CN102709071A - Conducting polymer modified super capacitor and manufacturing method thereof - Google Patents
Conducting polymer modified super capacitor and manufacturing method thereof Download PDFInfo
- Publication number
- CN102709071A CN102709071A CN2012101799101A CN201210179910A CN102709071A CN 102709071 A CN102709071 A CN 102709071A CN 2012101799101 A CN2012101799101 A CN 2012101799101A CN 201210179910 A CN201210179910 A CN 201210179910A CN 102709071 A CN102709071 A CN 102709071A
- Authority
- CN
- China
- Prior art keywords
- micro
- recesses
- conducting polymer
- metal electrode
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001940 conductive polymer Polymers 0.000 title claims abstract description 49
- 239000003990 capacitor Substances 0.000 title claims abstract description 22
- 239000002322 conducting polymer Substances 0.000 title claims 17
- 238000004519 manufacturing process Methods 0.000 title description 3
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 36
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 25
- 239000010703 silicon Substances 0.000 claims abstract description 25
- 238000002360 preparation method Methods 0.000 claims abstract description 15
- 239000003792 electrolyte Substances 0.000 claims abstract description 12
- 239000010408 film Substances 0.000 claims description 35
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 229920000128 polypyrrole Polymers 0.000 claims description 8
- 239000010409 thin film Substances 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 7
- 239000000178 monomer Substances 0.000 claims description 6
- 229920000767 polyaniline Polymers 0.000 claims description 6
- 239000002210 silicon-based material Substances 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000007800 oxidant agent Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229920000123 polythiophene Polymers 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 235000021355 Stearic acid Nutrition 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 239000008117 stearic acid Substances 0.000 claims description 2
- 229930192474 thiophene Natural products 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 3
- 239000004411 aluminium Substances 0.000 claims 2
- 238000002231 Czochralski process Methods 0.000 claims 1
- 210000002421 cell wall Anatomy 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- 238000011010 flushing procedure Methods 0.000 claims 1
- 230000010412 perfusion Effects 0.000 claims 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 19
- 238000000034 method Methods 0.000 abstract description 12
- 238000005516 engineering process Methods 0.000 abstract description 7
- 230000010354 integration Effects 0.000 abstract description 7
- 238000004146 energy storage Methods 0.000 abstract description 5
- 238000006116 polymerization reaction Methods 0.000 abstract description 4
- 125000006850 spacer group Chemical group 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 10
- 238000002955 isolation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- WHRAZOIDGKIQEA-UHFFFAOYSA-L iron(2+);4-methylbenzenesulfonate Chemical compound [Fe+2].CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1 WHRAZOIDGKIQEA-UHFFFAOYSA-L 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
一种导电聚合物修饰的超级电容器及其制备方法,属于超级电容器技术领域。本发明采用MEMS技术将多个微型电容器集成于单一硅基片中,多个微型电容器之间通过并联(或串联后再并联)方式形成超级电容器。所有微型电容器包括一对微型凹槽,两个微型凹槽之间具有一个隔离柱,隔离柱的高度低于微型凹槽的深度;微型凹槽的槽壁沉积有金属电极层和导电聚合物薄膜;微型凹槽内部灌注电解液后密封封装。微型电容器制作过程中,在金属电极层上用简单有效的直接化学聚合导电聚合物薄膜,用以修饰电容器电极来提高微电极比容量、降低等效串联电阻。本发明提供的导电聚合物修饰的超级电容器具有比容量大、集成度高的特点,可作为各种电源或储能器件使用。
A conductive polymer modified supercapacitor and a preparation method thereof belong to the technical field of supercapacitors. The invention adopts MEMS technology to integrate a plurality of miniature capacitors into a single silicon substrate, and the plurality of miniature capacitors are connected in parallel (or connected in parallel after being connected in series) to form supercapacitors. All microcapacitors consist of a pair of microgrooves with a spacer between them, the height of which is lower than the depth of the microgrooves; the walls of the microgrooves are deposited with metal electrode layers and conductive polymer films ; The interior of the micro-groove is filled with electrolyte and then sealed and packaged. In the process of making microcapacitors, a simple and effective direct chemical polymerization conductive polymer film is used on the metal electrode layer to modify the capacitor electrodes to increase the specific capacity of the microelectrodes and reduce the equivalent series resistance. The conductive polymer modified supercapacitor provided by the invention has the characteristics of large specific capacity and high integration, and can be used as various power sources or energy storage devices.
Description
技术领域 technical field
本发明属于超级电容器技术领域,特别涉及导电聚合物修饰的超级电容器及其制备方法。The invention belongs to the technical field of supercapacitors, in particular to supercapacitors modified by conductive polymers and a preparation method thereof.
背景技术 Background technique
随着社会经济的发展,人们对绿色能源和生态环境越来越关注。超级电容器又称电化学电容器,是一种介于传统电容器和电池之间的新型储能器件。与传统蓄电池相比,超级电容器具有较高的能量密度、功率密度和长循环寿命等,作为一种清洁、高效的新型储能器件,受到越来越多研究人员的关注,超级电容器技术的发展核心是电极材料。按照超级电容器研究领域的国际权威B.E.Conway教授对超级电容器的定义,可以将其分为两类:一类是双电层电容器,代表材料为多孔碳材料(活性炭、碳纤维、碳纳米管等);另一类是赝电容器,代表材料为金属氧化物(RuO2、IrO2等)以及导电聚合物(聚苯胺、聚吡咯、聚噻吩及其衍生物)。With the development of social economy, people pay more and more attention to green energy and ecological environment. Supercapacitors, also known as electrochemical capacitors, are a new type of energy storage device between traditional capacitors and batteries. Compared with traditional batteries, supercapacitors have higher energy density, power density and long cycle life. As a clean and efficient new energy storage device, more and more researchers have paid attention to them. The development of supercapacitor technology The core is the electrode material. According to the definition of supercapacitors by Professor BEConway, an international authority in the field of supercapacitor research, supercapacitors can be divided into two categories: one is electric double layer capacitors, and the representative material is porous carbon materials (activated carbon, carbon fiber, carbon nanotubes, etc.); One type is a pseudocapacitor, and the representative materials are metal oxides (RuO 2 , IrO 2 , etc.) and conductive polymers (polyaniline, polypyrrole, polythiophene and their derivatives).
导电聚合物制备的超级电容器具有成本低、容量高、充放电时间短、环境友好和安全性高等优点,因此导电聚合物作为电极材料的研究引起了人们广泛的兴趣。目前导电聚合物薄膜多以电化学聚合的方法与无机材料复合制备超级电容器电极。其中,涉及到的专利申请有一种导电聚苯胺聚吡咯复合膜的制备方法(文献号:CN102020845A);一种导电聚吡咯的制备方法(文献号:CN101979438A);三维结构聚吡咯微电极及其制造方法(文献号:CN101950685A)。以上制备的导电聚合物薄膜用于修饰电极,比容量高,器件性能好,但电化学工艺复杂,可控性弱。而目前对于直接氧化聚合制备导电聚合物薄膜电极还鲜有报导,该方法制备出的薄膜不仅性能优良,且方法简单,易操作。Supercapacitors prepared from conductive polymers have the advantages of low cost, high capacity, short charge-discharge time, environmental friendliness, and high safety. Therefore, research on conductive polymers as electrode materials has attracted widespread interest. At present, conductive polymer films are mostly combined with inorganic materials to prepare supercapacitor electrodes by electrochemical polymerization. Among them, the patent applications involved include a preparation method of conductive polyaniline polypyrrole composite film (document number: CN102020845A); a preparation method of conductive polypyrrole (document number: CN101979438A); three-dimensional structure polypyrrole microelectrode and its manufacture method (document number: CN101950685A). The conductive polymer film prepared above is used to modify electrodes, and has high specific capacity and good device performance, but the electrochemical process is complex and the controllability is weak. At present, there are few reports on the preparation of conductive polymer film electrodes by direct oxidation polymerization. The film prepared by this method not only has excellent performance, but also has a simple method and is easy to operate.
微电子机械系统(MEMS)具有移动性、自控性、集成化等特点,是近年来最重要的技术创新之一。当一个子系统可以集成在一块芯片上时,电源也必须完成小型化、微型化的革命。MEMS微能源系统是基于MEMS技术,将一个或多个电能供给装置集成一个特征尺寸为微米级、外观尺寸为厘米级的微系统,能实现长时间、高效能、多模式供电,特别适用于传统电源无法供应的某些特殊环境。电子产品小型化、微型化、集成化是当今世界技术发展的大趋势,电源微型化、可集成化也是当今世界技术发展的大趋势。Micro-electro-mechanical systems (MEMS) are characterized by mobility, self-control, and integration, and are one of the most important technological innovations in recent years. When a subsystem can be integrated on a chip, the power supply must also complete the revolution of miniaturization and miniaturization. MEMS micro-energy system is based on MEMS technology. It integrates one or more power supply devices into a micro-system with micron-level characteristic size and centimeter-level appearance size. It can realize long-term, high-efficiency, multi-mode power supply, and is especially suitable for traditional Certain special environments where power cannot be supplied. The miniaturization, miniaturization and integration of electronic products are the major trends in the development of technology in the world today, and the miniaturization and integration of power supplies are also the major trends in the development of technology in the world today.
发明内容 Contents of the invention
本发明针对现有微型超级电容器电极制备方法中存在的方法单一、过程复杂的技术问题,提供一种导电聚合物修饰的微型超级电容器及其制备方法。本发明提供的导电聚合物修饰的微型超级电容器由若干个微型电容器结构串、并联而成,每个微型电容器结构采用MEMS技术制作于同一硅衬底材料中、金属电极表面沉积导电聚合物薄膜,具有比容量大和集成度高的特点。Aiming at the technical problems of single method and complex process existing in the existing micro-supercapacitor electrode preparation methods, the invention provides a conductive polymer-modified micro-supercapacitor and a preparation method thereof. The conductive polymer-modified micro-supercapacitor provided by the present invention is formed by connecting several micro-capacitor structures in series and in parallel. Each micro-capacitor structure is manufactured in the same silicon substrate material by MEMS technology, and a conductive polymer film is deposited on the surface of the metal electrode. It has the characteristics of large specific capacity and high integration.
本发明技术方案如下:Technical scheme of the present invention is as follows:
一种导电聚合物修饰的超级电容器,包括硅基片和设置于硅基片中的若干个微型电容器。A conductive polymer modified supercapacitor includes a silicon substrate and several microcapacitors arranged in the silicon substrate.
所有微型电容器具有相同的结构;每个微型电容器包括一对设置于硅基片中的微型凹槽,两个微型凹槽之间具有一个隔离柱,所述隔离柱的高度低于微型凹槽的深度;两个微型凹槽的槽壁沉积有金属电极层,金属电极层表面沉积有导电聚合物薄膜;沉积了金属电极层和导电聚合物薄膜的两个微型凹槽分别作为微型电容器的阴极和阳极;两个微型凹槽内部灌注电解液后密封封装于硅基片内部。All microcapacitors have the same structure; each microcapacitor includes a pair of microgrooves arranged in the silicon substrate, and there is an isolation post between the two microgrooves, and the height of the isolation column is lower than that of the microgroove. Depth; metal electrode layers are deposited on the walls of the two micro-grooves, and conductive polymer films are deposited on the surface of the metal electrode layers; two micro-grooves with metal electrode layers and conductive polymer films are deposited as the cathode and the conductive polymer films of the micro-capacitors respectively. Anode; Two micro-grooves are filled with electrolyte and then sealed and packaged inside the silicon substrate.
所有微型电容器相互并联,形成超级电容器;或者先由相同数量的微型电容器相互串联,形成一个串联支路;再由若干个串联支路相互并联,形成超级电容器。All microcapacitors are connected in parallel to form a supercapacitor; or the same number of microcapacitors are connected in series to form a series branch; then several series branches are connected in parallel to form a supercapacitor.
上述导电聚合物修饰的超级电容器,其中所述金属电极层材料为金属镍、铝、铂或钛等;所述导电聚合物薄膜为聚苯胺薄膜、聚吡咯薄膜或聚噻吩薄膜;所述电解液为H2SO4、H3PO4、NaNO3或KOH的水溶液。其中H2SO4水溶液的浓度在0.5~1mol/L之间,H3PO4水溶液的浓度在0.5~1mol/L之间,NaNO3水溶液的浓度在1~3mol/L之间,KOH水溶液的浓度在0.5~1mol/L之间。The supercapacitor modified by the above conductive polymer, wherein the metal electrode layer material is metal nickel, aluminum, platinum or titanium, etc.; the conductive polymer film is polyaniline film, polypyrrole film or polythiophene film; the electrolyte It is the aqueous solution of H 2 SO 4 , H 3 PO 4 , NaNO 3 or KOH. Among them, the concentration of H 2 SO 4 aqueous solution is between 0.5 and 1 mol/L, the concentration of H 3 PO 4 aqueous solution is between 0.5 and 1 mol/L, the concentration of NaNO 3 aqueous solution is between 1 and 3 mol/L, and the concentration of KOH aqueous solution is The concentration is between 0.5 and 1mol/L.
需要说明的是,在每对微型凹槽构成的微型电容器结构中,两个微型凹槽之间的隔离柱的作用是防止微型电容器两极短路;同时隔离柱的高度要低于微型凹槽的深度,以确保电解液能够在两极之间流动。It should be noted that, in the microcapacitor structure formed by each pair of microgrooves, the function of the spacer between the two microgrooves is to prevent the short circuit of the two poles of the microcapacitor; at the same time, the height of the spacer should be lower than the depth of the microgroove , to ensure that the electrolyte can flow between the two poles.
一种导电聚合物修饰的超级电容器的制备方法,包括以下步骤:A preparation method for a supercapacitor modified by a conductive polymer, comprising the following steps:
步骤1:采用两片形状和大小相同的硅基片,在每片硅基片上相同的区域刻蚀若干对微型凹槽,每对微型凹槽之间具有相同的隔离柱;Step 1: Using two silicon substrates with the same shape and size, etching several pairs of micro-grooves in the same area on each silicon substrate, with the same isolation columns between each pair of micro-grooves;
步骤2:将两片硅基片的微型凹槽面对面地对准,并键合,得到若干对封闭于硅材料中的微型凹槽;Step 2: Align the micro-grooves of two silicon substrates face to face, and bond them to obtain several pairs of micro-grooves enclosed in the silicon material;
步骤3:将每对微型凹槽外加该对微型凹槽之间的隔离柱所对应的整体区域上方的硅材料刻蚀掉,使得每对微型凹槽之间的隔离柱的高度低于微型凹槽的深度;Step 3: Etch away the silicon material above the entire area corresponding to each pair of micro-grooves plus the isolation column between the pair of micro-grooves, so that the height of the isolation column between each pair of micro-grooves is lower than that of the micro-groove the depth of the groove;
步骤4:在所有微型凹槽内壁沉积金属电极层,并用金属导线引出;Step 4: Deposit a metal electrode layer on the inner walls of all micro-grooves and lead them out with metal wires;
步骤5:在步骤4所得金属电极层表面沉积导电聚合物薄膜;Step 5: depositing a conductive polymer film on the surface of the metal electrode layer obtained in step 4;
步骤6:在微型凹槽内灌注电解液,然后密封封装;密封封装后的每一对微型凹槽形成一个微型电容器;Step 6: Fill the micro-groove with electrolyte solution, and then seal the package; each pair of micro-grooves after sealing and packaging forms a micro-capacitor;
步骤7:所有微型电容器相互并联,形成超级电容器;或者先由相同数量的微型电容器相互串联,形成一个串联支路;再由若干个串联支路相互并联,形成超级电容器。Step 7: All microcapacitors are connected in parallel to each other to form a supercapacitor; or the same number of microcapacitors are first connected in series to form a series branch; then several series branches are connected in parallel to form a supercapacitor.
上述导电聚合物修饰的超级电容器的制备方法中,所述金属电极层材料为金属镍、铝、铂或钛等;所述导电聚合物薄膜为聚苯胺薄膜、聚吡咯薄膜或聚噻吩薄膜;所述电解液为0.5~1mol/L的H2SO4、0.5~1mol/L的H3PO4、1~3mol/L的NaNO3或0.5~1mol/L的KOH水溶液。In the preparation method of the supercapacitor modified by the above-mentioned conductive polymer, the metal electrode layer material is metal nickel, aluminum, platinum or titanium, etc.; the conductive polymer film is a polyaniline film, a polypyrrole film or a polythiophene film; The electrolyte is 0.5-1 mol/L H 2 SO 4 , 0.5-1 mol/L H 3 PO 4 , 1-3 mol/L NaNO 3 or 0.5-1 mol/L KOH aqueous solution.
本发明提供的导电聚合物修饰的超级电容器,由制作于单片硅衬底材料中的多个微型电容器串、并联构成;每个微型电容器采用MEMS技术制作,包括一对微型凹槽和处于两个微型凹槽之间的隔离柱(隔离柱高度低于为型凹槽的深度),微型凹槽内壁先后沉积金属电极层和导电聚合物薄膜,沉积好金属电极层和导电聚合物薄膜的微型凹槽内灌注点解液后密封封装形成微型电容,多个微型电容采用串、并联技术最终形成超级电容器。本发明提供的导电聚合物修饰的超级电容器具有比容量大、集成度高的特点,可作为各种电源或储能器件使用。The conductive polymer-modified supercapacitor provided by the present invention is composed of a plurality of microcapacitors connected in series and in parallel in a single silicon substrate material; The isolation column between two micro-grooves (the height of the isolation column is lower than the depth of the micro-groove), the metal electrode layer and the conductive polymer film are deposited successively on the inner wall of the micro-groove, and the deposited metal electrode layer and the conductive polymer film are deposited on the micro After filling the groove with solution solution, it is sealed and packaged to form a microcapacitor, and multiple microcapacitors are connected in series and parallel to form a supercapacitor. The conductive polymer modified supercapacitor provided by the invention has the characteristics of large specific capacity and high integration, and can be used as various power sources or energy storage devices.
附图说明 Description of drawings
图1为硅基片上镀氮化硅层示意图,1为氮化硅,2为硅基底。FIG. 1 is a schematic diagram of a silicon nitride layer coated on a silicon substrate, 1 is silicon nitride, and 2 is a silicon substrate.
图2为单片硅基片上的微型凹槽结构示意图。Fig. 2 is a schematic diagram of the micro groove structure on a monolithic silicon substrate.
图3为硅-硅键合示意图。Figure 3 is a schematic diagram of silicon-silicon bonding.
图4为键合、刻蚀后硅基片上微型凹槽结构示意图。Fig. 4 is a schematic diagram of the micro groove structure on the silicon substrate after bonding and etching.
图5为微型凹槽内壁沉积金属电极层示意图,3为金属电极层。FIG. 5 is a schematic diagram of depositing a metal electrode layer on the inner wall of a micro-groove, and 3 is a metal electrode layer.
图6为金属电极层表面沉积导电聚合物薄膜示意图,4为导电聚合物薄膜。FIG. 6 is a schematic diagram of depositing a conductive polymer film on the surface of a metal electrode layer, and 4 is a conductive polymer film.
图7为多个微型电容并联形成超级电容的结构示意图。FIG. 7 is a schematic structural diagram of a plurality of microcapacitors connected in parallel to form a supercapacitor.
具体实施方式 Detailed ways
以下结合实施方式对本发明做出进一步说明。The present invention will be further described below in conjunction with the embodiments.
一种导电聚合物修饰的超级电容器的制备方法,包括以下步骤:A preparation method for a supercapacitor modified by a conductive polymer, comprising the following steps:
步骤1:取两片形状和大小相同的洁净的硅基片,采用PECVD工艺在其表面镀一层氮化硅(如图1所示),然后采用光刻工艺在每片硅基片上相同的区域刻蚀若干对微型凹槽,每对微型凹槽之间具有相同的隔离柱(如图2所示)。Step 1: Take two clean silicon substrates with the same shape and size, use PECVD process to coat a layer of silicon nitride on the surface (as shown in Figure 1), and then use photolithography to coat the same silicon substrate on each silicon substrate. Several pairs of micro-grooves are regionally etched, and there are identical isolation columns between each pair of micro-grooves (as shown in FIG. 2 ).
步骤2:将两片硅基片的微型凹槽面对面地对准,并键合,得到若干对封闭于硅材料中的微型凹槽(如图3所示)。Step 2: Align and bond the micro grooves of two silicon substrates face to face to obtain several pairs of micro grooves enclosed in silicon material (as shown in Figure 3).
步骤3:将每对微型凹槽外加该对微型凹槽之间的隔离柱所对应的整体区域上方的硅材料刻蚀掉,使得每对微型凹槽之间的隔离柱的高度低于微型凹槽的深度(如图4所示)。Step 3: Etch away the silicon material above the entire area corresponding to each pair of micro-grooves plus the isolation column between the pair of micro-grooves, so that the height of the isolation column between each pair of micro-grooves is lower than that of the micro-groove The depth of the groove (as shown in Figure 4).
步骤4:在所有微型凹槽内壁沉积金属电极层,并用金属导线引出(如图5所示);金属电极层的沉积方法可以采用真空蒸镀法,电极材料可以是镍、铝、铂、钛等金属。Step 4: Deposit metal electrode layers on the inner walls of all micro-grooves and lead them out with metal wires (as shown in Figure 5); the deposition method of metal electrode layers can be vacuum evaporation, and the electrode materials can be nickel, aluminum, platinum, titanium and other metals.
步骤5:在步骤4所得金属电极层表面沉积导电聚合物薄膜;具体方法是,首先将三氯化铁或对甲基苯磺酸铁氧化剂、硬脂酸辅助成膜剂、三氯甲烷溶剂按2∶1∶10的比例混合均匀,然后用微量注射器将混合液铺展于亚相(去离子水)上;然后采用提拉工艺,在金属电极层表面得到一层几十到几百纳米厚的氧化剂薄膜;最后将氧化剂薄膜浸在苯胺单体、吡咯单体或噻吩单体中,30分钟后取出烘干,并用乙醇冲洗干净,便在金属电极上得到一层导电聚合物薄膜(如图6所示)。Step 5: deposit conductive polymer thin film on the metal electrode layer surface gained in step 4; Concrete method is, at first ferric trichloride or iron p-toluenesulfonate oxidant, stearic acid auxiliary film-forming agent, chloroform solvent are pressed The ratio of 2:1:10 is mixed evenly, and then the mixed solution is spread on the subphase (deionized water) with a micro-syringe; then, a layer of tens to hundreds of nanometers thick is obtained on the surface of the metal electrode layer by pulling process. Oxidant film; finally, the oxidant film is immersed in aniline monomer, pyrrole monomer or thiophene monomer, taken out and dried after 30 minutes, and rinsed with ethanol to obtain a layer of conductive polymer film on the metal electrode (as shown in Figure 6 shown).
步骤6:在微型凹槽内灌注电解液,然后密封封装;密封封装后的每一对微型凹槽形成一个微型电容器;电解液可采用酸性或碱性电解液,如0.5ml/L~1mol/L硫酸(H2SO4)、0.5mol/L~1mol/L磷酸(H3PO4)、1mol/L~3mol/L硝酸钠(NaNO3)、0.5mol/L~1mol/L氢氧化钾(KOH)等。Step 6: Fill the micro-groove with electrolyte, and then seal the package; each pair of micro-grooves after sealing and packaging forms a micro-capacitor; the electrolyte can be acidic or alkaline electrolyte, such as 0.5ml/L~1mol/ L sulfuric acid (H 2 SO 4 ), 0.5mol/L~1mol/L phosphoric acid (H 3 PO 4 ), 1mol/L~3mol/L sodium nitrate (NaNO 3 ), 0.5mol/L~1mol/L potassium hydroxide (KOH) etc.
步骤7:所有微型电容器相互并联,形成超级电容器;或者先由相同数量的微型电容器相互串联,形成一个串联支路;再由若干个串联支路相互并联,形成超级电容器。Step 7: All microcapacitors are connected in parallel to each other to form a supercapacitor; or the same number of microcapacitors are first connected in series to form a series branch; then several series branches are connected in parallel to form a supercapacitor.
本发明利用MEMS技术将多个微型电容器集成于单一硅基片中,多个微型电容器之间通过并联(或串联后再并联)方式形成超级电容器。在微型电容器制作过程中,在蒸镀的金属电极上用简单有效的直接化学聚合导电聚合物薄膜,用以修饰电容器电极来提高微电极比容量,降低等效串联电阻(ESR)等。本发明提供的导电聚合物修饰的超级电容器具有比容量大、集成度高的特点,可作为各种电源或储能器件使用。The invention utilizes MEMS technology to integrate multiple microcapacitors into a single silicon substrate, and the multiple microcapacitors are connected in parallel (or connected in parallel after being connected in series) to form supercapacitors. In the process of microcapacitor fabrication, a simple and effective direct chemical polymerization conductive polymer film is used on the evaporated metal electrode to modify the capacitor electrode to increase the specific capacity of the microelectrode and reduce the equivalent series resistance (ESR). The conductive polymer modified supercapacitor provided by the invention has the characteristics of large specific capacity and high integration, and can be used as various power sources or energy storage devices.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210179910.1A CN102709071B (en) | 2012-06-04 | 2012-06-04 | Conducting polymer modified super capacitor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210179910.1A CN102709071B (en) | 2012-06-04 | 2012-06-04 | Conducting polymer modified super capacitor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102709071A true CN102709071A (en) | 2012-10-03 |
CN102709071B CN102709071B (en) | 2014-10-15 |
Family
ID=46901751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210179910.1A Expired - Fee Related CN102709071B (en) | 2012-06-04 | 2012-06-04 | Conducting polymer modified super capacitor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102709071B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019081970A1 (en) * | 2017-10-27 | 2019-05-02 | International Business Machines Corporation | Vertical superconducting capacitors for transmon qubits |
CN111223678A (en) * | 2020-01-08 | 2020-06-02 | 重庆电子工程职业学院 | Method for preparing PPy flexible capacitor film conductor with porous structure |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005101973A2 (en) * | 2004-04-27 | 2005-11-03 | Tel Aviv University Future Technology Development L.P. | 3-d microbatteries based on interlaced micro-container structures |
CN101916663A (en) * | 2010-08-03 | 2010-12-15 | 清华大学 | A hybrid micro-supercapacitor and its manufacturing method |
CN101950685A (en) * | 2010-08-23 | 2011-01-19 | 清华大学 | Polypyrrole microelectrode with three-dimensional structure and preparation method thereof |
CN101986794A (en) * | 2007-11-02 | 2011-03-16 | Ipdia公司 | Multilayer structure and method of producing the same |
CN102074371A (en) * | 2010-12-30 | 2011-05-25 | 清华大学 | Three-dimensional miniature super capacitor electrode manufactured from nano porous composite material and manufacturing method thereof |
-
2012
- 2012-06-04 CN CN201210179910.1A patent/CN102709071B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005101973A2 (en) * | 2004-04-27 | 2005-11-03 | Tel Aviv University Future Technology Development L.P. | 3-d microbatteries based on interlaced micro-container structures |
WO2005101973A3 (en) * | 2004-04-27 | 2009-02-12 | Univ Tel Aviv Future Tech Dev | 3-d microbatteries based on interlaced micro-container structures |
CN101986794A (en) * | 2007-11-02 | 2011-03-16 | Ipdia公司 | Multilayer structure and method of producing the same |
CN101916663A (en) * | 2010-08-03 | 2010-12-15 | 清华大学 | A hybrid micro-supercapacitor and its manufacturing method |
CN101950685A (en) * | 2010-08-23 | 2011-01-19 | 清华大学 | Polypyrrole microelectrode with three-dimensional structure and preparation method thereof |
CN102074371A (en) * | 2010-12-30 | 2011-05-25 | 清华大学 | Three-dimensional miniature super capacitor electrode manufactured from nano porous composite material and manufacturing method thereof |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019081970A1 (en) * | 2017-10-27 | 2019-05-02 | International Business Machines Corporation | Vertical superconducting capacitors for transmon qubits |
US10445651B2 (en) | 2017-10-27 | 2019-10-15 | International Business Machines Corporation | Vertical superconducting capacitors for transmon qubits |
CN111201622A (en) * | 2017-10-27 | 2020-05-26 | 国际商业机器公司 | Vertical superconducting capacitor for transmitting qubits |
GB2581053A (en) * | 2017-10-27 | 2020-08-05 | Ibm | Vertical superconducting capacitors for transmon qubits |
JP2021500739A (en) * | 2017-10-27 | 2021-01-07 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Vertical superconducting capacitors for transmon cubits |
GB2581053B (en) * | 2017-10-27 | 2021-11-03 | Ibm | Vertical superconducting capacitors for transmon qubits |
JP7064180B2 (en) | 2017-10-27 | 2022-05-10 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Vertical superconducting capacitors for transmon qubits |
CN111201622B (en) * | 2017-10-27 | 2023-04-04 | 国际商业机器公司 | Vertical superconducting capacitor for transmitting qubits |
CN111223678A (en) * | 2020-01-08 | 2020-06-02 | 重庆电子工程职业学院 | Method for preparing PPy flexible capacitor film conductor with porous structure |
Also Published As
Publication number | Publication date |
---|---|
CN102709071B (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | The road towards planar microbatteries and micro‐supercapacitors: from 2D to 3D device geometries | |
Lethien et al. | Challenges and prospects of 3D micro-supercapacitors for powering the internet of things | |
Wang et al. | Conducting polymer nanowire arrays for high performance supercapacitors | |
Zhao et al. | Recent advances in designing and fabricating self‐supported nanoelectrodes for supercapacitors | |
CN101325130B (en) | Polypyrrole micro-supercapacitor based on MEMS technology and manufacturing method thereof | |
CN103219164B (en) | Ultra-thin, self-supporting, flexibility, all-solid-state supercapacitor and preparation method thereof | |
Li et al. | Constructing in-chip micro-supercapacitors of 3D graphene nanowall/ruthenium oxides electrode through silicon-based microfabrication technique | |
CN104795252B (en) | Ultra-thin Ti3C2The preparation method of the electrode of super capacitor of nanometer sheet self assembly | |
CN103854878A (en) | Supercapacitor based on polypyrrole / manganese dioxide / carbon cloth and manufacturing method thereof | |
CN105047431B (en) | A kind of preparation of ultracapacitor based on strong association oxide combination electrode and method of testing | |
JP2018501173A (en) | Hierarchical composite structures based on graphene foam or graphene-like foam | |
CN110098065A (en) | A kind of double silicon wafer base solid state super capacitors and preparation method thereof | |
CN109216035A (en) | A kind of all solid state plane asymmetric miniature ultracapacitor device and preparation method thereof | |
CN103680994A (en) | High-specific-volume electrode thin film and manufacturing method thereof | |
CN106024414A (en) | Manganese dioxide/polypyrrole composite electrode free of binder, preparation method and application of manganese dioxide/polypyrrole composite electrode | |
CN107680828A (en) | A kind of stretchable ultracapacitor using stainless steel spring as substrate | |
CN101504889A (en) | Micro super capacitor applied for micro system and production process thereof | |
CN102623183B (en) | A kind of preparation method of electrolytic capacitor | |
CN102856080B (en) | A kind of super capacitor material based on nano porous metal conducting polymer and preparation method thereof | |
Wang et al. | Material and structural design of microsupercapacitors | |
CN102623184A (en) | Micro-supercapacitor based on photoresist diaphragm and manufacturing method thereof | |
CN101226829B (en) | A kind of tantalum ruthenium hybrid electrolytic capacitor and its preparation method | |
CN104681304B (en) | A kind of Asymmetric Supercapacitor preparation method | |
CN102709071A (en) | Conducting polymer modified super capacitor and manufacturing method thereof | |
CN102376452B (en) | Super capacitor assembled by manganese series oxide electrodes with meshed nano-structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141015 Termination date: 20180604 |