CN102710364B - 基于可见光通信的加解密方法和系统 - Google Patents

基于可见光通信的加解密方法和系统 Download PDF

Info

Publication number
CN102710364B
CN102710364B CN201210137561.7A CN201210137561A CN102710364B CN 102710364 B CN102710364 B CN 102710364B CN 201210137561 A CN201210137561 A CN 201210137561A CN 102710364 B CN102710364 B CN 102710364B
Authority
CN
China
Prior art keywords
signal
pseudo
code
visible light
original data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210137561.7A
Other languages
English (en)
Other versions
CN102710364A (zh
Inventor
刘若鹏
栾琳
肖光锦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuang Chi Intelligent Photonic Technology Ltd
Original Assignee
Kuang Chi Intelligent Photonic Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang Chi Intelligent Photonic Technology Ltd filed Critical Kuang Chi Intelligent Photonic Technology Ltd
Priority to CN201210137561.7A priority Critical patent/CN102710364B/zh
Publication of CN102710364A publication Critical patent/CN102710364A/zh
Priority to US14/399,514 priority patent/US9768958B2/en
Priority to PCT/CN2013/075283 priority patent/WO2013166958A1/zh
Priority to EP13788399.7A priority patent/EP2871800A4/en
Application granted granted Critical
Publication of CN102710364B publication Critical patent/CN102710364B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

本发明实施例提供了一种基于可见光通信的加解密方法和系统,该加解密系统中发射端对原始数据信号进行加扰,将加扰后的扰码信号发送至接收端,发射端和接收端之间所传输的可见光信号并不是原始数据,而是随单位时间变化的扰码信号,以提高光子物联网的安全性。

Description

基于可见光通信的加解密方法和系统
【技术领域】
本发明涉及光子物联网技术技术领域,具体的,涉及一种基于可见光通信的加解密方法和系统。
【背景技术】
无线光通信技术又称可见光通讯,其通过LED光源的高频率闪烁来进行通信,有光代表1,无光代表0,其传输速率最高达每秒千兆。无线光通信技术因为其数据不易被干扰和捕获,光通信设备制作简单且不宜损坏或消磁,可以用来制作无线光加密钥匙。与微波技术相比,无线光通信有相当丰富的频谱资源,这是一般微波通信和无线通信无法比拟的;同时可见光通信可以适用任何通信协议、适用于任何环境;在安全性方面,其相比传统的磁性材料,无需担心消磁问题,更不必担心通信内容被人窃取;无线光通信的设备架设灵活便捷,且成本低廉,适合大规模普及应用。
物联网是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。物联网指的是将无处不在的末端设备和设施,通过各种无线或有线的长距离或短距离通讯网络实现互联互通,提供安全可控乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、远程控制、安全防范、远程维保、在线升级、统计报表、决策支持、领导桌面等管理和服务功能,实现对设备的高效、节能、安全、环保的“管、控、营”一体化。传统的物联网一般通过各种无线或有线的通讯网络实现互联互通,采用传统的通信技术。
现有技术中,利用可见光在自由空间进行传输近距离通信的物联网技术,这种利用可见光通信技术的物联网我们称之为光子物联网。光子物联网具有传统物联网的功能,只是通信的方式采用可见光进行通信。由于可见光具有指向性高,不能穿透障碍物等特点,因此比无线具备更高的安全性。光子物联网利用可见光进行近距离通信,可见光的指向性高,不能穿透障碍物,比使用无线通信方式的物联网具有更高的安全性。
但目前光子物联网技术并没有对原始数据进行加密,而是直接将信号调制到可见光信号上进行传输,又或者只是对数据源进行了简单加密,如将原始数据和扰码进行逻辑运算,但扰码序列是固定不变的。这样就有可能存在一个安全隐患,如使用高速摄像机进行拍摄,就有可能复制出同样频闪的光信号,再使用同类型的LED发射器发射这种信号的话,那么接收控制端也可能能识别出这种复制的信号,并且认为是合法的,并能正确还原出原始信号,从而一样能控制设备,如打开门禁系统等,存在安全隐患。
【发明内容】
本发明所要解决的技术问题是提供一种基于可见光通信的加解密方法和系统,能够提高光子物联网的安全性。
为解决上述技术问题,本发明一实施例提供了一种基于可见光通信的加解密方法,该方法包括:
发射端对原始数据信号与随单位时间变化的第一伪码信号进行逻辑运算,获得扰码信号;将所述扰码信号以可见光信号的形式发送出去;
接收端接收所述可见光信号,将所述可见光信转换为数字信号;将所述数字信号与第二伪码信号进行译码,获得所述原始数据信号;
其中,所述第二伪码信号与所述第一伪码信号的码型和起止相位相同。
优选的,将所述扰码信号以可见光信号的形式发送出去之前,还包括:对所述扰码信号进行调制。
优选的,将所述数字信号与第二伪码信号进行译码之前,还包括:对所述数字信号进行解调。
其中,所述原始数据信号的频率与所述第一伪码信号的频率相同或存在整数倍的关系;所述原始数据信号与所述第一伪码信号的起始相位相同。
优选的,所述方法还包括:
接收端对获得的所述原始数据信号进行鉴权,若通过鉴权,控制与所述接收端连接的功能单元动作。
为解决上述技术问题,本发明另一实施例还提供了一种基于可见光通信的加解密系统,该系统包括发射端和接收端;
所述发射端包括用于产生并输出第一伪码信号的第一伪码发生器,所述第一伪码信号随单位时间变化;与第一伪码发生器连接、用于对原始数据信号与伪码发生器输出的伪码信号进行逻辑运算,输出扰码信号的编码器;以及与编码器连接、用于将所述扰码信号以可见光信号的形式发送出去的发送单元;
所述接收端包括用于接收所述可见光信号,并将可见光信号转换为数字信号的接收单元;用于产生并输出第二伪码信号的第二伪码发生器,所述第二伪码信号与所述第一伪码信号的码型和起止相位相同;以及与所述接收单元和所述第二伪码发生器连接、用于将所述数字信号与所述伪码信号进行译码,输出原始数据信号的译码器。
优选的,所述发射端还包括:连接于所述编码器与发送单元之间、用于对所述扰码信号进行调制的调制器。
优选的,所述接收端还包括:连接于所述接收单元和所述译码器之间、用于对所述数字信号进行解调的解调器。
其中,所述第一伪码发生器与所述第二伪码发生器的结构相同。
其中,所述第一伪码发生器与所述第二伪码发生器的工作状态同步、工作频率相同或存在整数倍的关系。
与现有技术相比,上述技术方案具有以下优点:所采用的加解密方法中,发射端和接收端之间所传输的可见光信号并不是原始数据信号,而是加密后的扰码信号,并且该扰码信号随单位时间变化,不易被破解,从而提高了光子物联网的安全性。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1,实施例一提供的一种基于可见光通信的加解密方法流程图;
图2,实施例二提供的一种基于可见光通信的加解密方法流程图;
图3,实施例三提供的一种基于可见光通信的加解密系统结构示意图;
图4,实施例四提供的一种基于可见光通信的加解密系统结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
首先,为了使本领域技术人员更好的理解本发明,下面对本发明的技术方案作简要介绍:
本发明提供了一种在光子物联网中对原始数据进行加密和对加密后的数据进行解密,还原出原始数据的方法。这种方法所采用伪码序列是会根据状态机原理随着时间不断变换状态的,复制的信号在其它时间内不能被接收端所识别,能提高系统的安全性。首先对原始数据与伪码序列进行逻辑运算,再经调制后才发送到可见光发射器上,并且发射端与接收端的伪码发生器所产生的伪码序列是根据状态机原理随时间不断变化的,这样发射出去的可见光信号即使被高速摄像机拍摄后进行复制,由于在其它时间内接收端的伪码序列已随时间进行了变化,所以被复制的信号无法再被接收端进行识别,从而不能控制光子物联网接收端设备,如门禁系统,二维码识别系统等,可以有效地提高光子物联网的安全性。
实施例一、
参见图1,是本发明实施例一提供的一种基于可见光通信的加解密方法流程图,该方法包括:
S101:发射端对原始数据信号与随单位时间变化的第一伪码信号进行逻辑运算,获得扰码信号。
其中,原始数据信号是一种数字序列信号,原始数据信号的频率与伪码信号的频率相同或存在整数倍的关系,原始数据信号与所述第一伪码信号的起始相位相同。
例如,原始数据为某一控制信号或者二维码信息内容,其数字序列信号是恒定不变的,即原始数据信号始终为110001010111100000110。在T1单位时间内第一伪码信号假设为111010011101001110100,则其逻辑运算,即异或的过程如表1所示:
原始数据信号 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0
第一伪码信号 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0
扰码信号 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0
表1T1单位时间内逻辑运算过程表
从表1可知,逻辑运算后的输出的扰码信号为001011001010101110010,与原始数据信号不相同,对原始数据起到了加密的作用。
相隔预设时间段后,假设所处的时间段为T2,由于第一伪码信号随单位时间而变化,所以在T2时间内,假设第一伪码信号会变为100011010100101010110,而原始数据信号是恒定不变的,则其逻辑运算的过程如表2所示:
原始数据信号 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0
第一伪码信号 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0
扰码信号 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0
表2T2单位时间内逻辑运算过程表
从表2可知,T2时间内逻辑运算的扰码信号为010010000011001010000,与原始数据信号也不相同,并且与T1时间内的扰码信号也不同。
S102:发射端将所述扰码信号以可见光信号的形式发送出去。例如,发射端通过LED灯以闪光形式将调制信号发送出去。
S103:接收端接收发射端发送的可见光信号,并将该可见光信号转换为数字信号。
S104:接收端对所述数字信号与第二伪码信号进行译码,获得原始数据信号。
具体的,对于T1的单位时间段内,接收的信号为001011001010101110010,第二伪码信号为111010011101001110100,该第二伪码信号与表一中的第一伪码信号码型、起止相位相同。接收端对接收的信号与第二伪码信号的逻辑运算过程如表3所示:
接收的信号 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0
第二伪码信号 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0
译码输出信号 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0
表3T1单位时间内译码过程表
从表3可知,译码输出信号为110001010111100000110,与表1中的原始数据信号是相同的,即解码出了原始数据信号。
由于第二伪码信号随单位时间而变化,所以相隔一段时间后,假设为T2时间段,在T2时间段内,接收端的接收的信号与表2中的扰码信号也完全相同,即都为010010000011001010000;这时第二伪码信号与表二种的第一伪码信号也相同,即为100011010100101010110,则其译码过程如表4所示:
接收的信号 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0
第二伪码信号 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0
译码输出信号 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0
表4T2单位时间内译码过程表
从表4可知,译码输出信号为110001010111100000110,与表2中的原始数据信号是相同的,即解码出了原始数据。
假设在T1所在的单位时间内,发射端所发出可见光信号即扰码信号001011001010101110010被高速摄像机捕获,并进行了信号复制。但在经过一单位时间后,假如到了T2所在的时间时,当用复制的信号去尝试进行控制接收端的设备时,由于第二伪码信号变为100011010100101010110,其译码过程如表5所示:
被复制的信号 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0
第二伪码信号 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0
译码输出信号 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0
表5T2单位时间内被复制的信号译码过程表
从表5可知,T2单位时间内被复制的信号尝试译码后的输出信号为101000011110000100100,与表1中的原始数据信号110001010111100000110是不相同的,即这种被复制的信号是不能被接收端所识别的,也就不能对设备进行控制了,提高了安全性。
该实施例一中,描述了光子物联网中基于可见光通信的加解密方式,该实施中对原始数据信号与随单位时间变化的伪码信号进行逻辑运算的步骤,以异或运算为例进行描述,在具体的实施过程中,还可以包括其他的逻辑运算,例如逻辑与,此处不再赘述。
实施例二、
参见图2,是本发明实施例二提供的一种基于可见光通信的加解密方法流程图,该方法包括:
S201:发射端对原始数据信号与随单位时间变化的第一伪码信号进行逻辑运算,获得扰码信号。
其中,原始数据信号是一种数字序列信号,原始数据信号的频率与伪码信号的频率相同或存在整数倍的关系,原始数据信号与第一所述伪码信号的起始相位相同。
例如,原始数据为某一控制信号或者二维码信息内容,其数字序列是恒定不变的,即原始数据信号始终为110001010111100000110。在T1单位时间内第一伪码信号假设为111010011101001110100,则其逻辑运算,即异或的过程如实施例一中的表1所示。
从表1可知,逻辑运算后的输出的扰码信号为001011001010101110010,与原始数据信号不相同,对原始数据起到了加密的作用。
相隔预设时间段后,假设所处的时间段为T2,由于第一伪码信号随单位时间而变化,所以在T2时间内,假设第一伪码信号会变为100011010100101010110,而原始数据信号是恒定不变的,则其逻辑运算的过程如实施例一中的表2所示。
从表2可知,T2时间内逻辑运算后输出的的扰码信号为010010000011001010000,与原始数据信号也不相同,并且与T1时间内的扰码信号也不同。
S202:发射端对扰码信号在基带中进行调制,获得调制信号。例如,可采用PCM、PWM、PPM、BPSK、QPSK、QAM、QNAM等调制方式,对扰码信号进行调制。
S203:发射端将所述调制信号以可见光信号的形式发送出去。例如,发射端通过LED灯以闪光形式将调制信号发送出去。
S204:接收端接收发射端发送的可见光信号,并将该可见光信号转换为数字信号。
S205:接收端对数字信号进行解调,获得解调信号。例如,可采用PCM、PWM、PPM、BPSK、QPSK、QAM、QNAM等调制方式相对应的解调方式,对所述数字信号进行解调。
S206:接收端对解调信号与第二伪码信号进行译码,获得原始数据信号。
具体的,对于T1的单位时间段内,解调信号为001011001010101110010,第二伪码信号为111010011101001110100,该第二伪码信号与表一中的第一伪码信号码型、起止相位相同。解调信号与第二伪码信号的译码过程如表6所示:
解调信号 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0
第二伪码信号 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0
译码输出信号 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0
表6T1单位时间内译码过程表
从表6可知,译码输出信号为110001010111100000110,与表1中的原始数据信号是相同的,即解码出了原始数据信号。
由于第二伪码信号随单位时间而变化,所以相隔一段时间后,假设为T2时间段,在T2时间段内,解调信号与表2中的扰码信号也完全相同,即都为010010000011001010000;这时第二伪码信号与表二种的第一伪码信号也相同,即为100011010100101010110,则其译码过程如表7所示:
解调信号 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0
第二伪码信号 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0
译码输出信号 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0
表7T2单位时间内译码过程表
从表7可知,译码输出信号为110001010111100000110,与表2中的原始数据信号是相同的,即解码出了原始数据。
假设在T1所在的单位时间内,发射端所发出可见光信号即扰码信号001011001010101110010被高速摄像机捕获,并进行了信号复制。但在经过一单位时间后,假如到了T2所在的时间时,当用复制的信号去尝试进行控制接收端的设备时,由于第二伪码信号变为100011010100101010110,其发生的译码过程如实施例一中的表5所示。
从表5可知,T2单位时间内被复制的信号尝试译码后的输出信号为101000011110000100100,与表1中的原始数据信号110001010111100000110是不相同的,即这种被复制的信号是不能被接收端所识别的,也就不能对设备进行控制了,提高了安全性。
S207:接收端对获得的原始数据信号进行鉴权,若通过鉴权,控制与所述接收端连接的功能单元动作。例如,接收端控制门禁系统执行开锁动作。
以上方法实施例可以看出,发射端和接收端之间所传输的可见光信号是加密后的扰码信号,并且该扰码信号随单位时间变化,不易被破解,从而提高了光子物联网安全性。
上述对本发明的方法实施例进行了描述,下面对运行上述方法实施例的硬件系统列举实施例进行详细描述。
实施例三、
参见图3,是本发明实施例三提供的一种基于可见光通信的加解密系统结构示意图,该加解密系统300包括发射端301和接收端302。
发射端301包括用于产生并输出第一伪码信号的第一伪码发生器301a,该伪码发生器的工作状态随单位时间变化,输出的第一伪码信号也随单位时间变化,例如,在T1时间段输出的第一伪码信号为111010011101001110100,在T2时间段输出的第一伪码信号为100011010100101010110。与伪码发生器301a连接、用于对原始数据信号与伪码发生器输出的伪码信号进行逻辑运算,输出扰码信号的编码器301b,该编码器301b也可以是混频器。以及与编码器301b连接、用于将编码器301b输出的扰码信号以可见光信号的形式发送出去的发送单元301c。其中,发送单元301c可以为发光二极管,也可以是其它具有发光功能的元件。
其中,发射端301可以为专用光子客户端、手机、以及具有发射可见光信号功能的手持电子设备。
接收端302包括用于接收发送端301发射的可见光信号,并将可见光信号转换为数字信号的接收单元302a。用于产生并输出第二伪码信号的第二伪码发生器302b,该第二伪码发生器302b与第一伪码发生器301a的结构相同、工作频率相同、以及工作状态同步,该第二伪码发生器302b输出的第二伪码信号与第一伪码发生器301a输出的第一伪码信号的码型和起止相位相同。接收端302还包括与接收单元302a和第二伪码发生器302b连接、用于将接收单元302a输出的信号与所述伪码信号进行译码,输出原始数据信号的译码器302c。其中,译码器302c可以是混频器。
实施例四、
参见图4,是本发明实施例四提供的一种基于可见光通信的加解密系统结构示意图,相对于实施例三,发射端301还包括:
连接于所述编码器301b与发送单元301c之间、用于对扰码信号进行调制的调制器301d。
相应的,接收端302还包括:
连接于接收单元302a和译码器302c之间、用于对接收单元302a输出的数字信号进行解调的解调器302d。
在具体的实施过程中,加解密系统300还包括与接收单元302连接的功能单元,例如电动锁等。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

1.一种基于可见光通信的加解密方法,其特征在于,所述方法包括:
发射端对原始数据信号与随单位时间变化的第一伪码信号进行逻辑运算,获得扰码信号,再将所述扰码信号以可见光信号的形式发送出去;所述原始数据信号恒定不变;
接收端接收所述可见光信号,将所述可见光信转换为数字信号,再将所述数字信号与第二伪码信号进行译码,获得所述原始数据信号;
其中,所述第二伪码信号与所述第一伪码信号的码型和起止相位相同;所述原始数据信号的频率与所述第一伪码信号的频率相同或存在整数倍的关系;所述原始数据信号与所述第一伪码信号的起始相位相同。
2.根据权利要求1所述的加解密方法,其特征在于,将所述扰码信号以可见光信号的形式发送出去之前,还包括:
对所述扰码信号进行调制。
3.根据权利要求2所述的加解密方法,其特征在于,将所述数字信号与第二伪码信号进行译码之前,还包括:
对所述数字信号进行解调。
4.根据权利要求1所述的加解密方法,其特征在于,所述方法还包括:
接收端对获得的所述原始数据信号进行鉴权,若通过鉴权,控制与所述接收端连接的功能单元动作。
5.一种基于可见光通信的加解密系统,其特征在于,所述系统包括发射端和接收端;
所述发射端包括用于产生并输出第一伪码信号的第一伪码发生器,所述第一伪码信号随单位时间变化;与第一伪码发生器连接、用于对原始数据信号与伪码发生器输出的伪码信号进行逻辑运算,输出扰码信号的编码器,所述原始数据信号恒定不变;以及与编码器连接、用于将所述扰码信号以可见光信号的形式发送出去的发送单元;
所述接收端包括用于接收所述可见光信号,并将可见光信号转换为数字信号的接收单元;用于产生并输出第二伪码信号的第二伪码发生器,所述第二伪码信号与所述第一伪码信号的码型和起止相位相同;以及与所述接收单元和所述第二伪码发生器连接、用于将所述数字信号与所述伪码信号进行译码,输出原始数据信号的译码器;所述第一伪码发生器与所述第二伪码发生器的工作状态同步、工作频率相同或存在整数倍的关系。
6.根据权利要求5所述的加解密系统,其特征在于,所述发射端还包括:
连接于所述编码器与发送单元之间、用于对所述扰码信号进行调制的调制器。
7.根据权利要求6所述的加解密系统,其特征在于,所述接收端还包括:
连接于所述接收单元和所述译码器之间、用于对所述数字信号进行解调的解调器。
8.根据权利要求5所述的加解密系统,其特征在于,所述第一伪码发生器与所述第二伪码发生器的结构相同。
CN201210137561.7A 2012-05-07 2012-05-07 基于可见光通信的加解密方法和系统 Active CN102710364B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201210137561.7A CN102710364B (zh) 2012-05-07 2012-05-07 基于可见光通信的加解密方法和系统
US14/399,514 US9768958B2 (en) 2012-05-07 2013-05-07 Visible-light communication-based encryption, decryption and encryption/decryption method and system
PCT/CN2013/075283 WO2013166958A1 (zh) 2012-05-07 2013-05-07 基于可见光通信的加密、解密及加解密方法和系统
EP13788399.7A EP2871800A4 (en) 2012-05-07 2013-05-07 METHOD AND SYSTEM FOR ENCRYPTION, DECRYPTION AND ENCRYPTION / DECRYPTION BASED ON VISIBLE LIGHT COMMUNICATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210137561.7A CN102710364B (zh) 2012-05-07 2012-05-07 基于可见光通信的加解密方法和系统

Publications (2)

Publication Number Publication Date
CN102710364A CN102710364A (zh) 2012-10-03
CN102710364B true CN102710364B (zh) 2016-06-29

Family

ID=46902944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210137561.7A Active CN102710364B (zh) 2012-05-07 2012-05-07 基于可见光通信的加解密方法和系统

Country Status (1)

Country Link
CN (1) CN102710364B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013166958A1 (zh) * 2012-05-07 2013-11-14 深圳光启创新技术有限公司 基于可见光通信的加密、解密及加解密方法和系统
CN104348607B (zh) * 2013-07-29 2017-11-07 深圳光启智能光子技术有限公司 用于可见光通信系统中时钟自动调整的方法和装置
CN102932142B (zh) * 2012-10-08 2015-10-21 中国科学院西安光学精密机械研究所 光纤通信系统中光数据信号加解密方法
CN102957513B (zh) * 2012-11-16 2013-10-30 深圳光启创新技术有限公司 基于可见光通信的纠错方法和装置
CN103795487B (zh) * 2013-09-30 2015-03-11 深圳光启创新技术有限公司 可见光信号发送、接收处理方法、发射端、接收端及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820331A (zh) * 2010-03-23 2010-09-01 北京蛙视通信技术有限责任公司 光纤数据传输方法及装置
CN101902621A (zh) * 2010-08-22 2010-12-01 武汉虹信通信技术有限责任公司 无需外接矩阵实现视频输出切换的多路视频光端机系统
CN102025479A (zh) * 2009-09-21 2011-04-20 西安英诺视通信息技术有限公司 样点交织多路离散信号时分复用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025479A (zh) * 2009-09-21 2011-04-20 西安英诺视通信息技术有限公司 样点交织多路离散信号时分复用方法
CN101820331A (zh) * 2010-03-23 2010-09-01 北京蛙视通信技术有限责任公司 光纤数据传输方法及装置
CN101902621A (zh) * 2010-08-22 2010-12-01 武汉虹信通信技术有限责任公司 无需外接矩阵实现视频输出切换的多路视频光端机系统

Also Published As

Publication number Publication date
CN102710364A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
CN102684869B (zh) 基于可见光通信的解密方法和系统
CN102710364B (zh) 基于可见光通信的加解密方法和系统
CN102724011A (zh) 可见光信号的握手同步方法和系统
CN102790645B (zh) 基于多路可见光通信的加解扰系统和方法
US9698907B2 (en) Handshake synchronization by adjusting status of status machine of receiving end to a state indicated by status reset signal
CN102780695B (zh) 基于可见光通信的握手同步方法和系统
EP2871800A1 (en) Visible-light communication-based encryption, decryption and encryption/decryption method and system
CN102710418A (zh) 一种对可见光信号加解密的方法和系统
CN100521598C (zh) 基于单工通信原理实现计算机内、外网之间安全通信的方法及系统
CN104868951A (zh) 基于led照明的可见光通信传输方法和系统
CN102684786A (zh) 基于可见光通信的加密方法和系统
CN103354494A (zh) 一种基于超晶格混沌同步的通讯系统
CN107222518A (zh) 一种无人机远程自动认证机制及认证方法
CN102769524B (zh) 一种恢复握手同步的方法和系统
WO2017092092A1 (zh) 一种端加密传输的密钥管理的方法及装置
CN105847001A (zh) 基于量子加密的数字微波通信装置、系统及方法
CN110099374A (zh) 一种电子设备的组网方法
CN102820922B (zh) 一种异步加密可见光通信方法及系统
CN204408363U (zh) 一种动态网络通信数据加密传输装置
CN107094036A (zh) 一种基于蓝牙通讯的密钥处理方法及蓝牙终端
CN110278068A (zh) 基于混沌序列的LoRa通信加密系统及其实现方法
CN106789919A (zh) 一种自适应多频段协同安全传输方法及装置
CN102723992A (zh) 基于键控调制的可见光信号发送装置
CN111555823B (zh) 一种安全光通信跨ip传输方法和装置
CN103684593B (zh) 基于扩频技术的可见光通信方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150911

Address after: 518000 Guangdong city of Shenzhen province Futian District Shennan Road and CaiTian Road intersection East Xintiandi Plaza C block 2007-27

Applicant after: Shenzhen Guang Qi intelligent photonic Technology Co., Ltd.

Address before: 518034 A international business center, No. 1061, Xiang Mei Road, Guangdong, Shenzhen, Futian District, China 18B

Applicant before: Shenzhen Kuang-Chi Innovation Technology Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant