等效的松弛索代替受损索后,索结构不会发生任何变化,反之亦然;依据前述力学等效条件求得那些被判定为松弛索的松弛程度,松弛程度就是支承索自由长度的改变量,也就是确定了那些需调整索力的支承索的索长调整量;这样就实现了支承索的松弛识别和损伤识别;计算时所需索力由当前索力向量F对应元素给出;
o.回到第e步,开始由第e步到第o步的下一次循环。
有益效果:当索结构的温度场受日照和环境温度等因素的影响时,索结构的温度场是不断变化的,索结构的温度场变化必然影响索结构被监测量,只有将被监测量受温度场的影响部分剔除才能基于被监测量进行合理的索结构健康监测,而索结构的温度场测量和计算是非常复杂的,本方法公开了包括一种适于索结构健康监测的简单的、经济的、可行的、高效的索结构温度场计算方法的索结构健康监测方法,采用本方法在索结构支座出现平移位移(包括沉降)的情况下,在索结构的多根索同步受损和松弛时,且索结构的温度随着时间变化时,可以非常准确地监测评估识别出索系统的健康状态(包括所有松弛索和受损索的位置、及其松弛程度或损伤程度),本方法公开的系统和方法对索系统的有效健康监测是非常有益的。
具体实施方式
在有支座平移位移(支座沉降是支座平移位移的分量)和温度变化时,针对索结构的索系统的健康监测,本方法公开了一种能够合理有效地监测识别索结构中索系统中每一根索的健康状况的系统和方法。本方法的实施例的下面说明实质上仅仅是示例性的,并且目的绝不在于限制本方法的应用或使用。
本方法采用一种算法,该算法用于监测索结构中的索系统的健康状态。具体实施时,下列步骤是可采取的各种步骤中的一种。
第一步:确定“本方法的索结构的温度测量计算方法”,该方法具体步骤如下:
第a步:查询或实测(可以用常规温度测量方法测量,例如使用热电阻测量)得到索结构组成材料及索结构所处环境的随温度变化的传热学参数,利用索结构的设计图、竣工图和索结构的几何实测数据,利用这些数据和参数建立索结构的传热学计算模型(例如有限元模型)。查询索结构所在地不少于2年的近年来的气象资料,统计得到这段时间内的阴天数量记为T个阴天,统计得到T个阴天中每一个阴天的0时至次日日出时刻后30分钟之间的最高气温与最低气温,日出时刻是指根据地球自转和公转规律确定的气象学上的日出时刻,可以查询资料或通过常规气象学计算得到所需的每一日的日出时刻,每一个阴天的0时至次日日出时刻后30分钟之间的最高气温减去最低气温称为该阴天的日气温的最大温差,有T个阴天,就有T个阴天的日气温的最大温差,取T个阴天的日气温的最大温差中的最大值为参考日温差,参考日温差记为ΔTr;查询索结构所在地和所在海拔区间不少于2年的近年来的气象资料或实测得到索结构所处环境的温度随时间和海拔高度的变化数据和变化规律,计算得到索结构所在地和所在海拔区间不少于2年的近年来的索结构所处环境的温度关于海拔高度的最大变化率ΔTh,为方便叙述取ΔTh的单位为℃/m;在索结构的表面上取“R个索结构表面点”,取“R个索结构表面点”的具体原则在步骤b3中叙述,后面将通过实测记录得到这R个索结构表面点的温度,称实测得到的温度数据为“R个索结构表面温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这R个索结构表面点的温度,就称计算得到的温度数据为“R个索结构表面温度计算数据”。从索结构所处的最低海拔到最高海拔之间,在索结构上均布选取不少于三个不同的海拔高度,例如如果索结构的海拔高度在0m至200m之间,那么可以选取海拔0m、50m、100m和海拔200m,在每一个选取的海拔高度处用假想的水平面与索结构表面相交,得到交线,水平面与索结构相交得到交面,交线是交面的外边缘线,在水平面与索结构表面的交线处选取6个点,从选取点处引索结构表面的外法线,所有选取的外法线方向称为“测量索结构沿壁厚的温度分布的方向”,测量索结构沿壁厚的温度分布的方向与“水平面与索结构表面的交线”相交。在选取的测量索结构沿壁厚的温度分布的6个方向中,首先根据索结构所在位置区域的一年四季的气象资料和索结构的几何尺寸、空间坐标、索结构周围环境等确定索结构的向阳面和背阴面,索结构的向阳面和背阴面是索结构的表面的一部分,在每一个选取的海拔高度处,前述交线在向阳面和背阴面内各有一段,交线的这两段各有一个中点,过这两个中点取索结构的外法线,本方法将这两个外法线称为索结构的向阳面外法线和索结构的背阴面外法线,本方法将这两个外法线方向称为索结构的向阳面外法线方向和索结构的背阴面外法线方向,显然向阳面的外法线和背阴面的外法线都与前述交线相交,也就有两个交点,这两个交点将交线分为两个线段,分别在两个线段上取2个点,共4个点,所取点将交线的两个线段中每一个线段分成长度相等的3段,在这4个点处取索结构表面的外法线,这样在每一个选定的海拔高度处就共选取了6个索结构表面的外法线,6个外法线的方向就是“测量索结构沿壁厚的温度分布的方向”。每一个“测量索结构沿壁厚的温度分布的方向”线与索结构的表面有两个交点,如果索结构是空心的,这两个交点一个在索结构外表面上,另一个在内表面上,如果索结构是实心的,这两个交点都在索结构外表面上,连接这两个交点得到一个直线段,在直线段上再选取三个点,这三个点将该直线段均分为四段,测量索结构在该选取的三个点和直线段的两个端点、共计5个点的温度,具体的可以先在索结构上钻孔,将温度传感器埋设在这5个点处,特别的,不能在支承索上钻孔,对支承索仅仅测量支承索表面点的温度,不管怎样,测得的温度都称为该处“索结构沿厚度的温度分布数据”,其中沿与同一“水平面与索结构表面的交线”相交的、“测量索结构沿壁厚的温度分布的方向”测量获得的“索结构沿厚度的温度分布数据”,在本方法中称为“相同海拔高度索结构沿厚度的温度分布数据”。设选取了H个不同的海拔高度,在每一个海拔高度处,选取了B个测量索结构沿壁厚的温度分布的方向,沿每个测量索结构沿壁厚的温度分布的方向在索结构中选取了E个点,其中H和E都不小于3,B不小于2,特别的,对于支承索E等于1,计索结构上“测量索结构沿厚度的温度分布数据的点”的总数为HBE个,后面将通过实测得到这HBE个“测量索结构沿厚度的温度分布数据的点”的温度,称实测得到的温度数据为“HBE个索结构沿厚度温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这HBE个测量索结构沿厚度的温度分布数据的点的温度,就称计算得到的温度数据为“HBE个索结构沿厚度温度计算数据”;本方法中将在每一个选取的海拔高度处“相同海拔高度索结构沿厚度的温度分布数据”的个数温度分布数据”。在索结构所在地按照气象学测量气温要求选取一个位置,将在此位置实测记录得到符合气象学测量气温要求的索结构所在环境的气温;在索结构所在地的空旷无遮挡处选取一个位置,该位置应当在全年的每一日都能得到该地所能得到的该日的最充分的日照(只要当天有日出,该位置就应当被阳光照射到),在该位置安放一块碳钢材质(例如45号碳钢)的平板(例如30cm宽3mm厚的正方形平板),称为参考平板,参考平板与地面不可接触,参考平板离地面距离不小于1.5米,参考平板可置于符合气象学气温测量要求的木制百叶箱的顶部,该参考平板的一面向阳,称为向阳面(例如,在北半球时,向阳面面朝上朝南,全白天都被日照,向阳面应有适当坡度使得雪不能积累或者在雪后清理向阳面),参考平板的向阳面是粗糙的和深色的(有利于接受阳光辐射),参考平板的向阳面应当在全年的每一日都能得到一块平板在该地所能得到的该日的最充分的日照,参考平板的非向阳面覆有保温材料(例如5mm厚碳酸钙保温材料),将实时监测记录得到参考平板的向阳面的温度。
第b步,实时监测(可以用常规温度测量方法测量,例如使用热电阻测量,例如每隔10分钟测量记录一次温度数据)记录得到上述R个索结构表面点的R个索结构表面温度实测数据,同时实时监测(可以用常规温度测量方法测量,例如使用热电阻测量,例如每隔10分钟测量记录一次温度数据)得到前面定义的索结构沿厚度的温度分布数据,同时实时监测(可以用常规温度测量方法测量,例如在符合气象学气温测量要求的木制百叶箱中安放热电阻测量气温,例如每隔10分钟测量记录一次温度数据)记录得到符合气象学测量气温要求的索结构所在环境的气温数据;通过实时监测(可以用常规温度测量方法测量,例如在符合气象学气温测量要求的木制百叶箱中安放热电阻测量气温,例如每隔10分钟测量记录一次温度数据)记录得到当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据序列,索结构所在环境的气温实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据按照时间先后顺序排列,找到索结构所在环境的气温实测数据序列中的最高温度和最低温度,用索结构所在环境的气温实测数据序列中的最高温度减去最低温度得到索结构所在环境的当日日出时刻到次日日出时刻后30分钟之间的最大温差,记为ΔTemax;由索结构所在环境的气温实测数据序列通过常规数学计算(例如先对索结构所在环境的气温实测数据序列进行曲线拟合,然后通过求曲线对时间的导数或者通过用数值方法求曲线上每一个对应于测量记录数据时间的点对时间的变化率)得到索结构所在环境的气温关于时间的变化率,该变化率也随着时间变化;通过实时监测(可以用常规温度测量方法测量,例如使用热电阻测量参考平板向阳面的温度,例如每隔10分钟测量记录一次温度数据)得到当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据序列,参考平板的向阳面的温度的实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据按照时间先后顺序排列,找到参考平板的向阳面的温度的实测数据序列中的最高温度和最低温度,用参考平板的向阳面的温度的实测数据序列中的最高温度减去最低温度得到参考平板的向阳面的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,记为ΔTpmax;通过实时监测(可以用常规温度测量方法测量,例如使用热电阻测量测量索结构表面点,例如每隔10分钟测量记录一次温度数据)记录得到当日日出时刻到次日日出时刻后30分钟之间的所有R个索结构表面点的索结构表面温度实测数据序列,有R个索结构表面点就有R个索结构表面温度实测数据序列,每一个索结构表面温度实测数据序列由一个索结构表面点的当日日出时刻到次日日出时刻后30分钟之间的索结构表面温度实测数据按照时间先后顺序排列,找到每一个索结构表面温度实测数据序列中的最高温度和最低温度,用每一个索结构表面温度实测数据序列中的最高温度减去最低温度得到每一个索结构表面点的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,有R个索结构表面点就有R个当日日出时刻到次日日出时刻后30分钟之间的最大温差数值,其中的最大值记为ΔTsmax;由每一索结构表面温度实测数据序列通过常规数学计算(例如先对每一索结构表面温度实测数据序列进行曲线拟合,然后通过求曲线对时间的导数或者通过用数值方法求曲线上每一个对应于测量记录数据时间的点对时间的变化率)得到每一个索结构表面点的温度关于时间的变化率,每一个索结构表面点的温度关于时间的变化率也随着时间变化。通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的、在同一时刻、HBE个“索结构沿厚度的温度分布数据”后,计算在每一个选取的海拔高度处共计BE个“相同海拔高度索结构沿厚度的温度分布数据”中的最高温度与最低温度的差值,这个差值的绝对值称为“相同海拔高度处索结构厚度方向最大温差”,选取了H个不同的海拔高度就有H个“相同海拔高度处索结构厚度方向最大温差”,称这H个“相同海拔高度处索结构厚度方向最大温差”中的最大值为“索结构厚度方向最大温差”,记为ΔTtmax
第c步,测量计算获得索结构稳态温度数据;首先,确定获得索结构稳态温度数据的时刻,与决定获得索结构稳态温度数据的时刻相关的条件有六项,第一项条件是获得索结构稳态温度数据的时刻介于当日日落时刻到次日日出时刻后30分钟之间,日落时刻是指根据地球自转和公转规律确定的气象学上的日落时刻,可以查询资料或通过常规气象学计算得到所需的每一日的日落时刻;第二项条件的a条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,ΔTpmax和ΔTsmax都不大于5摄氏度;第二项必须满足的b条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,在前面测量计算得到的ΔTemax不大于参考日温差ΔTr,且在前面测量计算得到的ΔTpmax减去2摄氏度不大于ΔTemax,且在前面测量计算得到的ΔTsmax不大于ΔTpmax;只需满足第二项的a条件和b条件中的一项就称为满足第二项条件;第三项条件是在获得索结构稳态温度数据的时刻,索结构所在环境的气温关于时间的变化率的绝对值不大于每小时0.1摄氏度;第四项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的温度关于时间的变化率的绝对值不大于每小时0.1摄氏度;第五项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的索结构表面温度实测数据为当日日出时刻到次日日出时刻后30分钟之间的极小值;第六项条件是在获得索结构稳态温度数据的时刻,“索结构厚度方向最大温差”ΔTtmax不大于1摄氏度。本方法利用上述六项条件,将下列三种时刻中的任意一种称为“获得索结构稳态温度数据的数学时刻”,第一种时刻是满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第五项条件的时刻,第二种时刻是仅仅满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第六项条件的时刻,第三种时刻是同时满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第六项条件的时刻;当获得索结构稳态温度数据的数学时刻就是本方法中实际记录数据时刻中的一个时,获得索结构稳态温度数据的时刻就是获得索结构稳态温度数据的数学时刻;如果获得索结构稳态温度数据的数学时刻不是本方法中实际记录数据时刻中的任一个时刻,则取本方法最接近于获得索结构稳态温度数据的数学时刻的那个实际记录数据的时刻为获得索结构稳态温度数据的时刻;本方法将使用在获得索结构稳态温度数据的时刻测量记录的量进行索结构相关健康监测分析;本方法近似认为获得索结构稳态温度数据的时刻的索结构温度场处于稳态,即此时刻的索结构温度不随时间变化,此时刻就是本方法的获得索结构稳态温度数据的时刻;然后,根据索结构传热特性,利用获得索结构稳态温度数据的时刻的R个索结构表面温度实测数据和“HBE个索结构沿厚度温度实测数据”,利用索结构的传热学计算模型(例如有限元模型),通过常规传热计算(例如有限元法)得到在获得索结构稳态温度数据的时刻的索结构的温度分布,此时索结构的温度场按稳态进行计算,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据包括索结构上R个索结构表面点的计算温度,R个索结构表面点的计算温度称为R个索结构稳态表面温度计算数据,还包括索结构在前面选定的HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度,HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度称为“HBE个索结构沿厚度温度计算数据”,当R个索结构表面温度实测数据与R个索结构稳态表面温度计算数据对应相等时,且“HBE个索结构沿厚度温度实测数据”与“HBE个索结构沿厚度温度计算数据”对应相等时,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据在本方法中称为“索结构稳态温度数据”,此时的“R个索结构表面温度实测数据”称为“R个索结构稳态表面温度实测数据”,“HBE个索结构沿厚度温度实测数据”称为“HBE个索结构沿厚度稳态温度实测数据”。在索结构的表面上取“R个索结构表面点”时,“R个索结构表面点”的数量与分布必须满足三个条件,第一个条件是当索结构温度场处于稳态时,当索结构表面上任意一点的温度是通过“R个索结构表面点”中与索结构表面上该任意点相邻的点的实测温度线性插值得到时,线性插值得到的索结构表面上该任意点的温度与索结构表面上该任意点的实际温度的误差不大于5%;索结构表面包括支承索表面;第二个条件是“R个索结构表面点”中在同一海拔高度的点的数量不小于4,且“R个索结构表面点”中在同一海拔高度的点沿着索结构表面均布;“R个索结构表面点”沿海拔高度的所有两两相邻索结构表面点的海拔高度之差的绝对值中的最大值Δh不大于0.2℃除以ΔTh得到的数值,为方便叙述取ΔTh的单位为℃/m,为方便叙述取Δh的单位为m;“R个索结构表面点”沿海拔高度的两两相邻索结构表面点的定义是指只考虑海拔高度时,在“R个索结构表面点”中不存在一个索结构表面点,该索结构表面点的海拔高度数值介于两两相邻索结构表面点的海拔高度数值之间;第三个条件是查询或按气象学常规计算得到索结构所在地和所在海拔区间的日照规律,再根据索结构的几何特征及方位数据,在索结构上找到全年受日照时间最充分的那些表面点的位置,“R个索结构表面点”中至少有一个索结构表面点是索结构上全年受日照时间最充分的那些表面点中的一个点。
第二步:建立初始力学计算基准模型Ao
设共有N根支承索,首先确定索的编号规则,按此规则将索结构中所有的索编号,该编号在后续步骤中将用于生成向量和矩阵。确定被测量点(即所有表征索结构应变信息的指定点,设有K个指定点),给所有指定点编号;确定每一个指定点的被测量的应变(设测量每个指定点的L个指定方向的应变,不要求每个指定点有相同个数的被指定方向的应变,这里只是为了叙述方便而设测量每个指定点的L个指定方向的应变),并给所有被测量的应变编号;上述编号在后续步骤中同样将用于生成向量和矩阵。每一个指定点可以就是每一根索的固定端点(例如是斜拉桥的拉索在桥面上的固定端)附近的一个点,该点一般不应当是应力集中点,以避免出现过大的应变测量值;该编号在后续步骤中同样将用于生成向量和矩阵。在每一指定点可以仅仅测量一个方向的应变,也可以测量多个方向的应变。“索结构的全部被监测的应变数据”由上面确定的索结构上K个指定点的、过每个指定点的L个指定方向的应变来描述,索结构应变的变化就是所有指定点的、所有指定直线的所有指定方向的应变的变化。每次共有M(M=K×L)个应变测量值或计算值来表征索结构的应变信息。K和M不得小于支承索的数量N。为方便起见,在本方法中将“索结构的被监测的应变数据”简称为“被监测量”。
在索结构竣工之时,或者在建立健康监测(受损索识别)系统前,按照“本方法的索结构的温度测量计算方法”测量计算得到“索结构稳态温度数据”(可以用常规温度测量方法测量,例如使用热电阻测量),此时的“索结构稳态温度数据”用向量To表示,称为初始索结构稳态温度数据向量To。在实测得到To的同时,也就是在获得初始索结构稳态温度数据向量的时刻的同一时刻,使用常规方法直接测量计算得到索结构的所有被监测量的初始数值,组成被监测量初始数值向量Co
本方法中可以具体按照下列方法在获得某某(例如初始或当前等)索结构稳态温度数据向量的时刻的同一时刻,使用某某方法测量计算得到某某被测量量被监测量(例如索结构的所有被监测量)的数据:在测量记录温度(包括索结构所在环境的气温、参考平板的向阳面的温度和索结构表面温度)的同时,例如每隔10分钟测量记录一次温度,那么同时同样也每隔10分钟测量记录某某被测量量被监测量(例如索结构的所有被监测量)的数据。一旦确定了获得索结构稳态温度数据的时刻,那么与获得索结构稳态温度数据的时刻同一时刻的某某被测量量被监测量(例如索结构的所有被监测量)的数据就称为在获得索结构稳态温度数据的时刻的同一时刻,使用某某方法测量计算方法得到的某某被测量量被监测量的数据。
使用常规方法(查资料或实测)得到索结构所使用的各种材料的随温度变化的物理参数(例如热膨胀系数)和力学性能参数(例如弹性模量、泊松比);在实测得到初始索结构稳态温度数据向量To的同一时刻,直接测量计算得到所有支承索的初始索力,组成初始索力向量Fo;依据索结构设计数据、竣工数据得到所有支承索在自由状态即索力为0时的长度、在自由状态时的横截面面积和在自由状态时的单位长度的重量,以及获得这三种数据时所有支承索的温度,在此基础上利用所有支承索的随温度变化的物理性能参数和力学性能参数,按照常规物理计算得到所有支承索在初始索结构稳态温度数据向量To条件下的索力为0时所有支承索的长度、索力为0时所有支承索的横截面面积以及索力为0时所有支承索的单位长度的重量,依次组成支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量,支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同;在实测计算得到初始索结构稳态温度数据向量To的同时,也就是在获得索结构稳态温度数据的时刻的同一时刻,使用常规方法实测计算得到索结构的实测计算数据。索结构的实测计算数据包括支承索的无损检测数据等能够表达索的健康状态的数据、索结构初始几何数据、索力数据、拉杆拉力数据、初始索结构支座坐标数据、索结构模态数据、索结构应变数据、索结构角度测量数据、索结构空间坐标测量数据等实测数据。初始索结构支座坐标数据组成初始索结构支座坐标向量Uo。索结构的初始几何数据可以是所有索的端点的空间坐标数据加上索结构上一系列的点的空间坐标数据,目的在于根据这些坐标数据确定索结构的几何特征。对斜拉桥而言,初始几何数据可以是所有索的端点的空间坐标数据加上桥梁两端上若干点的空间坐标数据,这就是所谓的桥型数据。利用支承索的无损检测数据等能够表达索的健康状态的数据建立索系统初始损伤向量do。如果没有索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者可以认为索结构初始状态为无损伤状态时,向量do的各元素数值取0。索系统初始损伤向量do的元素个数等于N,do的元素与支承索是一一对应关系,索系统初始损伤向量do的元素数值不小于0、不大于100%,do的元素数值代表对应支承索的损伤程度,若索系统初始损伤向量do的某一元素的数值为0,表示该元素所对应的支承索是完好的、没有问题的,若其数值为100%,则表示该元素所对应的支承索完全丧失了承载能力,若其数值介于0和100%之间,则表示该支承索丧失了相应比例的承载能力,如果没有支承索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者认为索结构初始状态为无损伤状态时,向量do的各元素数值取0;若do的某一元素的数值不为0,则表示该元素所对应的支承索是有问题的,在本方法中该支承索可能是受损也可能是松弛,当该支承索是受损时,该元素数值表示其对应的支承索的损伤程度,若该支承索是松弛时,该元素数值表示其对应的支承索的初始等效损伤程度;索系统初始损伤向量do的元素的编号规则与初始索力向量Fo的元素的编号规则相同。利用索结构的设计图、竣工图和初始索结构的实测数据、支承索的无损检测数据、索结构所使用的各种材料的随温度变化的物理和力学性能参数、初始索结构支座坐标向量Uo和初始索结构稳态温度数据向量To,利用力学方法(例如有限元法)计入“索结构稳态温度数据”建立初始力学计算基准模型Ao
不论用何种方法获得初始力学计算基准模型Ao,计入“索结构稳态温度数据”(即初始索结构稳态温度数据向量To)、基于Ao计算得到的索结构计算数据必须非常接近其实测数据,误差一般不得大于5%。这样可保证利用Ao计算所得的模拟情况下的索力计算数据、应变计算数据、索结构形状计算数据和位移计算数据、索结构角度数据、索结构空间坐标数据等,可靠地接近所模拟情况真实发生时的实测数据。模型Ao中支承索的健康状态用索系统初始损伤向量do表示,索结构索结构稳态温度数据用初始索结构稳态温度数据向量To表示。由于基于Ao计算得到所有被监测量的计算数值非常接近所有被监测量的初始数值(实测得到),所以也可以用在Ao的基础上、进行力学计算得到的、Ao的每一个被监测量的计算数值组成被监测量初始数值向量Co。对应于Ao的“索结构稳态温度数据”就是“初始索结构稳态温度数据向量To”;对应于Ao的支承索健康状态用索系统初始损伤向量do表示;对应于Ao的所有被监测量的初始数值用被监测量初始数值向量Co表示。对应于Ao的索结构支座坐标数据用初始索结构支座坐标向量Uo表示;To、Uo和do是Ao的参数,Co由Ao的力学计算结果组成。
第三步:第一次建立当前初始力学计算基准模型At o、被监测量当前初始数值向量Ct o和“当前初始索结构稳态温度数据向量Tt o”,具体方法是:在初始时刻,即第一次建立当前初始力学计算基准模型At o和被监测量当前初始数值向量Ct o时,At o就等于Ao,Ct o就等于Co,At o对应的“索结构稳态温度数据”记为“当前初始索结构稳态温度数据向量Tt o”,在初始时刻(也就是第一次建立At o时),Tt o就等于To,向量Tt o的定义方式与向量To的定义方式相同。对应于索结构的当前初始力学计算基准模型At o的索结构支座坐标数据组成当前初始索结构支座坐标向量Ut o;第一次建立索结构的当前初始力学计算基准模型At o时,Ut o就等于Uo。At o的支承索的健康状态与Ao的支承索的健康状态(索系统初始损伤向量do表示)相同,在循环过程中At o的支承索的健康状态始终用索系统初始损伤向量do表示。Tt o和do是At o的参数,Ct o由At o的力学计算结果组成。
第四步:在索结构服役过程中,按照“本方法的索结构的温度测量计算方法”不断实测计算获得“索结构稳态温度数据”的当前数据(称为“当前索结构稳态温度数据向量Tt”,向量Tt的定义方式与向量To的定义方式相同)。在实测得到当前索结构稳态温度数据向量Tt的同时,也就是在获得当前索结构稳态温度数据向量Tt的时刻的同一时刻,实测得到索结构的所有被监测量的当前实测数值,组成“被监测量当前数值向量C”。在实测得到当前索结构稳态温度数据向量Tt的同时,实测得到索结构支座坐标当前数据,所有数据组成当前索结构实测支座坐标向量Ut。在实测得到当前索结构稳态温度数据向量Tt的同一时刻,实测得到索结构中所有支承索的索力数据,所有这些索力数据组成当前索力向量F,向量F的元素与向量Fo的元素的编号规则相同;在实测得到当前索结构稳态温度数据向量Tt的同一时刻,实测计算得到所有支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离,所有支承索的两个支承端点水平距离数据组成当前支承索两支承端点水平距离向量,当前支承索两支承端点水平距离向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同。
第五步:根据当前索结构实测支座坐标向量Ut和当前索结构稳态温度数据向量Tt,在必要时更新当前初始力学计算基准模型At o、当前初始索结构支座坐标向量Ut o、被监测量当前初始数值向量Ct o和当前初始索结构稳态温度数据向量Tt o。在第四步实测得到当前索结构实测支座坐标向量Ut和当前索结构稳态温度数据向量Tt后,分别比较Ut和Ut o、Tt和Tt o,如果Ut等于Ut o且Tt等于Tt o,则不需要对At o、Ut o和Tt o进行更新,否则需要对At o、Ut o和Tt o进行更新,更新方法按下列第a步至第c步进行:
第a步计算Ut与Uo的差,Ut与Uo的差就是索结构支座关于初始位置的当前支座平移位移,用支座平移位移向量V表示支座平移位移,V等于Ut减去Uo,支座平移位移向量V中的元素与支座平移位移分量之间是一一对应关系,支座平移位移向量V中一个元素的数值对应于一个指定支座的一个指定方向的位移,其中支座平移位移在重力方向的分量就是支座沉降量。
第b步计算Tt与To的差,Tt与To的差就是当前索结构稳态温度数据关于初始索结构稳态温度数据的变化,Tt与To的差用稳态温度变化向量S表示,S等于Tt减去To,S表示索结构稳态温度数据的变化。
第c步先对Ao中的索结构支座施加当前支座平移位移约束,当前支座平移位移约束的数值就取自支座平移位移向量V中对应元素的数值,再对Ao中的索结构施加温度变化,施加的温度变化的数值就取自稳态温度变化向量S,对Ao中索结构支座施加支座平移位移约束且对Ao中的索结构施加的温度变化后得到更新的当前初始力学计算基准模型At o,更新At o的同时,Ut o所有元素数值也用Ut所有元素数值对应代替,即更新了Ut o,Tt o所有元素数值也用Tt的所有元素数值对应代替,即更新了Tt o,这样就得到了正确地对应于At o的Tt o和Ut o;更新Ct o的方法是:当更新At o后,通过力学计算得到At o中所有被监测量的、当前的具体数值,这些具体数值组成Ct o
第六步:在当前初始力学计算基准模型At o的基础上进行若干次力学计算,通过计算获得索结构单位损伤被监测量变化矩阵ΔC和单位损伤标量Du。具体方法为:索结构单位损伤被监测量变化矩阵ΔC是不断更新的,即在更新当前初始力学计算基准模型At o和当前索结构支座角坐标向量Ut o的同时,必须同时更新索结构单位损伤被监测量变化矩阵ΔC和单位损伤标量Du;在索结构的当前初始力学计算基准模型At o的基础上进行若干次力学计算,计算次数数值上等于所有索的数量,有N根索就有N次计算,每一次计算假设索系统中只有一根索有单位损伤Du(例如取5%、10%、20%或30%等损伤为单位损伤),每一次计算中出现损伤的索不同于其它次计算中出现损伤的索,每一次计算得到索结构中所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前向量C;每一次计算得到被监测量计算当前向量C减去被监测量当前初始数值向量Ct o得到一个被监测量变化向量;有N根索就有N个被监测量变化向量;由这N个被监测量变化向量依次组成有N列的单位损伤被监测量变化矩阵ΔC;单位损伤被监测量变化矩阵的每一列对应于一个被监测量变化向量。
第七步:建立线性关系误差向量e和向量g。利用前面的数据(被监测量当前初始数值向量Ct o、单位损伤被监测量变化矩阵ΔC),在第六步进行每一次计算的同时,即在每一次计算假设索系统中只有一根索有单位损伤Du,每一次计算中出现损伤的索不同于其它次计算中出现损伤的索,每一次计算都利用力学方法(例如采用有限元法)计算索结构中索系统中所有被监测量的当前数值,每一次计算组成一个被监测量计算当前向量C的同时,每一次计算组成一个损伤向量d,这一步出现的损伤向量d只在这一步使用,该损伤向量d的所有元素中只有一个元素的数值取Du,其它元素的数值取0,损伤向量d中数值是Du的元素对应于该次计算时唯一受损索的单位损伤程度Du;将C、Ct o、ΔC、Du、d带入式(12),得到一个线性关系误差向量e,每一次计算得到一个线性关系误差向量e;有N根索就有N次计算,就有N个线性关系误差向量e,将这N个线性关系误差向量e相加后得到一个向量,将此向量的每一个元素除以N后得到的新向量就是最终的线性关系误差向量e。向量g等于最终的误差向量e。
第八步:安装索结构健康监测系统的硬件部分。硬件部分至少包括:被监测量监测系统(例如含应变测量系统、信号调理器等)、索结构支座坐标监测系统(例如用全站仪进行测量)、索结构温度监测系统(含温度传感器、信号调理器等)和索结构环境温度测量系统(含温度传感器、信号调理器等)、索力监测系统(例如含加速度传感器、信号调理器等)、各支承索两支承端点的水平距离监测系统(例如用全站仪监测)、信号(数据)采集器、计算机和通信报警设备。每一个被监测量、每一个索结构的支座坐标、每一根支承索的索力、每一根支承索两支承端点的水平距离、每一个温度都必须被监测系统监测到,监测系统将监测到的信号传输到信号(数据)采集器;信号经信号采集器传递到计算机;计算机则负责运行索结构的索系统的健康监测软件,包括记录信号采集器传递来的信号;当监测到索有损伤时,计算机控制通信报警设备向监控人员、业主和(或)指定的人员报警。
第九步:将被监测量当前初始数值向量Ct o、单位损伤被监测量变化矩阵ΔC、单位损伤标量Du参数以数据文件的方式保存在运行健康监测系统软件的计算机硬盘上。
第十步:编制并在计算机上安装运行有支座沉降和温度变化时基于应变监测的松弛索识别方法系统软件,该软件将完成本方法“有支座沉降和温度变化时基于应变监测的松弛索识别方法”任务所需要的监测、记录、控制、存储、计算、通知、报警等功能(即本具体实施方法中所有可以用计算机完成的工作)
第十一步:依据被监测量当前数值向量C同被监测量当前初始数值向量Ct o、单位损伤被监测量变化矩阵ΔC、单位损伤标量Du和索系统当前名义损伤向量d(由所有索当前名义损伤量组成)间存在的近似线性关系(式(8)),按照多目标优化算法计算索系统当前名义损伤向量d的非劣解,也就是带有合理误差、但可以比较准确地从所有索中确定受损索的位置及其名义损伤程度的解。
可以采用的多目标优化算法有很多种,例如:基于遗传算法的多目标优化、基于人工神经网络的多目标优化、基于粒子群的多目标优化算法、基于蚁群算法的多目标优化、约束法(Constrain Method)、加权法(Weighted SUm Method)、目标规划法(GoalAttainment Method)等等。由于各种多目标优化算法都是常规算法,可以方便地实现,本实施步骤仅以目标规划法为例给出求解当前损伤向量d的过程,其它算法的具体实现过程可根据其具体算法的要求以类似的方式实现。
按照目标规划法,式(8)可以转化成式(27)和式(28)所示的多目标优化问题,式(27)中γ是一个实数,R是实数域,空间区域Ω限制了向量d的每一个元素的取值范围(本实施例要求向量d的每一个元素不小于0,不大于1)。式(27)的意思是寻找一个最小的实数γ,使得式(28)得到满足。式(28)中G(d)由式(29)定义,式(28)中加权向量W与γ的积表示式(28)中G(d)与向量g之间允许的偏差,g的定义参见式(13),其值已在第七步计算得到。实际计算时向量W可以与向量g相同。目标规划法的具体编程实现已经有通用程序可以直接采用。使用目标规划法就可以求得索系统当前名义损伤向量d。
minimize  γ
                            (27)
γ∈R,d∈Ω
G(d)-Wγ≤g                 (28)
G ( d ) = abs ( 1 D u ΔC · d - C + C o t ) - - - ( 29 )
索系统当前名义损伤向量d的元素个数等于索的数量,索系统当前名义损伤向量d的元素和索之间是一一对应关系,索系统当前名义损伤向量d的元素数值代表对应索的名义损伤程度或名义健康状态。向量d的的元素的编号规则与向量do的元素的编号规则相同。
第十二步:定义索系统当前实际损伤向量da,索系统当前实际损伤向量da的元素个数等于支承索的数量,索系统当前实际损伤向量da的元素和支承索之间是一一对应关系,索系统当前实际损伤向量da的元素数值代表对应支承索的实际损伤程度或实际健康状态;向量da的元素的编号规则与向量do的元素的编号规则相同。利用式(15)表达的索系统当前实际损伤向量da的第j个元素da j同索系统初始损伤向量do的第j个元素doj和索系统当前名义损伤向量d的第j个元素dj间的关系,计算得到索系统当前实际损伤向量da的所有元素;da j为0时表示第j根支承索无健康问题,da j数值不为0时表示第j根支承索是有健康问题的支承索,有健康问题的支承索可能是松弛索、也可能是受损索,其数值反应了松弛或损伤的程度。索系统当前实际损伤向量da的元素数值不小于0、不大于100%,索系统当前实际损伤向量da的元素数值代表对应支承索的损伤程度,若索系统当前实际损伤向量da的某一元素的数值为0,表示该元素所对应的支承索是完好的、无健康问题的,若其数值为100%,则表示该元素所对应的支承索完全丧失了承载能力,若其数值介于0和100%之间,则表示该元素所对应的支承索是有健康问题的,在本方法中该支承索的健康问题可能是受损了也可能是松弛了,当该支承索是受损时,该元素数值表示其对应的支承索的损伤程度,若该支承索是松弛时,该元素数值表示其对应的支承索的与其松弛程度力学等效的当前实际等效损伤程度。
第十三步:从第十二步中识别出的有问题的支承索中鉴别出受损索,剩下的就是松弛索。鉴别的方法多种多样,可以通过去除有健康问题的支承索的保护层,对支承索进行目视鉴别,或者借助光学成像设备进行目视鉴别,也可以通过无损检测方法对支承索是否受损进行鉴别,超声波探伤就是一种目前广泛使用的无损检测方法。鉴别后那些没有发现损伤的有健康问题的支承索就是发生了松弛的索,就是需调整索力的索。
第十四步:利用在当前索结构稳态温度数据向量Tt条件下的在第十二步获得的索系统当前实际损伤向量da得到松弛索的与其松弛程度力学等效的当前实际等效损伤程度,利用在第四步获得的在当前索结构稳态温度数据向量Tt条件下的当前索力向量F和当前支承索两支承端点水平距离向量,利用在第二步获得的在初始索结构稳态温度数据向量To条件下的支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量,利用当前索结构稳态温度数据向量Tt表示的支承索当前稳态温度数据,利用在第二步获得的在初始索结构稳态温度数据向量To表示的支承索初始稳态温度数据,利用在第二步获得的索结构所使用的各种材料的随温度变化的物理和力学性能参数,计入温度变化对支承索物理、力学和几何参数的影响,通过将松弛索同受损索进行力学等效来计算松弛索的、与当前实际等效损伤程度等效的松弛程度,等效的力学条件是:一、两等效的索的无松弛和无损伤时的初始自由长度、几何特性参数、密度及材料的力学特性参数相同;二、松弛或损伤后,两等效的松弛索和损伤索的索力和变形后的总长相同。满足上述两个等效条件时,这样的两根支承索在索结构中的力学功能就是完全相同的,即如果用等效的松弛索代替受损索后,索结构不会发生任何变化,反之亦然。依据前述力学等效条件求得那些被判定为松弛索的松弛程度,松弛程度就是支承索自由长度的改变量,也就是确定了那些需调整索力的支承索的索长调整量。具体地可以依据式(25)或式(26)可以求得这些索的松弛程度(即索长调整量)。这样就实现了支承索的松弛识别和损伤识别。计算时所需索力由当前索力向量F对应元素给出。
第十五步:健康监测系统中的计算机定期自动或由人员操作健康监测系统生成索系统健康情况报表。在指定条件下,健康监测系统中的计算机自动操作通信报警设备向监控人员、业主和(或)指定的人员报警。
第十六步:回到第四步,开始由第四步到第十六步的循环。

Claims (1)

1.一种有支座沉降和温度变化时基于应变监测的松弛索识别方法,其特征在于所述方法包括:
a.设共有N根支承索,首先确定支承索的编号规则,按此规则将索结构中所有的支承索编号,该编号在后续步骤中将用于生成向量和矩阵;确定指定的被监测点,被监测点即表征索结构应变信息的所有指定点,并给所有指定点编号;确定被监测点的被监测的应变方向,并给所有指定的被监测应变编号;“被监测应变编号”在后续步骤中将用于生成向量和矩阵;“索结构的全部被监测的应变数据”由上述所有被监测应变组成;本方法将“索结构的全部被监测的应变数据”简称为“被监测量”;被监测点的数量不得小于支承索的数量;所有被监测量的数量之和不得小于支承索的数量;本方法中对同一个量实时监测的任何两次测量之间的时间间隔不得大于30分钟,测量记录数据的时刻称为实际记录数据时刻;
b.本方法定义“本方法的索结构的温度测量计算方法”按步骤b1至b3进行;
b1:查询或实测得到索结构组成材料及索结构所处环境的随温度变化的传热学参数,利用索结构的设计图、竣工图和索结构的几何实测数据,利用这些数据和参数建立索结构的传热学计算模型;查询索结构所在地不少于2年的近年来的气象资料,统计得到这段时间内的阴天数量记为T个阴天,在本方法中将白天不能见到太阳的一整日称为阴天,统计得到T个阴天中每一个阴天的0时至次日日出时刻后30分钟之间的最高气温与最低气温,日出时刻是指根据地球自转和公转规律确定的气象学上的日出时刻,不表示当天一定可以看见太阳,能够查询资料或通过常规气象学计算得到所需的每一日的日出时刻,每一个阴天的0时至次日日出时刻后30分钟之间的最高气温减去最低气温称为该阴天的日气温的最大温差,有T个阴天,就有T个阴天的日气温的最大温差,取T个阴天的日气温的最大温差中的最大值为参考日温差,参考日温差记为ΔTr;查询索结构所在地和所在海拔区间不少于2年的近年来的气象资料或实测得到索结构所处环境的温度随时间和海拔高度的变化数据和变化规律,计算得到索结构所在地和所在海拔区间不少于2年的近年来的索结构所处环境的温度关于海拔高度的最大变化率ΔTh,为方便叙述取ΔTh的单位为℃/m;在索结构的表面上取“R个索结构表面点”,取“R个索结构表面点”的具体原则在步骤b3中叙述,后面将通过实测得到这R个索结构表面点的温度,称实测得到的温度数据为“R个索结构表面温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这R个索结构表面点的温度,就称计算得到的温度数据为“R个索结构表面温度计算数据”;从索结构所处的最低海拔到最高海拔之间,在索结构上均布选取不少于三个不同的海拔高度,在每一个选取的海拔高度处、在水平面与索结构表面的交线处至少选取两个点,从选取点处引索结构表面的外法线,所有选取的外法线方向称为“测量索结构沿壁厚的温度分布的方向”,测量索结构沿壁厚的温度分布的方向与“水平面与索结构表面的交线”相交,在选取的测量索结构沿壁厚的温度分布的方向中必须包括索结构的向阳面外法线方向和索结构的背阴面外法线方向,沿每一个测量索结构沿壁厚的温度分布的方向在索结构中均布选取不少于三个点,对于支承索沿每一个测量索结构沿壁厚的温度分布的方向仅仅取一个点,仅仅测量支承索的表面点的温度,测量所有被选取点的温度,测得的温度称为“索结构沿厚度的温度分布数据”,其中沿与同一“水平面与索结构表面的交线”相交的、“测量索结构沿壁厚的温度分布的方向”测量获得的“索结构沿厚度的温度分布数据”,在本方法中称为“相同海拔高度索结构沿厚度的温度分布数据”,设选取了H个不同的海拔高度,在每一个海拔高度处,选取了B个测量索结构沿壁厚的温度分布的方向,沿每个测量索结构沿壁厚的温度分布的方向在索结构中选取了E个点,其中H和E都不小于3,B不小于2,对于支承索E等于1,计索结构上“测量索结构沿厚度的温度分布数据的点”的总数为HBE个,后面将通过实测得到这HBE个“测量索结构沿厚度的温度分布数据的点”的温度,称实测得到的温度数据为“HBE个索结构沿厚度温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这HBE个测量索结构沿厚度的温度分布数据的点的温度,就称计算得到的温度数据为“HBE个索结构沿厚度温度计算数据”;在索结构所在地按照气象学测量气温要求选取一个位置,将在此位置实测得到符合气象学测量气温要求的索结构所在环境的气温;在索结构所在地的空旷无遮挡处选取一个位置,该位置应当在全年的每一日都能得到该地所能得到的该日的最充分的日照,在该位置安放一块碳钢材质的平板,称为参考平板,参考平板与地面不可接触,参考平板离地面距离不小于1.5米,该参考平板的一面向阳,称为向阳面,参考平板的向阳面是粗糙的和深色的,参考平板的向阳面应当在全年的每一日都能得到一块平板在该地所能得到的该日的最充分的日照,参考平板的非向阳面覆有保温材料,将实时监测得到参考平板的向阳面的温度;
b2:实时监测得到上述R个索结构表面点的R个索结构表面温度实测数据,同时实时监测得到前面定义的索结构沿厚度的温度分布数据,同时实时监测得到符合气象学测量气温要求的索结构所在环境的气温数据;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据序列,索结构所在环境的气温实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据按照时间先后顺序排列,找到索结构所在环境的气温实测数据序列中的最高温度和最低温度,用索结构所在环境的气温实测数据序列中的最高温度减去最低温度得到索结构所在环境的当日日出时刻到次日日出时刻后30分钟之间的最大温差,称为环境最大温差,记为ΔTemax;由索结构所在环境的气温实测数据序列通过常规数学计算得到索结构所在环境的气温关于时间的变化率,该变化率也随着时间变化;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据序列,参考平板的向阳面的温度的实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据按照时间先后顺序排列,找到参考平板的向阳面的温度的实测数据序列中的最高温度和最低温度,用参考平板的向阳面的温度的实测数据序列中的最高温度减去最低温度得到参考平板的向阳面的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,称为参考平板最大温差,记为ΔTpmax;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的所有R个索结构表面点的索结构表面温度实测数据序列,有R个索结构表面点就有R个索结构表面温度实测数据序列,每一个索结构表面温度实测数据序列由一个索结构表面点的当日日出时刻到次日日出时刻后30分钟之间的索结构表面温度实测数据按照时间先后顺序排列,找到每一个索结构表面温度实测数据序列中的最高温度和最低温度,用每一个索结构表面温度实测数据序列中的最高温度减去最低温度得到每一个索结构表面点的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,有R个索结构表面点就有R个当日日出时刻到次日日出时刻后30分钟之间的最大温差数值,其中的最大值称为索结构表面最大温差,记为ΔTsmax;由每一索结构表面温度实测数据序列通过常规数学计算得到每一个索结构表面点的温度关于时间的变化率,每一个索结构表面点的温度关于时间的变化率也随着时间变化;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的、在同一时刻、HBE个“索结构沿厚度的温度分布数据”后,计算在每一个选取的海拔高度处共计BE个“相同海拔高度索结构沿厚度的温度分布数据”中的最高温度与最低温度的差值,这个差值的绝对值称为“相同海拔高度处索结构厚度方向最大温差”,选取了H个不同的海拔高度就有H个“相同海拔高度处索结构厚度方向最大温差”,称这H个“相同海拔高度处索结构厚度方向最大温差”中的最大值为“索结构厚度方向最大温差”,记为ΔTtmax
b3:测量计算获得索结构稳态温度数据;首先,确定获得索结构稳态温度数据的时刻,与决定获得索结构稳态温度数据的时刻相关的条件有六项,第一项条件是获得索结构稳态温度数据的时刻介于当日日落时刻到次日日出时刻后30分钟之间,日落时刻是指根据地球自转和公转规律确定的气象学上的日落时刻,能够查询资料或通过常规气象学计算得到所需的每一日的日落时刻;第二项条件的a条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,参考平板最大温差ΔTpmax和索结构表面最大温差ΔTsmax都不大于5摄氏度;第二项条件的b条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,在前面测量计算得到的环境最大温差ΔTemax不大于参考日温差ΔTr,且参考平板最大温差ΔTpmax减去2摄氏度后不大于ΔTemax,且索结构表面最大温差ΔTsmax不大于ΔTpmax;只需满足第二项的a条件和b条件中的一项就称为满足第二项条件;第三项条件是在获得索结构稳态温度数据的时刻,索结构所在环境的气温关于时间的变化率的绝对值不大于每小时0.1摄氏度;第四项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的温度关于时间的变化率的绝对值不大于每小时0.1摄氏度;第五项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的索结构表面温度实测数据为当日日出时刻到次日日出时刻后30分钟之间的极小值;第六项条件是在获得索结构稳态温度数据的时刻,“索结构厚度方向最大温差”ΔTtmax不大于1摄氏度;本方法利用上述六项条件,将下列三种时刻中的任意一种称为“获得索结构稳态温度数据的数学时刻”,第一种时刻是满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第五项条件的时刻,第二种时刻是仅仅满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第六项条件的时刻,第三种时刻是同时满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第六项条件的时刻;当获得索结构稳态温度数据的数学时刻就是本方法中实际记录数据时刻中的一个时刻时,获得索结构稳态温度数据的时刻就是获得索结构稳态温度数据的数学时刻;如果获得索结构稳态温度数据的数学时刻不是本方法中实际记录数据时刻中的任一个时刻,则取本方法最接近于获得索结构稳态温度数据的数学时刻的那个实际记录数据的时刻为获得索结构稳态温度数据的时刻;本方法将使用在获得索结构稳态温度数据的时刻测量记录的量进行索结构相关健康监测分析;本方法近似认为获得索结构稳态温度数据的时刻的索结构温度场处于稳态,即此时刻的索结构温度不随时间变化,此时刻就是本方法的“获得索结构稳态温度数据的时刻”;然后,根据索结构传热特性,利用获得索结构稳态温度数据的时刻的“R个索结构表面温度实测数据”和“HBE个索结构沿厚度温度实测数据”,利用索结构的传热学计算模型,通过常规传热计算得到在获得索结构稳态温度数据的时刻的索结构的温度分布,此时索结构的温度场按稳态进行计算,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据包括索结构上R个索结构表面点的计算温度,R个索结构表面点的计算温度称为R个索结构稳态表面温度计算数据,还包括索结构在前面选定的HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度,HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度称为“HBE个索结构沿厚度温度计算数据”,当R个索结构表面温度实测数据与R个索结构稳态表面温度计算数据对应相等时,且“HBE个索结构沿厚度温度实测数据”与“HBE个索结构沿厚度温度计算数据”对应相等时,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据在本方法中称为“索结构稳态温度数据”,此时的“R个索结构表面温度实测数据”称为“R个索结构稳态表面温度实测数据”,“HBE个索结构沿厚度温度实测数据”称为“HBE个索结构沿厚度稳态温度实测数据”;在索结构的表面上取“R个索结构表面点”时,“R个索结构表面点”的数量与分布必须满足三个条件,第一个条件是当索结构温度场处于稳态时,当索结构表面上任意一点的温度是通过“R个索结构表面点”中与索结构表面上该任意点相邻的点的实测温度线性插值得到时,线性插值得到的索结构表面上该任意点的温度与索结构表面上该任意点的实际温度的误差不大于5%;索结构表面包括支承索表面;第二个条件是“R个索结构表面点”中在同一海拔高度的点的数量不小于4,且“R个索结构表面点”中在同一海拔高度的点沿着索结构表面均布;“R个索结构表面点”沿海拔高度的所有两两相邻索结构表面点的海拔高度之差的绝对值中的最大值Δh不大于0.2℃除以ΔTh得到的数值,为方便叙述取ΔTh的单位为℃/m,为方便叙述取Δh的单位为m;“R个索结构表面点”沿海拔高度的两两相邻索结构表面点的定义是指只考虑海拔高度时,在“R个索结构表面点”中不存在一个索结构表面点,该索结构表面点的海拔高度数值介于两两相邻索结构表面点的海拔高度数值之间;第三个条件是查询或按气象学常规计算得到索结构所在地和所在海拔区间的日照规律,再根据索结构的几何特征及方位数据,在索结构上找到全年受日照时间最充分的那些表面点的位置,“R个索结构表面点”中至少有一个索结构表面点是索结构上全年受日照时间最充分的那些表面点中的一个点;
c.按照“本方法的索结构的温度测量计算方法”直接测量计算得到初始状态下的索结构稳态温度数据,初始状态下的索结构稳态温度数据称为初始索结构稳态温度数据,记为“初始索结构稳态温度数据向量To”;实测或查资料得到索结构所使用的各种材料的随温度变化的物理和力学性能参数;在实测得到初始索结构稳态温度数据向量To的同一时刻,直接测量计算得到所有支承索的初始索力,组成初始索力向量Fo;依据索结构设计数据、竣工数据得到所有支承索在自由状态即索力为0时的长度、在自由状态时的横截面面积和在自由状态时的单位长度的重量,以及获得这三种数据时所有支承索的温度,在此基础上利用所有支承索的随温度变化的物理性能参数和力学性能参数,按照常规物理计算得到所有支承索在初始索结构稳态温度数据向量To条件下的索力为0时所有支承索的长度、索力为0时所有支承索的横截面面积以及索力为0时所有支承索的单位长度的重量,依次组成支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量,支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同;在实测得到To的同时,也就是在获得初始索结构稳态温度数据向量To的时刻的同一时刻,直接测量计算得到初始索结构的实测数据,初始索结构的实测数据包括表达支承索的健康状态的无损检测数据、所有被监测量的初始数值、所有支承索的初始索力数据、初始索结构模态数据、初始索结构应变数据、初始索结构几何数据、初始索结构支座坐标数据、初始索结构角度数据、初始索结构空间坐标数据;所有被监测量的初始数值组成被监测量初始数值向量Co;利用能表达支承索的健康状态的无损检测数据建立索系统初始损伤向量do,索系统初始损伤向量do的元素个数等于N,do的元素与支承索是一一对应关系,索系统初始损伤向量do的元素数值不小于0、不大于100%,do的元素数值代表对应支承索的损伤程度,若索系统初始损伤向量do的某一元素的数值为0,表示该元素所对应的支承索是完好的、没有问题的,若其数值为100%,则表示该元素所对应的支承索完全丧失了承载能力,若其数值介于0和100%之间,则表示该支承索丧失了相应比例的承载能力,如果没有支承索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者认为索结构初始状态为无损伤状态时,向量do的各元素数值取0;若do的某一元素的数值不为0,则表示该元素所对应的支承索是有问题的,在本方法中该支承索可能是受损也可能是松弛,当该支承索是受损时,该元素数值表示其对应的支承索的损伤程度,若该支承索是松弛时,该元素数值表示其对应的支承索的初始等效损伤程度;索系统初始损伤向量do的元素的编号规则与初始索力向量Fo的元素的编号规则相同;初始索结构支座坐标数据组成初始索结构支座坐标向量Uo
d.根据索结构的设计图、竣工图和初始索结构的实测数据、支承索的无损检测数据、索结构所使用的各种材料的随温度变化的物理和力学性能参数、初始索结构支座坐标向量Uo、初始索结构稳态温度数据向量To和前面步骤得到的所有的索结构数据,建立计入“索结构稳态温度数据”的索结构的初始力学计算基准模型Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异不得大于5%;对应于Ao的“索结构稳态温度数据”就是“初始索结构稳态温度数据向量To”;对应于Ao的索结构支座坐标数据就是初始索结构支座坐标向量Uo;对应于Ao的支承索健康状态用索系统初始损伤向量do表示;对应于Ao的所有被监测量的初始数值用被监测量初始数值向量Co表示;第一次建立计入“索结构稳态温度数据”的索结构的当前初始力学计算基准模型At o、被监测量当前初始数值向量Ct o和“当前初始索结构稳态温度数据向量Tt o”;第一次建立索结构的当前初始力学计算基准模型At o和被监测量当前初始数值向量Ct o时,索结构的当前初始力学计算基准模型At o就等于索结构的初始力学计算基准模型Ao,被监测量当前初始数值向量Ct o就等于被监测量初始数值向量Co;At o对应的“索结构稳态温度数据”称为“当前初始索结构稳态温度数据”,记为“当前初始索结构稳态温度数据向量Tt o”,第一次建立索结构的当前初始力学计算基准模型At o时,Tt o就等于To;对应于索结构的当前初始力学计算基准模型At o的索结构支座坐标数据组成当前初始索结构支座坐标向量Ut o,第一次建立索结构的当前初始力学计算基准模型At o时,Ut o就等于Uo;At o的支承索的初始健康状态与Ao的支承索的健康状态相同,也用索系统初始损伤向量do表示,在后面的循环过程中At o的支承索的初始健康状态始终用索系统初始损伤向量do表示;当To、Uo和do是Ao的参数时,由Ao的力学计算结果得到的所有被监测量的初始数值与Co表示的所有被监测量的初始数值相同,因此也可以说Co由Ao的力学计算结果组成,当Tt o、Ut o和do是At o的参数时,Ct o由At o的力学计算结果组成;在本方法中Ao、Uo、Co、do和To是不变的;
e.从这里进入由第e步到第o步的循环;在索结构服役过程中,不断按照“本方法的索结构的温度测量计算方法”不断实测计算获得“索结构稳态温度数据”的当前数据,“索结构稳态温度数据”的当前数据称为“当前索结构稳态温度数据”,记为“当前索结构稳态温度数据向量Tt”,向量Tt的定义方式与向量To的定义方式相同;在实测得到当前索结构稳态温度数据向量Tt的同一时刻,实测得到索结构中所有支承索的索力数据,所有这些索力数据组成当前索力向量F,向量F的元素与向量Fo的元素的编号规则相同;在实测得到当前索结构稳态温度数据向量Tt的同一时刻,实测计算得到所有支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离,所有支承索的两个支承端点水平距离数据组成当前支承索两支承端点水平距离向量,当前支承索两支承端点水平距离向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同;在实测得到当前索结构稳态温度数据向量Tt的同一时刻,实测得到索结构支座坐标当前数据,所有索结构支座坐标当前数据组成当前索结构实测支座坐标向量Ut
f.根据当前索结构实测支座坐标向量Ut和当前索结构稳态温度数据向量Tt,按照步骤f1至f3更新当前初始力学计算基准模型At o、当前初始索结构支座坐标向量Ut o、被监测量当前初始数值向量Ct o和当前初始索结构稳态温度数据向量Tt o
f1.分别比较Ut与Ut o、Tt与Tt o,如果Ut等于Ut o且Tt等于Tt o,则At o、Ut o、Ct o和Tt o保持不变;否则需要按下列步骤对At o、Ut o、Ct o和Tt o进行更新;
f2.计算Ut与Uo的差,Ut与Uo的差就是索结构支座关于初始位置的当前支座平移位移,用支座平移位移向量V表示支座平移位移,V等于Ut减去Uo,支座平移位移向量V中的元素与支座平移位移分量之间是一一对应关系,支座平移位移向量V中一个元素的数值对应于一个指定支座的一个指定方向的平移位移,其中支座平移位移在重力方向的分量就是支座沉降量;计算Tt与To的差,Tt与To的差就是当前索结构稳态温度数据关于初始索结构稳态温度数据的变化,Tt与To的差用稳态温度变化向量S表示,S等于Tt减去To,S表示索结构稳态温度数据的变化;
f3.先对Ao中的索结构支座施加当前支座平移位移约束,当前支座平移位移约束的数值就取自支座平移位移向量V中对应元素的数值,再对Ao中的索结构施加温度变化,施加的温度变化的数值就取自稳态温度变化向量S,对Ao中索结构支座施加支座平移位移约束且对Ao中的索结构施加的温度变化后得到更新的当前初始力学计算基准模型At o,更新At o的同时,Ut o所有元素数值也用Ut所有元素数值对应代替,即更新了Ut o,Tt o所有元素数值也用Tt的所有元素数值对应代替,即更新了Tt o,这样就得到了正确地对应于At o的Tt o和Ut o;更新Ct o的方法是:当更新At o后,通过力学计算得到At o中所有被监测量的、当前的具体数值,这些具体数值组成Ct o;At o的支承索的初始健康状态始终用索系统初始损伤向量do表示;
g.在当前初始力学计算基准模型At o的基础上按照步骤g1至g4进行若干次力学计算,通过计算获得索结构单位损伤被监测量变化矩阵ΔC和单位损伤标量Du
g1.索结构单位损伤被监测量变化矩阵ΔC是不断更新的,即在更新当前初始力学计算基准模型At o、当前初始索结构支座坐标向量Ut o、被监测量当前初始数值向量Ct o和当前初始索结构稳态温度数据向量Tt o之后,必须接着更新索结构单位损伤被监测量变化矩阵ΔC和单位损伤标量Du
g2.在索结构的当前初始力学计算基准模型At o的基础上进行若干次力学计算,计算次数数值上等于所有索的数量,有N根支承索就有N次计算,每一次计算假设索系统中只有一根支承索有单位损伤标量Du,每一次计算中出现损伤的索不同于其它次计算中出现损伤的索,每一次计算得到索结构中所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前向量,被监测量计算当前向量的元素编号规则与被监测量初始数值向量Co的元素编号规则相同;
g3.每一次计算得到的被监测量计算当前向量减去被监测量当前初始数值向量Ct o得到一个被监测量变化向量;有N根支承索就有N个被监测量变化向量;
g4.由这N个被监测量变化向量依次组成有N列的索结构单位损伤被监测量变化矩阵ΔC;索结构单位损伤被监测量变化矩阵ΔC的每一列对应于一个被监测量变化向量;
h.在实测得到当前索结构稳态温度数据向量Tt的同时,实测得到在获得当前索结构稳态温度数据向量Tt的时刻的同一时刻的索结构的所有被监测量的当前实测数值,组成被监测量当前数值向量C;被监测量当前数值向量C和被监测量当前初始数值向量Ct o与被监测量初始数值向量Co的定义方式相同,三个向量的相同编号的元素表示同一被监测量在不同时刻的具体数值;
i.定义索系统当前名义损伤向量d,索系统当前名义损伤向量d的元素个数等于支承索的数量,索系统当前名义损伤向量d的元素和支承索之间是一一对应关系,索系统当前名义损伤向量d的元素数值代表对应支承索的名义损伤程度或名义健康状态;向量d的元素的编号规则与向量do的元素的编号规则相同;
j.依据被监测量当前数值向量C同被监测量当前初始数值向量Ct o、索结构单位损伤被监测量变化矩阵ΔC、单位损伤标量Du和待求的索系统当前名义损伤向量d间存在的近似线性关系,该近似线性关系可表达为式1,式1中除d外的其它量均为已知,求解式1就可以算出索系统当前名义损伤向量d;
C = C o t + 1 D u ΔC · d    式1
k.定义索系统当前实际损伤向量da,索系统当前实际损伤向量da的元素个数等于支承索的数量,索系统当前实际损伤向量da的元素和支承索之间是一一对应关系,索系统当前实际损伤向量da的元素数值代表对应支承索的实际损伤程度或实际健康状态;向量da的元素的编号规则与向量do的元素的编号规则相同;
l.利用式2表达的索系统当前实际损伤向量da的第j个元素da j同索系统初始损伤向量do的第j个元素doj和索系统当前名义损伤向量d的第j个元素dj间的关系,计算得到索系统当前实际损伤向量da的所有元素;
d j a = 1 - ( 1 - d oj ) ( 1 - d j )    式2
式2中j=1,2,3,…….,N,da j为0时表示第j根支承索无健康问题,da j数值不为0时表示第j根支承索是有健康问题的支承索,有健康问题的支承索可能是松弛索、也可能是受损索,其数值反应了松弛或损伤的程度;索系统当前实际损伤向量da的元素数值不小于0、不大于100%,索系统当前实际损伤向量da的元素数值代表对应支承索的损伤程度,若索系统当前实际损伤向量da的某一元素的数值为0,表示该元素所对应的支承索是完好的,若其数值为100%,则表示该元素所对应的支承索完全丧失了承载能力,若其数值介于0和100%之间,则表示该元素所对应的支承索是有健康问题的,在本方法中该支承索的健康问题可能是受损了也可能是松弛了,当该支承索是受损时,该元素数值表示其对应的支承索的损伤程度,若该支承索是松弛时,该元素数值表示其对应的支承索的与其松弛程度力学等效的当前实际等效损伤程度;
m.从第l步中识别出的有问题的支承索中鉴别出受损索,剩下的就是松弛索;
n.利用在当前索结构稳态温度数据向量Tt条件下的在第l步获得的索系统当前实际损伤向量da得到松弛索的与其松弛程度力学等效的当前实际等效损伤程度,利用在第e步获得的在当前索结构稳态温度数据向量Tt条件下的当前索力向量F和当前支承索两支承端点水平距离向量,利用在第c步获得的在初始索结构稳态温度数据向量To条件下的支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量,利用当前索结构稳态温度数据向量Tt表示的支承索当前稳态温度数据,利用在第c步获得的在初始索结构稳态温度数据向量To表示的支承索初始稳态温度数据,利用在第c步获得的索结构所使用的各种材料的随温度变化的物理和力学性能参数,计入温度变化对支承索物理、力学和几何参数的影响,通过将松弛索同受损索进行力学等效来计算松弛索的、与当前实际等效损伤程度等效的松弛程度,力学等效条件是:一、两等效的索的无松弛和无损伤时的初始自由长度、几何特性参数、密度及材料的力学特性参数相同;二、松弛或损伤后,两等效的松弛索和损伤索的索力和变形后的总长相同;满足上述两个等效条件时,这样的两根支承索在索结构中的力学功能就是完全相同的,即如果用等效的松弛索代替受损索后,索结构不会发生任何变化,反之亦然;依据前述力学等效条件求得那些被判定为松弛索的松弛程度,松弛程度就是支承索自由长度的改变量,也就是确定了那些需调整索力的支承索的索长调整量;这样就实现了支承索的松弛识别和损伤识别;计算时所需索力由当前索力向量F对应元素给出;
o.回到第e步,开始由第e步到第o步的下一次循环。
CN201210171051.1A 2012-05-29 2012-05-29 有支座沉降和温度变化时基于应变监测的松弛索识别方法 Expired - Fee Related CN102721553B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210171051.1A CN102721553B (zh) 2012-05-29 2012-05-29 有支座沉降和温度变化时基于应变监测的松弛索识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210171051.1A CN102721553B (zh) 2012-05-29 2012-05-29 有支座沉降和温度变化时基于应变监测的松弛索识别方法

Publications (2)

Publication Number Publication Date
CN102721553A CN102721553A (zh) 2012-10-10
CN102721553B true CN102721553B (zh) 2015-04-15

Family

ID=46947378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210171051.1A Expired - Fee Related CN102721553B (zh) 2012-05-29 2012-05-29 有支座沉降和温度变化时基于应变监测的松弛索识别方法

Country Status (1)

Country Link
CN (1) CN102721553B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319962A (zh) * 2008-07-08 2008-12-10 东南大学 用于索结构中索系统的健康监测方法
CN101476989A (zh) * 2009-01-20 2009-07-08 东南大学 基于混合监测的索结构中索系统的递进式健康监测方法
CN102221478A (zh) * 2011-05-31 2011-10-19 东南大学 支座广义位移时基于混合监测的索系统递进式健康监测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297777A (ja) * 2006-04-27 2007-11-15 Nippon Steel Engineering Co Ltd 吊り構造用のケーブル及び測定システム
CN101788401B (zh) * 2010-03-17 2011-06-01 东南大学 有支座沉降时基于应变监测的识别松弛的支承索的方法
CN102323081A (zh) * 2011-05-31 2012-01-18 东南大学 支座广义位移时基于混合监测的索系统的健康监测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319962A (zh) * 2008-07-08 2008-12-10 东南大学 用于索结构中索系统的健康监测方法
CN101476989A (zh) * 2009-01-20 2009-07-08 东南大学 基于混合监测的索结构中索系统的递进式健康监测方法
CN102221478A (zh) * 2011-05-31 2011-10-19 东南大学 支座广义位移时基于混合监测的索系统递进式健康监测方法

Also Published As

Publication number Publication date
CN102721553A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
CN102749212B (zh) 温度变化混合监测的问题索和支座广义位移识别方法
CN102706594B (zh) 温度变化空间坐标监测的问题索和支座广义位移识别方法
CN102706600B (zh) 温度变化角度监测的问题索和支座广义位移识别方法
CN102735465B (zh) 支座角位移温度变化时基于应变监测的松弛索识别方法
CN102706610B (zh) 温度变化应变监测的问题索和支座广义位移识别方法
CN102721551B (zh) 温度变化时空间坐标监测的问题索和支座平移识别方法
CN102706577B (zh) 温度变化时混合监测的问题索和支座平移识别方法
CN102706611B (zh) 温度变化索力监测的问题索和支座广义位移识别方法
CN102735469B (zh) 支座角位移温度变化时基于应变监测的受损索识别方法
CN102735476B (zh) 温度变化应变监测的问题索和支座角位移识别方法
CN102735471B (zh) 支座广义位移温度变化基于应变监测的受损索识别方法
CN102706662B (zh) 温度变化角度监测的问题索和支座角位移识别方法
CN102735464B (zh) 支座角位移温度变化时基于角度监测的松弛索识别方法
CN102721552B (zh) 温度变化时基于混合监测的松弛索识别方法
CN102706617B (zh) 支座广义位移温度变化基于角度监测的松弛索识别方法
CN102706621B (zh) 支座广义位移温度变化基于索力监测的松弛索识别方法
CN102735479B (zh) 支座角位移温度变化时基于混合监测的松弛索识别方法
CN102706587B (zh) 温度变化时应变监测的问题索和支座平移识别方法
CN102706578B (zh) 温度变化时角度监测的问题索和支座平移识别方法
CN102735477B (zh) 支座角位移温度变化时应变监测的松弛索递进式识别方法
CN102706584B (zh) 支座沉降和温度变化空间坐标监测的松弛索递进式识别方法
CN102735472B (zh) 支座广义位移温度变化基于空间坐标监测的受损索识别方法
CN102735475B (zh) 温度变化空间坐标监测的问题索和支座角位移识别方法
CN102706615B (zh) 支座广义位移温度变化索力监测的松弛索递进式识别方法
CN102721553B (zh) 有支座沉降和温度变化时基于应变监测的松弛索识别方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150415

Termination date: 20180529

CF01 Termination of patent right due to non-payment of annual fee