CN102708368B - 一种基于机器视觉的生产线上瓶体的定位方法 - Google Patents

一种基于机器视觉的生产线上瓶体的定位方法 Download PDF

Info

Publication number
CN102708368B
CN102708368B CN201210136801.1A CN201210136801A CN102708368B CN 102708368 B CN102708368 B CN 102708368B CN 201210136801 A CN201210136801 A CN 201210136801A CN 102708368 B CN102708368 B CN 102708368B
Authority
CN
China
Prior art keywords
point
clu
point set
cru
cld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210136801.1A
Other languages
English (en)
Other versions
CN102708368A (zh
Inventor
王耀南
张耀
毛建旭
周博文
刘彩苹
张辉
葛继
吴成中
陈俊
朱慧慧
周金丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201210136801.1A priority Critical patent/CN102708368B/zh
Publication of CN102708368A publication Critical patent/CN102708368A/zh
Application granted granted Critical
Publication of CN102708368B publication Critical patent/CN102708368B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种基于机器视觉的生产线上瓶体的定位方法,包括以下步骤:步骤1:采集瓶体的图像以及对图像进行预处理;步骤2:提取多组瓶体外边缘点集:对预处理后的图像进行纵向直线轨迹和定点圆轨迹的两次扫描,并利用最小偏差绝对值和的方法有效去除误差点;步骤3:对边缘点集进行整合,并将整合后的边缘点集实施最小二乘法进行直线拟合,得到边缘特征线集;步骤4:根据线集元素之间的相交性关系求出异型瓶瓶身的定位特征角点,并根据特征角点得到包括瓶身偏转角、瓶高、瓶宽、几何中心的瓶身特征信息。该基于机器视觉的生产线上瓶体的定位方法能自动识别、快速精准定位。

Description

一种基于机器视觉的生产线上瓶体的定位方法
技术领域
本发明属于视觉定位方法领域,涉及一种基于机器视觉的生产线上瓶体的定位方法,用于制药工业生产线上基于机器视觉的异型瓶药液内可见异物在线检测过程。
背景技术
在现代大型异型瓶药液、保健酒、饮料等产品的质量、包装检测生产线上,尤其是全自动的智能视觉灯检设备上,要求对异型瓶瓶体能够进行精确的定位。而现有生产线上的定位装置主要以机械定位为主,其精度较低,定位速度慢,而且灵活性差,无法满足现代高速自动化检测生产线的要求。在采用跟踪拍照方式的智能视觉灯检设备上,机械定位更是无法满足视觉检测的要求,往往由于机械的抖动和跟踪误差导致误检率的大幅度攀升。基于机器视觉的定位方法有着高速、高精度、高智能化等优点,因而也越来越受到重视。
在现行的基于机器视觉的异型瓶定位方法中,主要有模板匹配法。在实际生产中,由于模板匹配法的定位精度不高,不能很好的降低产品的误检率。同时模板匹配法的大计算量导致检测过程的实时性降低。因此,异型瓶药液、保健酒、饮料等产品的视觉检测设备上迫切需要一种速度快、精度高的视觉定位新方法。
发明内容
本发明所要解决的技术问题是提供一种基于机器视觉的生产线上瓶体的定位方法,该基于机器视觉的生产线上瓶体的定位方法能自动识别、快速精准定位。
发明的技术解决方案如下:
一种基于机器视觉的生产线上瓶体的定位方法,包括以下步骤:
步骤1:采集瓶体的图像以及对图像进行预处理;
步骤2:提取多组瓶体外边缘点集:对预处理后的图像进行纵向直线轨迹和定点圆轨迹的两次扫描,并利用最小偏差绝对值和的方法有效去除误差点;
步骤3:对边缘点集进行整合,并将整合后的边缘点集实施最小二乘法进行直线拟合,得到边缘特征线集;
步骤4:根据线集元素之间的相交性关系求出异型瓶瓶身的定位特征角点,并根据特征角点得到包括瓶身偏转角、瓶高、瓶宽、几何中心的瓶身特征信息。
步骤1中,先对采集到的原始瓶体图像进行一次3×3的中值滤波操作;
再使用Sobel边缘检测算子对滤波后的图像进行边缘检测,并给定阈值将边缘图像二值化;
使用4×4的矩形膨胀算子对初始边缘图像进行一次膨胀操作;
使用3×3的矩形腐蚀算子对膨胀后的边缘图像进行一次腐蚀操作;预处理的结果是得到边缘优化的图像。
步骤2的具体实现过程为:
①纵向直线轨迹线扫描提取瓶体直线外边缘点集:
在边缘图像中均匀纵向取直线2h+1条,从直线的两端向中间扫描,记录第一个非零点的图像坐标分别抽取瓶体轮廓上边缘线上点集Blu和下边缘线上点集Bld;其中,2≤h≤IWidth/2,IWidth为图像宽度;h越大表示取线的密度越大,抽取点集数据量越大,定位精度越高。
②用最小偏差绝对值和的方法在上下边缘点集中去除粗大误差点。
在上边缘点集Blu中,每相邻两点确定一条直线,则总共可以确定2h条直线,记为线集Llu
L lu = { L ( i ) ( X lu ( i ) , X lu ( i + 1 ) ) | i ∈ [ 1,2 h ] , X lu ( i ) ∈ B lu } ;
在下边缘点集Bld中,同样的方式也可以确定2h条直线,记为线集Lld
L ld = { L ( i ) ( X ld ( i ) , X ld ( i + 1 ) ) | i ∈ [ 1,2 h ] , X ld ( i ) ∈ B ld } ;
对于特征线集Llu中的每个元素,求取特征点集Blu中的每个点到它的距离之和,记为:
D lu ( i ) = Σ j = 1 2 h + 1 | d ( X lu ( j ) , L lu ( i ) ) | ;
其中,
d ( X lu ( j ) , L lu ( i ) ) = | ( y lu ( i + 1 ) - y lu ( i ) x lu ( i + 1 ) - x lu ( i ) ) x lu ( j ) - y lu ( j ) + ( y lu ( i ) - ( y lu ( i + 1 ) - y lu ( i ) x lu ( i + 1 ) - x lu ( i ) ) x lu ( i ) ) | 1 + ( y lu ( i + 1 ) - y lu ( i ) x lu ( i + 1 ) - x lu ( i ) ) 2 ;
在所有
Figure BDA00001603598400032
中取最小值其对应的直线记为
Figure BDA00001603598400034
将满足
d ( X lu ( j ) , L lu * ) > ϵ , j = 1,2 , · · · , 2 h + 1
的点从点集Blu中删除,形成新的点集
Figure BDA00001603598400037
同理,对于特征线集Lld中的每个元素,求取特征点集Bld中的每个点到它的距离之和,记为:
D ld ( i ) = Σ j = 1 2 g + 1 | d ( X ld ( j ) , L ld ( i ) ) | ;
其中,
d ( X ld ( j ) , L ld ( i ) ) = | ( y ld ( i + 1 ) - y ld ( i ) x ld ( i + 1 ) - x ld ( i ) ) x ld ( j ) - y ld ( j ) + ( y ld ( i ) - ( y ld ( i + 1 ) - y ld ( i ) x ld ( i + 1 ) - x ld ( i ) ) x ld ( i ) ) | 1 + ( y ld ( i + 1 ) - y ld ( i ) x ld ( i + 1 ) - x ld ( i ) ) 2 ;
在所有中取最小值
Figure BDA000016035984000311
其对应的直线记为
Figure BDA000016035984000312
将满足
d ( X ld ( j ) , L ld * ) > ϵ , j = 1,2 , · · · , 2 h + 1
的点
Figure BDA000016035984000314
从点集Blu中删除,形成新的点集
Figure BDA000016035984000315
③圆轨迹扫描提取瓶身肩部和底部外边缘点集:
在点集
Figure BDA000016035984000316
Figure BDA000016035984000317
中,选取最靠近左上角、右上角、左下角、右下角的点Olu、Oru、Old、Ord作为圆轨迹扫描的4个基准圆心;以这四个基准圆心产生4组每组2g+1个半径不同的同心圆的圆轨迹扫描线;其中,2≤g≤Iheight/5,Iheight为图像高度;
在圆轨迹扫描过程中为了能够准确无误的抽取边缘点,需要设置圆轨迹扫描角步长,不同半径的圆轨迹扫描时应该使用不同的角步长
Figure BDA000016035984000318
关系如下:
Figure BDA00001603598400041
其中,R是圆轨迹扫描半径;
经过四组圆轨迹扫描,可以分别抽取到上肩部外边缘点集Bclu、下肩部外边缘点集Bcld、上底部外边缘点集Bcru和下底部外边缘点集Bcrd
④用最小偏差绝对值和的方法在肩部、底部边缘点集中去除误差点:
在上肩部外边缘点集Bclu中,每相邻两点确定一条直线,则总共可以确定2g条直线,记为线集Lclu
L clu = { L ( i ) ( X clu ( i ) , X clu ( i + 1 ) ) | i ∈ [ 1,2 g ] , X clu ( i ) ∈ B clu } ;
在下肩部边缘点集Bcld,上底部外边缘点集Bcru,下底部外边缘点集Bcrd中,每相邻两点确定一条直线,各确定2g条直线,分别记为线集Lcld、Lcru、Lcrd
L cld = { L ( i ) ( X cld ( i ) , X cld ( i + 1 ) ) | i ∈ [ 1,2 g ] , X cld ( i ) ∈ B cld } ;
L cru = { L ( i ) ( X cru ( i ) , X cru ( i + 1 ) ) | i ∈ [ 1,2 g ] , X cru ( i ) ∈ B cru } ;
L crd = { L ( i ) ( X crd ( i ) , X crd ( i + 1 ) ) | i ∈ [ 1,2 g ] , X crd ( i ) ∈ B crd } ;
(1)对于特征线集Lclu中的每个元素,求取特征点集Bclu中的每个点到它的距离之和,记为:
D clu ( i ) = Σ j = 1 2 g + 1 | d ( X clu ( j ) , L clu ( i ) ) | ;
其中,
d ( X clu ( j ) , L clu ( i ) ) = | ( y clu ( i + 1 ) - y clu ( i ) x clu ( i + 1 ) - x clu ( i ) ) x clu ( j ) - y clu ( j ) + ( y clu ( i ) - ( y clu ( i + 1 ) - y clu ( i ) x clu ( i + 1 ) - x clu ( i ) ) x clu ( i ) ) | 1 + ( y clu ( i + 1 ) - y clu ( i ) x clu ( i + 1 ) - x clu ( i ) ) 2 ;
在所有
Figure BDA00001603598400048
中取最小值
Figure BDA00001603598400049
其对应的直线记为
Figure BDA000016035984000410
将满足
d ( X clu ( j ) , L clu * ) > ϵ , j = 1,2 , · · · , 2 g + 1
的点
Figure BDA000016035984000412
从点集Bclu中删除,形成新的点集
Figure BDA000016035984000413
(2)对于特征线集Lcld中的每个元素,求取特征点集Bcld中的每个点到它的距离之和,记为:
D cld ( i ) = Σ j = 1 2 g + 1 | d ( X cld ( j ) , L cld ( i ) ) | ;
其中,
d ( X cld ( j ) , L cld ( i ) ) = | ( y cld ( i + 1 ) - y cld ( i ) x cld ( i + 1 ) - x cld ( i ) ) x cld ( j ) - y cld ( j ) + ( y cld ( i ) - ( y cld ( i + 1 ) - y cld ( i ) x cld ( i + 1 ) - x cld ( i ) ) x cld ( i ) ) | 1 + ( y cld ( i + 1 ) - y cld ( i ) x cld ( i + 1 ) - x cld ( i ) ) 2 ;
在所有
Figure BDA00001603598400053
中取最小值
Figure BDA00001603598400054
其对应的直线记为
Figure BDA00001603598400055
将满足
d ( X cld ( j ) , L cld * ) > ϵ , j = 1,2 , · · · , 2 g + 1 ;
的点
Figure BDA00001603598400057
从点集Bclu中删除,形成新的点集
Figure BDA00001603598400058
(3)对于特征线集Lcru中的每个元素,求取特征点集Bcru中的每个点到它的距离之和,记为:
D cru ( i ) = Σ j = 1 2 g + 1 | d ( X cru ( j ) , L cru ( i ) ) | ;
其中,
d ( X cru ( j ) , L cru ( i ) ) = | ( y cru ( i + 1 ) - y cru ( i ) x cru ( i + 1 ) - x cru ( i ) ) x cru ( j ) - y cru ( j ) + ( y cru ( i ) - ( y cru ( i + 1 ) - y cru ( i ) x cru ( i + 1 ) - x cru ( i ) ) x cru ( i ) ) | 1 + ( y cru ( i + 1 ) - y cru ( i ) x cru ( i + 1 ) - x cru ( i ) ) 2 ;
在所有
Figure BDA000016035984000511
中取最小值
Figure BDA000016035984000512
其对应的直线记为
Figure BDA000016035984000513
将满足
d ( X cru ( j ) , L cru * ) > ϵ , j = 1,2 , · · · , 2 g + 1
的点
Figure BDA000016035984000515
从点集Bclu中删除,形成新的点集
Figure BDA000016035984000516
(4)对于特征线集Lcrd中的每个元素,求取特征点集Bcrd中的每个点到它的距离之和,记为:
D crd ( i ) = ∑ j = 1 2 g + 1 | d ( X crd ( j ) , L crd ( i ) ) | ;
其中,
d ( X crd ( j ) , L crd ( i ) ) = | ( y crd ( i + 1 ) - y crd ( i ) ) x crd ( j ) - y crd ( j ) + ( y crd ( i ) - ( y crd ( i + 1 ) - y crd ( i ) x crd ( i + 1 ) - x crd ( i ) ) ) x crd ( i ) | 1 + ( y crd ( i + 1 ) - y crd ( i ) x crd ( i + 1 ) - x crd ( i ) ) 2 ;
在所有中取最小值
Figure BDA00001603598400064
其对应的直线记为
Figure BDA00001603598400065
将满足
d ( X crd ( j ) , L crd * ) > ϵ , j = 1,2 , · · · , 2 g + 1
的点
Figure BDA00001603598400067
从点集Bclu中删除,形成新的点集
Figure BDA00001603598400068
步骤2的具体实现过程为:首先对上边缘、下边缘、上肩部外边缘、下肩部外边缘、上底部外边缘、下底部外边缘六组边缘点集进行整合:将上肩部边缘点集
Figure BDA00001603598400069
重新记为
Figure BDA000016035984000610
将下肩部边缘点集
Figure BDA000016035984000611
重新记为
Figure BDA000016035984000612
将上底部边缘点集
Figure BDA000016035984000613
和下底部边缘点集求并,整合成新的底边缘点集
Figure BDA000016035984000615
保持
Figure BDA000016035984000616
不变;于是,六组点集被重新整合为五组;
然后,使用最小二乘法对五组点集分别进行拟合:
最小二乘法进行直线拟合的拟合多项式为:y=b+kx,其中k为直线斜率,b为y轴截距;
使用点集分别得到拟合直线
Figure BDA000016035984000619
Figure BDA000016035984000620
至此,由特征边缘点集上升到了边缘特征线集:
L = { L lu * , L ld * , L ju * , L jd * , L d * } .
步骤4的具体实现过程为:
根据线集元素之间的相交性关系求出异型瓶瓶身的定位特征角点,并根据特征角点给出进一步的瓶身特征信息:
由直线
Figure BDA00001603598400071
Figure BDA00001603598400072
的斜截式直线方程联立,解得交点Ju,即上肩部点;
由直线
Figure BDA00001603598400073
Figure BDA00001603598400074
的斜截式直线方程联立,解得交点Du,即上底顶点;
由直线
Figure BDA00001603598400075
Figure BDA00001603598400076
的斜截式直线方程联立,解得交点Jd,即下肩部点;
由直线
Figure BDA00001603598400077
Figure BDA00001603598400078
的斜截式直线方程联立,解得交点Dd,即下底顶点。
Ju、Jd、Du、Dd即异型瓶瓶身定位的特征角点;
以下给出根据特征角点计算的其他瓶身特征信息的计算式:
瓶身偏转角:
θ = 1 2 ( arctan ( y Du - y Ju x Du - x Ju ) + arctan ( y Dd - y Jd x Dd - x Jd ) ) ;
瓶高:
Height = ( x Du - x Ju ) + ( x Dd - x Jd ) 2 ;
瓶宽:
Width = ( y Du - y Ju ) + ( y Dd - y Jd ) 2 ;
几何中心:
P=(Px,Py);
其中,
P x = x Du + x Ju + x Dd + x Jd 4 P y = y Du + y Ju + y Dd + y Jd 4 .
有益效果:
本发明的基于机器视觉的生产线上瓶体的定位方法,与现有技术相比,其突出的优点在于:
(1)、定位速度快。
本发明方法使用部分线扫描的方式抽取特征点集,并在特征点集的基础上进行进一步定位计算,从而避免了模板匹配定位方法中的全图像规模运算,有效的降低了算法的复杂度。
(2)、定位精度高。
定位结果产生于线扫描特征点集的运算基础之上,从而使得定位精度在图像上表现为单像素级的定位精度。同时,增加线扫描线的条数可以进一步提高定位精度。
(3)、适用性广。
算法采用线扫描方法提取特征点,通过特征点集的进一步运算产生定位信息,不同的线扫描方法和不同的运算方法的引入可使得该定位算法在不同形状的瓶体定位中得到进一步的扩展。
本发明是一种能在高速自动化异型瓶药液、饮料等产品的视觉质量检测生产线上实现自动识别、快速精准定位,并能够和视觉异物检测算法配合实现高效、高精度的异型瓶装液体产品质量检测的快速视觉定位方法。
附图说明
图1是本发明视觉定位方法的流程总框图;
图2是本发明中定位算法的定位目标瓶体形状示意图;
图3是纵向直线轨迹扫描点集提取方法示意图;
图4是圆轨迹扫描过程中一定半径轨迹的角度步长确定;
图5是圆轨迹扫描点集提取方法示意图;
图6是直线拟合过程的示意图;
图7是整个定位算法的处理效果实例(其中,(a)原始瓶体图像;(b)3×3的中值滤波后的瓶体图像;(c)用Sobel边缘检测算子检测的边缘图像;(d)形态学优化后的边缘图像;(e)纵向直线轨迹扫描;(f)直线轨迹扫描特征点集;(g)圆轨迹扫描及其得到的特征点集;(h)得到定位特征点;(i)最终定位效果图)。
标号说明:1.上边缘点集,2.纵向扫描直线,3.下边缘点集,4.由下至上扫描方向,5.奇异点,6.由上至下扫描方向;
7.定位特征点;8.第5点集拟合直线;9.第2点集拟合直线;10.第3点集拟合直线;11.第1点集拟合直线;12.第4点集拟合直线;
13.上肩部边缘点;14.肩部圆扫描轨迹;15.下肩部边缘点;16.底部圆扫描轨迹,17.底部边缘点集。
具体实施方式
以下将结合附图和具体实施例对本发明做进一步详细说明:
实施例1:
如图1和图2所示,本发明的异型瓶瓶身视觉定位方法,其具体流程为:
1、图像预处理。
由于瓶体图像在通过传感、采集、传输、处理等过程中,不可避免的存在着各种外部和内部的干扰,因此,在定位之前必须对图像进行特定的预处理操作。考虑到在滤波的同时不至于损失过多的边缘细节,本发明首先对原始图像进行一次3×3的中值滤波操作。然后使用Sobel边缘检测算子对滤波后的图像进行边缘检测,并给定阈值8将边缘图像二值化;接下来,使用4×4的矩形膨胀算子对初始边缘图像进行一次膨胀操作;紧接着使用3×3的矩形腐蚀算子对膨胀后的边缘图像进行一次腐蚀操作。
2、提取6组瓶体外边缘点集。
(1)纵向直线轨迹线扫描提取瓶体直线外边缘粗糙点集。
如图3所示,在边缘图像中均匀纵向取直线2h+1条,从直线的两端向中间扫描,记录第一个非零点的图像坐标,得到瓶体轮廓,上边缘线上点集Blu和下边缘线上点集Bld:记为:
B lu = { X lu ( i ) ( x lu ( i ) , y lu ( i ) ) | i ∈ [ 1,2 h + 1 ] , h ∈ [ 3 , W I 4 ] } - - - ( 1 )
B ld = { X ld ( i ) ( x lu ( i ) , y lu ( i ) ) | i ∈ [ 1,2 h + 1 ] , h ∈ [ 3 , W I 4 ] } - - - ( 2 )
式中WI是图像的宽度(单位:像素)。
(2)用最小偏差绝对值和的方法在上下边缘点集中去除粗大误差点。
由于在经过图像预处理得到的二值化后的边缘图像上可能存在由于光照不均匀等原因造成的边缘线断裂的情况,这使得边缘粗糙点集中可能存在着非瓶体边缘轮廓线上的点,它属于边缘粗糙点集中的粗大误差点,必须在直线拟合前进行可靠剔除,否则可能造成拟合边缘直线的失真。本方法是基于直线拟合的,以粗集点到直线距离之和的极小值问题作为优化目标,得到最佳的拟合直线,并在此直线基础上剔除到直线距离过大的粗大误差点。本方法既克服了单纯的直线拟合带来的线检测误差,同时对瓶体边缘轮廓的断裂有一定的图像相容性。具体的实施步骤如下:
在上边缘点集Blu中,每相邻两点确定一条直线,则总共可以确定2h条直线,记为线集Llu
L lu = { L ( i ) ( X lu ( i ) , X lu ( i + 1 ) ) | i ∈ [ 1,2 h ] , X lu ( i ) ∈ B lu } - - - ( 3 )
同理,在下边缘点集Bld中,同样的方式也可以确定2h条直线,记为线集Lld
L ld = { L ( i ) ( X ld ( i ) , X ld ( i + 1 ) ) | i ∈ [ 1,2 h ] , X ld ( i ) ∈ B ld } - - - ( 4 )
对于特征线集Llu中的每个元素,求取特征点集Blu中的每个点到它的距离之和,记为:
D lu ( i ) = Σ j = 1 2 h + 1 | d ( X lu ( j ) , L lu ( i ) ) | - - - ( 5 )
其中,
d ( X lu ( j ) , L lu ( i ) ) = | ( y lu ( i + 1 ) - y lu ( i ) x lu ( i + 1 ) - x lu ( i ) ) x lu ( j ) - y lu ( j ) + ( y lu ( i ) - ( y lu ( i + 1 ) - y lu ( i ) x lu ( i + 1 ) - x lu ( i ) ) x lu ( i ) ) | 1 + ( y lu ( i + 1 ) - y lu ( i ) x lu ( i + 1 ) - x lu ( i ) ) 2 - - - ( 6 )
在所有
Figure BDA00001603598400105
中取最小值:
D lu * = min { D lu ( i ) | i ∈ [ 1,2 h ] } - - - ( 7 )
其对应的特征直线记为将满足
d ( X lu ( j ) , L lu * ) > ϵ , j = 1,2 , · · · , 2 h + 1 - - - ( 8 )
的点
Figure BDA00001603598400109
从点集Blu中删除,形成新的点集
Figure BDA000016035984001010
其中ε等于5。
同理,在下边缘点集Bld中相邻点确定的线集Lld中,求取Bld中每个点到线集Lld中每个元素的距离之和,表示为:
D ld ( i ) = Σ j = 1 2 h + 1 | d ( X ld ( j ) , L ld ( i ) ) | - - - ( 9 )
其中,
d ( X ld ( j ) , L ld ( i ) ) = | ( y ld ( i + 1 ) - y ld ( i ) x ld ( i + 1 ) - x ld ( i ) ) x ld ( j ) - y ld ( j ) + ( y ld ( i ) - ( y ld ( i + 1 ) - y ld ( i ) x ld ( i + 1 ) - x ld ( i ) ) x ld ( i ) ) | 1 + ( y ld ( i + 1 ) - y ld ( i ) x ld ( i + 1 ) - x ld ( i ) ) 2 - - - ( 10 )
在所有
Figure BDA00001603598400112
中取最小值:
D ld * = min { D ld ( i ) | i ∈ [ 1,2 h ] } - - - ( 11 )
其对应的特征直线记为
Figure BDA00001603598400114
将满足
d ( X ld ( j ) , L ld * ) > ϵ , j = 1,2 , · · · , 2 h + 1 - - - ( 12 )
的点从点集Bld中删除,形成新的点集
Figure BDA00001603598400116
(3)圆轨迹扫描提取瓶身肩部和底部外边缘点集。
在点集
Figure BDA00001603598400117
Figure BDA00001603598400118
中,选取最靠近左上角、右上角、左下角、右下角的点Olu、Oru、Old、Ord作为圆轨迹扫描的4个基准圆心。以这四个基准圆心产生4组每组2g+1个半径不同的同心圆的圆轨迹扫描线。其圆轨迹扫描线的半径确定如下:
Ri=i·WH/3(2g+1),i∈[1,2g+1]                   (13)
需要注意的是,在圆轨迹扫描过程中为了能够准确无误的抽取边缘点,需要设置合理的圆轨迹扫描角步长,如图4所示,不同半径的圆轨迹扫描时应该使用不同的角步长,关系如下:
其中,R是圆轨迹扫描半径。经过四组圆轨迹扫描,可以分别抽取到上肩部外边缘点集Bclu、下肩部外边缘点集Bcld、上底部外边缘点集Bcru和下底部外边缘点集Bcrd,描述如下:
B clu = { X clu ( i ) ( x clu ( i ) , y clu ( i ) ) | i ∈ [ 1,2 g + 1 ] , g ∈ [ 3 , W H 8 ] } - - - ( 15 )
B cld = { X cld ( i ) ( x cld ( i ) , y cld ( i ) ) | i ∈ [ 1,2 g + 1 ] , g ∈ [ 3 , W H 8 ] } - - - ( 16 )
B cru = { X cru ( i ) ( x cru ( i ) , y cru ( i ) ) | i ∈ [ 1,2 g + 1 ] , g ∈ [ 3 , W H 8 ] } - - - ( 17 )
B crd = { X crd ( i ) ( x crd ( i ) , y crd ( i ) ) | i ∈ [ 1,2 g + 1 ] , g ∈ [ 3 , W H 8 ] } - - - ( 18 )
其中,WH是图像的高度(单位:像素)。
(4)用最小偏差绝对值和的方法在肩部、底部边缘点集中去除粗大误差点。
同在点集Blu和Bld中去除粗大误差的方法一致,这里不再赘述。仅仅给出剔除粗大误差后的点集表示:上肩部外边缘点集
Figure BDA00001603598400122
下肩部外边缘点集
Figure BDA00001603598400123
上底部外边缘点集
Figure BDA00001603598400124
和下底部外边缘点集
Figure BDA00001603598400125
3、点集重置及最小二乘直线拟合。
首先对六组边缘点集进行整合:将上肩部边缘点集重新记为将下肩部边缘点集
Figure BDA00001603598400128
重新记为
Figure BDA00001603598400129
将上底部边缘点集
Figure BDA000016035984001210
和下底部边缘点集
Figure BDA000016035984001211
求并,整合成新的底边缘点集
Figure BDA000016035984001212
保持
Figure BDA000016035984001213
Figure BDA000016035984001214
(即去除粗点的上边缘线上点集
Figure BDA000016035984001215
和去除粗点的下边缘线上点集
Figure BDA000016035984001216
)不变。于是,六组点集被重新整合为五组。
然后,使用最小二乘法对五组点集分别进行拟合。最小二乘法进行直线拟合的拟合多项式为:y=a0+a1x,也可以写为:y=b+kx,其中k为直线斜率,b为y轴截距。使用点集
Figure BDA000016035984001217
中的点建立直线拟合的最小二乘逼近正规方程组:
m Σ i = 1 m x lu ( i ) Σ i = 1 m x lu ( i ) Σ i = 1 m ( x lu ( i ) ) 2 b lu k lu = Σ i = 1 m y lu ( i ) Σ i = 1 m x lu ( i ) · y lu ( i ) - - - ( 19 )
其中m是点集
Figure BDA000016035984001219
中点的个数。由此解得直线的斜率klu和y轴截距blu,由klu和klu确定的点集
Figure BDA000016035984001220
的拟合直线表示为
Figure BDA000016035984001221
同理,使用点集
Figure BDA000016035984001222
分别建立各自的最小二乘正规方程组,解得拟合直线
Figure BDA000016035984001223
至此,由特征边缘点集上升到了边缘特征线集:
L = { L lu * , L ld * , L ju * , L jd * , L d * } - - - ( 20 )
4、根据线集元素之间的相交性关系求出异型瓶瓶身的定位特征角点,并根据特征角点给出进一步的瓶身特征信息。
由直线
Figure BDA00001603598400132
的斜截式直线方程联立,可解得交点Ju,即上肩部点;由直线
Figure BDA00001603598400133
Figure BDA00001603598400134
的斜截式直线方程联立,可解得交点Du,即上底顶点;由直线
Figure BDA00001603598400135
Figure BDA00001603598400136
的斜截式直线方程联立,可解得交点Jd,即下肩部点;由直线
Figure BDA00001603598400137
Figure BDA00001603598400138
的斜截式直线方程联立,可解得交点Dd,即下底顶点。Ju、Jd、Du、Dd即异型瓶瓶身定位的特征角点。
以下给出根据特征角点计算的其他瓶身特征信息的计算式:
瓶身偏转角:
θ = 1 2 ( arctan ( y Du - y Ju x Du - x Ju ) + arctan ( y Dd - y Jd x Dd - x Jd ) ) - - - ( 21 )
瓶高:
Height = ( x Du - x Ju ) + ( x Dd - x Jd ) 2 - - - ( 22 )
瓶宽:
Width = ( y Du - y Ju ) + ( y Dd - y Jd ) 2 - - - ( 23 )
几何中心:
P=(Px,Py)                   (24)
其中,
P x = x Du + x Ju + x Dd + x Jd 4 P y = y Du + y Ju + y Dd + y Jd 4 - - - ( 25 )
至此,用瓶身的定位特征点、偏转和高宽信息,可以在实时采集的瓶体图像中动态的更新液体检测区域。同时,以几何中心作为坐标原点,以过原点的和图像水平方向有着偏转角大小的直线及与其垂直的直线作为横纵坐标轴,建立图像中的瓶身坐标系,在瓶身坐标系中相对静止的目标就是瓶壁上的沾污或纹理,而相对瓶身坐标系发生相对运动的,就可以确定其为液体中的异动目标,这些信息在异型瓶装溶液中可见异物的视觉检测中有着极其重要的意义。
整个定位算法的处理效果实例如图7所示,同传统的基于模板匹配的定位方法相比,本发明所公开的基于机器视觉的生产线上瓶体的定位方法有着定位精度高、定位速度快的特点。首先,预先设定的轨迹扫描边缘点提取方法可以有效的降低算法的时间复杂度,使定位过程具有更好的实时性。同时,扫描线密度的提高可以使得定位精度进一步得到提高。其次,由于特征提取过程是基于图像上单像素级的边缘点抽取的,所以算法的定位精度是单像素级,这使得算法的定位精度可以随图像分辨率的增加而进一步提高。

Claims (2)

1.一种基于机器视觉的生产线上瓶体的定位方法,其特征在于,包括以下步骤:
步骤1:采集瓶体的图像以及对图像进行预处理;
步骤2:提取多组瓶体外边缘点集:对预处理后的图像进行纵向直线轨迹和定点圆轨迹的两次扫描,并利用最小偏差绝对值和的方法有效去除误差点;
步骤3:对边缘点集进行整合,并将整合后的边缘点集实施最小二乘法进行直线拟合,得到边缘特征线集;
步骤4:根据线集元素之间的相交性关系求出异型瓶瓶身的定位特征角点,并根据特征角点得到包括瓶身偏转角、瓶高、瓶宽、几何中心的瓶身特征信息;
步骤2的具体实现过程为:
①纵向直线轨迹线扫描提取瓶体直线外边缘点集:
在边缘图像中均匀纵向取直线2h+1条,从直线的两端向中间扫描,记录第一个非零点的图像坐标分别抽取瓶体轮廓上边缘线上点集Blu和下边缘线上点集Bld;其中,2≤h≤IWidth/2,IWidth为图像宽度;
②用最小偏差绝对值和的方法在上下边缘点集中去除粗大误差点;
在上边缘点集Blu中,每相邻两点确定一条直线,则总共可以确定2h条直线,记为线集Llu
L lu = { L ( i ) ( X lu ( i ) , X lu ( i + 1 ) ) | i ∈ [ 1,2 h ] , X lu ( i ) ∈ B lu } ;
在下边缘点集Bld中,同样的方式也可以确定2h条直线,记为线集Lld
L ld = { L ( i ) ( X ld ( i ) , X ld ( i + 1 ) ) | i ∈ [ 1,2 h ] , X ld ( i ) ∈ B ld } ;
对于特征线集Llu中的每个元素,求取特征点集Blu中的每个点到它的距离之和,记为:
D lu ( i ) = Σ j = 1 2 h + 1 | d ( X lu ( j ) , L lu ( i ) ) | ;
其中,
d ( X lu ( j ) , L lu ( i ) ) = | ( y lu ( i + 1 ) - y lu ( i ) x lu ( i + 1 ) - x lu ( i ) ) x lu ( j ) - y lu ( j ) + ( y lu ( i ) - ( y lu ( i + 1 ) - y lu ( i ) x lu ( i + 1 ) - x lu ( i ) ) x lu ( i ) ) | 1 + ( y lu ( i + 1 ) - y lu ( i ) x lu ( i + 1 ) - x lu ( i ) ) 2 ;
在所有
Figure FDA00003575787700022
中取最小值
Figure FDA00003575787700023
其对应的直线记为
Figure FDA00003575787700024
将满足
d ( X lu ( j ) , L lu * ) > ϵ , j=1,2,…,2h+1
的点
Figure FDA00003575787700026
从点集Blu中删除,形成新的点集
Figure FDA00003575787700027
同理,对于特征线集Lld中的每个元素,求取特征点集Bld中的每个点到它的距离之和,记为:
D ld ( i ) = Σ j = 1 2 h + 1 | d ( X ld ( j ) , L ld ( i ) ) | ;
其中,
d ( X ld ( j ) , L ld ( i ) ) = | ( y ld ( i + 1 ) - y ld ( i ) x ld ( i + 1 ) - x ld ( i ) ) x ld ( j ) - y ld ( j ) + ( y ld ( i ) - ( y ld ( i + 1 ) - y ld ( i ) x ld ( i + 1 ) - x ld ( i ) ) x ld ( i ) ) | 1 + ( y ld ( i + 1 ) - y ld ( i ) x ld ( i + 1 ) - x ld ( i ) ) 2 ;
在所有
Figure FDA000035757877000210
中取最小值其对应的直线记为
Figure FDA000035757877000212
将满足
d ( X ld ( j ) , L ld * ) > ϵ , j=1,2,…,2h+1
的点
Figure FDA000035757877000214
从点集Blu中删除,形成新的点集
Figure FDA000035757877000215
③圆轨迹扫描提取瓶身肩部和底部外边缘点集:
在点集
Figure FDA000035757877000217
中,选取最靠近左上角、右上角、左下角、右下角的点Olu、Oru、Old、Ord作为圆轨迹扫描的4个基准圆心;以这四个基准圆心产生4组每组2g+1个半径不同的同心圆的圆轨迹扫描线;其中,2≤g≤Iheight/5,Iheight为图像高度;
在圆轨迹扫描过程中为了能够准确无误的抽取边缘点,需要设置圆轨迹扫描角步长,不同半径的圆轨迹扫描时应该使用不同的角步长
Figure FDA000035757877000218
关系如下:
Figure FDA00003575787700031
其中,R是圆轨迹扫描半径;
经过四组圆轨迹扫描,可以分别抽取到上肩部外边缘点集Bclu、下肩部外边缘点集Bcld、上底部外边缘点集Bcru和下底部外边缘点集Bcrd
④用最小偏差绝对值和的方法在肩部、底部边缘点集中去除误差点:
在上肩部外边缘点集Bclu中,每相邻两点确定一条直线,则总共可以确定2g条直线,记为线集Lclu
L clu = { L ( i ) ( X clu ( i ) , X clu ( i + 1 ) ) | i ∈ [ 1,2 g ] , X clu ( i ) ∈ B clu } ;
在下肩部边缘点集Bcld,上底部外边缘点集Bcru,下底部外边缘点集Bcrd中,每相邻两点确定一条直线,各确定2g条直线,分别记为线集Lcld、Lcru、Lcrd
L cld = { L ( i ) ( X cld ( i ) , X cld ( i + 1 ) ) | i ∈ [ 1,2 g ] , X cld ( i ) ∈ B cld } ;
L cru = { L ( i ) ( X cru ( i ) , X cru ( i + 1 ) ) | i ∈ [ 1,2 g ] , X cru ( i ) ∈ B cru } ;
L crd = { L ( i ) ( X crd ( i ) , X crd ( i + 1 ) ) | i ∈ [ 1,2 g ] , X crd ( i ) ∈ B crd } ;
(1)对于特征线集Lclu中的每个元素,求取特征点集Bclu中的每个点到它的距离之和,记为:
D clu ( i ) = Σ j = 1 2 g + 1 | d ( X clu ( j ) , L clu ( i ) ) | ;
其中,
d ( X clu ( j ) , L clu ( i ) ) = | ( y clu ( i + 1 ) - y clu ( i ) x clu ( i + 1 ) - x clu ( i ) ) x clu ( j ) - y clu ( j ) + ( y clu ( i ) - ( y clu ( i + 1 ) - y clu ( i ) x clu ( i + 1 ) - x clu ( i ) ) x clu ( i ) ) | 1 + ( y clu ( i + 1 ) - y clu ( i ) x clu ( i + 1 ) - x clu ( i ) ) 2 ;
在所有
Figure FDA00003575787700038
中取最小值
Figure FDA00003575787700039
其对应的直线记为
Figure FDA000035757877000310
将满足
d ( X clu ( j ) , L clu * ) > ϵ , j=1,2,…,2g+1
的点
Figure FDA000035757877000312
从点集Bclu中删除,形成新的点集
Figure FDA000035757877000313
(2)对于特征线集Lcld中的每个元素,求取特征点集Bcld中的每个点到它的距离之和,记为:
D cld ( i ) = Σ j = 1 2 g + 1 | d ( X cld ( j ) , L cld ( i ) ) | ;
其中,
d ( X cld ( j ) , L cld ( i ) ) = | ( y cld ( i + 1 ) - y cld ( i ) x cld ( i + 1 ) - x cld ( i ) ) x cld ( j ) - y cld ( j ) + ( y cld ( i ) - ( y cld ( i + 1 ) - y cld ( i ) x cld ( i + 1 ) - x cld ( i ) ) x cld ( i ) ) | 1 + ( y cld ( i + 1 ) - y cld ( i ) x cld ( i + 1 ) - x cld ( i ) ) 2 ;
在所有
Figure FDA00003575787700043
中取最小值
Figure FDA00003575787700044
其对应的直线记为将满足
d ( X cld ( j ) , L cld * ) > ϵ , j=1,2,…,2g+1;
的点
Figure FDA00003575787700047
从点集Bclu中删除,形成新的点集
Figure FDA00003575787700048
(3)对于特征线集Lcru中的每个元素,求取特征点集Bcru中的每个点到它的距离之和,记为:
D cru ( i ) = Σ j = 1 2 g + 1 | d ( X cru ( j ) , L cru ( i ) ) | ;
其中,
d ( X cru ( j ) , L cru ( i ) ) = | ( y cru ( i + 1 ) - y cru ( i ) x cru ( i + 1 ) - x cru ( i ) ) x cru ( j ) - y cru ( j ) + ( y cru ( i ) - ( y cru ( i + 1 ) - y cru ( i ) x cru ( i + 1 ) - x cru ( i ) ) x cru ( i ) ) | 1 + ( y cru ( i + 1 ) - y cru ( i ) x cru ( i + 1 ) - x cru ( i ) ) 2 ;
在所有
Figure FDA000035757877000411
中取最小值
Figure FDA000035757877000412
其对应的直线记为
Figure FDA000035757877000413
将满足
d ( X cru ( j ) , L cru * ) > ϵ , j=1,2,…,2g+1
的点
Figure FDA000035757877000415
从点集Bclu中删除,形成新的点集
(4)对于特征线集Lcrd中的每个元素,求取特征点集Bcrd中的每个点到它的距离之和,记为:
D crd ( i ) = Σ j = 1 2 g + 1 | d ( X crd ( j ) , L crd ( i ) ) | ;
其中,
d ( X crd ( j ) , L crd ( i ) ) = | ( y crd ( i + 1 ) - y crd ( i ) x crd ( i + 1 ) - x crd ( i ) ) x crd ( j ) - y crd ( j ) + ( y crd ( i ) - ( y crd ( i + 1 ) - y crd ( i ) x crd ( i + 1 ) - x crd ( i ) ) x crd ( i ) ) | 1 + ( y crd ( i + 1 ) - y crd ( i ) x crd ( i + 1 ) - x crd ( i ) ) 2 ;
在所有
Figure FDA00003575787700053
中取最小值
Figure FDA00003575787700054
其对应的直线记为
Figure FDA00003575787700055
将满足
d ( X crd ( j ) , L crd * ) > ϵ , j=1,2,…,2g+1
的点从点集Bclu中删除,形成新的点集
Figure FDA00003575787700058
步骤3的具体实现过程为:首先对上边缘、下边缘、上肩部外边缘、下肩部外边缘、上底部外边缘、下底部外边缘六组边缘点集进行整合:将上肩部边缘点集
Figure FDA00003575787700059
重新记为
Figure FDA000035757877000510
将下肩部边缘点集
Figure FDA000035757877000511
重新记为将上底部边缘点集
Figure FDA000035757877000513
和下底部边缘点集求并,整合成新的底边缘点集
Figure FDA000035757877000515
保持
Figure FDA000035757877000517
不变;于是,六组点集被重新整合为五组;
然后,使用最小二乘法对五组点集分别进行拟合:
最小二乘法进行直线拟合的拟合多项式为:y=b+kx,其中k为直线斜率,b为y轴截距;
使用点集分别得到拟合直线
Figure FDA000035757877000519
Figure FDA000035757877000520
至此,由特征边缘点集上升到了边缘特征线集:
L = { L lu * , L ld * , L ju * , L jd * , L d * } ;
步骤4的具体实现过程为:
根据线集元素之间的相交性关系求出异型瓶瓶身的定位特征角点,并根据特征角点给出进一步的瓶身特征信息:
由直线
Figure FDA000035757877000522
的斜截式直线方程联立,解得交点Ju,即上肩部点;
由直线
Figure FDA00003575787700061
Figure FDA00003575787700062
的斜截式直线方程联立,解得交点Du,即上底顶点;
由直线
Figure FDA00003575787700063
Figure FDA00003575787700064
的斜截式直线方程联立,解得交点Jd,即下肩部点;
由直线
Figure FDA00003575787700065
Figure FDA00003575787700066
的斜截式直线方程联立,解得交点Dd,即下底顶点;
Ju、Jd、Du、Dd即异型瓶瓶身定位的特征角点;
以下给出根据特征角点计算的其他瓶身特征信息的计算式:
瓶身偏转角:
θ = 1 2 ( arctan ( y Du - y Ju x Du - x Ju ) + arctan ( y Dd - y Jd x Dd - x Jd ) ) ;
瓶高:
Height = ( x Du - x Ju ) + ( x Dd - x Jd ) 2 ;
瓶宽:
Width = ( y Du - y Ju ) + ( y Dd - y Jd ) 2 ;
几何中心:
P=(Px,Py);
其中,
P x = x Du + x Ju + x Dd + x Jd 4 P y = y Du + y Ju + y Dd + y Jd 4 .
2.根据权利要求1所述的基于机器视觉的生产线上瓶体的定位方法,其特征在于,步骤1中,先对采集到的原始瓶体图像进行一次3×3的中值滤波操作;
再使用Sobel边缘检测算子对滤波后的图像进行边缘检测,并给定阈值将边缘图像二值化;
使用4×4的矩形膨胀算子对初始边缘图像进行一次膨胀操作;
使用3×3的矩形腐蚀算子对膨胀后的边缘图像进行一次腐蚀操作;预处理的结果是得到边缘优化的图像。
CN201210136801.1A 2012-05-04 2012-05-04 一种基于机器视觉的生产线上瓶体的定位方法 Expired - Fee Related CN102708368B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210136801.1A CN102708368B (zh) 2012-05-04 2012-05-04 一种基于机器视觉的生产线上瓶体的定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210136801.1A CN102708368B (zh) 2012-05-04 2012-05-04 一种基于机器视觉的生产线上瓶体的定位方法

Publications (2)

Publication Number Publication Date
CN102708368A CN102708368A (zh) 2012-10-03
CN102708368B true CN102708368B (zh) 2014-01-15

Family

ID=46901111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210136801.1A Expired - Fee Related CN102708368B (zh) 2012-05-04 2012-05-04 一种基于机器视觉的生产线上瓶体的定位方法

Country Status (1)

Country Link
CN (1) CN102708368B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292715A (zh) * 2013-06-17 2013-09-11 上海海事大学 岸壁移机式装船机抛料位置料堆高度检测装置及检测方法
CN105139381B (zh) * 2014-12-10 2017-12-05 天津普达软件技术有限公司 一种定位瓶坯瓶身的方法
CN104438125B (zh) * 2014-12-11 2017-01-18 天津普达软件技术有限公司 一种手机屏幕不良品剔除方法
CN104851093B (zh) * 2015-05-08 2017-07-21 国家测绘地理信息局四川测绘产品质量监督检验站 基于距离与角度控制的矢量面数据接边检测方法
CN108074257B (zh) * 2016-11-11 2022-03-08 中国石油化工股份有限公司抚顺石油化工研究院 基于串行处理的硫化物信息提取方法、装置及系统
CN106875441A (zh) * 2016-12-20 2017-06-20 浙江工业大学 一种基于机器视觉的在线pe瓶识别定位方法
CN107480710B (zh) * 2017-08-01 2020-05-22 歌尔股份有限公司 特征点匹配结果处理方法和装置
CN109143393B (zh) * 2018-08-01 2020-06-30 哈尔滨工业大学 瓶装透明药液异物检测同步跟踪视觉补偿方法
CN110047067B (zh) * 2019-04-02 2021-06-22 广州大学 一种用于瓶子分类的瓶肩检测方法
CN112465894B (zh) * 2020-11-25 2024-02-27 创新奇智(成都)科技有限公司 圆环内外径拟合方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719236A (zh) * 2005-08-02 2006-01-11 湖南大学 多视觉空瓶质量检测方法及多视觉空瓶检测机器人
CN101144707A (zh) * 2007-09-18 2008-03-19 湖南大学 饮料瓶口视觉定位方法
CN101819162A (zh) * 2010-05-13 2010-09-01 山东大学 空瓶瓶壁缺陷检测方法及装置
CN102393908A (zh) * 2011-06-29 2012-03-28 湖南大学 混合生产线上的基于机器视觉检测的三种瓶体识别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719236A (zh) * 2005-08-02 2006-01-11 湖南大学 多视觉空瓶质量检测方法及多视觉空瓶检测机器人
CN101144707A (zh) * 2007-09-18 2008-03-19 湖南大学 饮料瓶口视觉定位方法
CN101819162A (zh) * 2010-05-13 2010-09-01 山东大学 空瓶瓶壁缺陷检测方法及装置
CN102393908A (zh) * 2011-06-29 2012-03-28 湖南大学 混合生产线上的基于机器视觉检测的三种瓶体识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张东波等.粗糙集在智能空瓶检测感兴趣区域提取中的应用.《系统仿真学报》.2007,(第05期),
粗糙集在智能空瓶检测感兴趣区域提取中的应用;张东波等;《系统仿真学报》;20070531(第05期);全文 *

Also Published As

Publication number Publication date
CN102708368A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
CN102708368B (zh) 一种基于机器视觉的生产线上瓶体的定位方法
CN103729655B (zh) 一种用于片式元件视觉定位的检测方法
CN105334219B (zh) 一种残差分析动态阈值分割的瓶口缺陷检测方法
CN107341802B (zh) 一种基于曲率与灰度复合的角点亚像素定位方法
WO2022027949A1 (zh) 一种基于机器视觉的玻璃瓶底缺陷检测方法及系统
CN109060836B (zh) 基于机器视觉的高压油管接头外螺纹检测方法
CN103207987B (zh) 一种指针式仪表的示数识别方法
CN104990926B (zh) 一种基于视觉的tr元件定位和缺陷检测方法
CN101359400B (zh) 一种基于视觉的管口空间位置定位方法
CN104915963B (zh) 一种用于plcc元件的检测与定位方法
CN113537301B (zh) 基于模板自适应匹配瓶体标签的缺陷检测方法
CN107945155B (zh) 一种基于Gabor滤波器的牙膏管肩缺陷检测方法
CN102496161B (zh) 一种印刷电路板图像的轮廓提取方法
CN101639452A (zh) 一种钢轨表面缺陷的三维检测方法
CN104835166A (zh) 基于机器视觉检测平台的液体药瓶异物检测方法
CN106485699A (zh) 一种基于点匹配的基准标志定位方法
CN107145890A (zh) 一种远距离多视角环境下的指针式仪表盘自动读数方法
CN109978940A (zh) 一种sab安全气囊尺寸视觉测量方法
CN105066892A (zh) 一种基于直线聚类分析的bga元件检测与定位方法
CN103858147A (zh) 在轮胎的内部表面上的浮凸元素特征的快速分析方法
CN105157563A (zh) 一种基于机器视觉的啤酒瓶口定位方法
CN107644417A (zh) 应变片外观缺损检测方法
CN103245667A (zh) 自动检测机械性划痕的方法及系统
CN114581385A (zh) 一种基于圆定位的焊缝缺陷区域映射算法
CN109816682B (zh) 一种基于凹凸性的腕臂系统分割与参数检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Wang Yaonan

Inventor after: Zhu Huihui

Inventor after: Zhou Jinli

Inventor after: Zhang Yao

Inventor after: Mao Jianxu

Inventor after: Zhou Bowen

Inventor after: Liu Caiping

Inventor after: Zhang Hui

Inventor after: Ge Ji

Inventor after: Wu Chengzhong

Inventor after: Chen Jun

Inventor before: Wang Yaonan

Inventor before: Zhang Yao

Inventor before: Zhou Bowen

Inventor before: Zhang Hui

Inventor before: Ge Ji

Inventor before: Wu Chengzhong

Inventor before: Chen Jun

Inventor before: Zhu Huihui

Inventor before: Zhou Jinli

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: WANG YAONAN ZHANG YAO ZHOU BOWEN ZHANG HUI GE JI WU CHENGZHONG CHEN JUN ZHU HUIHUI ZHOU JINLI TO: WANG YAONAN ZHANG YAO MAO JIANXU ZHOU BOWEN LIU CAIPING ZHANG HUI GE JI WU CHENGZHONG CHEN JUN ZHU HUIHUI ZHOU JINLI

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140115

CF01 Termination of patent right due to non-payment of annual fee