CN102706776A - 一种微尺度空间内金属液体充型流动物理模拟装置 - Google Patents

一种微尺度空间内金属液体充型流动物理模拟装置 Download PDF

Info

Publication number
CN102706776A
CN102706776A CN2012102290175A CN201210229017A CN102706776A CN 102706776 A CN102706776 A CN 102706776A CN 2012102290175 A CN2012102290175 A CN 2012102290175A CN 201210229017 A CN201210229017 A CN 201210229017A CN 102706776 A CN102706776 A CN 102706776A
Authority
CN
China
Prior art keywords
organic glass
plectane
casting mold
layer
circular port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012102290175A
Other languages
English (en)
Inventor
任明星
李邦盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN2012102290175A priority Critical patent/CN102706776A/zh
Publication of CN102706776A publication Critical patent/CN102706776A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

一种微尺度空间内金属液体充型流动物理模拟装置,涉及一种物理模拟装置。本发明的目的是提供一种微尺度空间内金属液体充型流动物理模拟装置,能够实现微尺度空间内液态金属流动行为的物理模拟。模拟装置包括离心动力装置、有机玻璃铸型、引流漏斗、摄像机和计算机信息采集系统;所述有机玻璃铸型由4层透明有机玻璃圆板组成;所述有机玻璃铸型固定安装于离心动力装置上;所述引流漏斗设置在有机玻璃铸型的上圆形孔上方;所述摄像机设置在有机玻璃铸型的侧上方,使摄像机的镜头对准有机玻璃铸型;所述摄像机与所述计算机信息采集系统连接。本发明的装置结构简单,操作容易,能够实现微尺度空间内液态金属流动行为的物理模拟。应用于微铸造领域。

Description

一种微尺度空间内金属液体充型流动物理模拟装置
技术领域
本发明涉及一种物理模拟装置。
背景技术
金属液体的流动能力和流动行为是铸件能否完整成形的关键因素,由于铸造过程的不可视性,液态金属在铸型型腔内的具体是怎样流动的,这个问题一直困扰着铸造工作者。目前的研究集中于两个方向:一是数值模拟,借助计算机辅助系统和各类商业软件实现对铸造过程的模拟再现,一是物理模拟,借助物理模拟装置和模拟流体,在符合一定相似准则的基础上,对铸造过程实现可视化的再现。物理模拟的方法由于具有可视性,所以更直接,同时由于计算机技术和高速成像技术的发展,使得物理模拟过程能够实现从定性观察到定量分析的飞跃,成为了数值模拟技术的有效补充,尤其是在铸件形状复杂,数学模型不能有效建立的情况。
随着微机械系统(MEMS)研究的深入发展,微尺度下的流动问题已日益受到研究人员的重视。现有的研究结果已经指出受微尺度效应的影响,微尺度下的流动过程在很多方面与常规尺度表现出不同。由于现有模拟软件并未有针对微尺度条件的设置,所以其模拟结果可靠性有待考证。这种情况下,物理模拟的重要性就显现出来。通过可视化定性、定量分析微尺度空间内模拟流体的流动行为,还原实际液态金属的流动过程,为微铸造工艺过程浇注系统设计、工艺参数选择提供理论基础。目前,并未有相关方面的报道。
发明内容
本发明的目的是提供一种微尺度空间内金属液体充型流动物理模拟装置,能够实现微尺度空间内液态金属流动行为的物理模拟。
本发明的微尺度空间内金属液体充型流动物理模拟装置包括离心动力装置、有机玻璃铸型、引流漏斗、摄像机和计算机信息采集系统;所述有机玻璃铸型由4层透明有机玻璃圆板组成,第1层圆板的中心开有上圆形孔,第2层圆板的中心开有下圆形孔,上圆形孔和下圆形孔相连通,在第2层圆板的上表面设置有横浇道、微流道和溢流槽,所述横浇道与第2层圆板中心的下圆形孔连通且垂直于第2层圆板的半径,每两条横浇道组成一对且对称设置于下圆形孔的两侧,所述横浇道的圆周外侧设置有溢流槽,横浇道与溢流槽之间均匀分布有多条微流道;在第2层圆板的下表面和第3层圆板之间放置一张与圆板的圆表面面积相同的光粉铜版纸;所述有机玻璃铸型的下表面中心固定安装于离心动力装置上并与离心动力装置同轴旋转;所述引流漏斗设置在所述有机玻璃铸型的上圆形孔上方;所述摄像机设置在所述有机玻璃铸型的侧上方,使摄像机的镜头对准有机玻璃铸型;所述摄像机的视频信号输出端与所述计算机信息采集系统的信号输入端连接。
在微熔模精铸成形过程中,由于铸型是不透明的,因此不清楚金属液在微尺度空间是如何流动的。本发明提供的物理模拟装置可以物理模拟微尺度空间内金属液体充型流动过程,并通过计算机采集系统采集模拟流体充型流动过程数据,进行微尺度空间内液态金属充型流动过程的观察与分析。
本发明的有益效果:
本发明的装置结构简单,操作容易,能够实现微尺度空间内液态金属流动行为的物理模拟。为微尺度空间内液态金属的流动行为和流动理论提供了研究工具,丰富了流动理论组成,模拟结果可以为实际的金属液充型过程中浇注系统设计和工艺参数选择提供理论基础。
附图说明
图1为本发明微尺度空间内金属液体充型流动物理模拟装置的结果示意图,图中1为离心动力装置,2为有机玻璃铸型,3为引流漏斗,4为摄像机,5为计算机信息采集系统;图2为有机玻璃铸型2的半剖示意图,图中6为第1层圆板,7为第2层圆板,10为第3层圆板,8为上圆形孔,9为下圆形孔,14为光粉铜版纸;图3为有机玻璃铸型中第2层圆板的俯视图,图中7为第2层圆板,9为下圆形孔,11为横浇道,12为微流道,13为溢流槽;图4为具体实施方式一中在不同转速时0.3mm×0.1mm微流道内模拟流体充型速度与时间的关系曲线图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式微尺度空间内金属液体充型流动物理模拟装置包括离心动力装置1、有机玻璃铸型2、引流漏斗3、摄像机4和计算机信息采集系统5;所述有机玻璃铸型2由4层透明有机玻璃圆板组成,第1层圆板6的中心开有上圆形孔8,第2层圆板7的中心开有下圆形孔9,上圆形孔8和下圆形孔9相连通,在第2层圆板7的上表面设置有横浇道11、微流道12和溢流槽13,所述横浇道11与第2层圆板7中心的下圆形孔9连通且垂直于第2层圆板7的半径,每两条横浇道11组成一对且对称设置于下圆形孔9的两侧,所述横浇道11的圆周外侧设置有溢流槽13,横浇道11与溢流槽13之间均匀分布有多条微流道12;在第2层圆板7的下表面和第3层圆板10之间放置一张与圆板的圆表面面积相同的光粉铜版纸14;所述有机玻璃铸型2的下表面中心固定安装于离心动力装置1上并与离心动力装置1同轴旋转;所述引流漏斗3设置在所述有机玻璃铸型2的上圆形孔8上方;所述摄像机4设置在所述有机玻璃铸型2的侧上方,使摄像机4的镜头对准有机玻璃铸型2;所述摄像机4的视频信号输出端与所述计算机信息采集系统5的信号输入端连接。
本实施方式所述计算机信息采集系统5需要具有大容量的采集卡,最大可采集4GB容量的数据。
本实施方式的微尺度空间内金属液体充型流动物理模拟装置的结果示意图如图1所示。图1中1为离心动力装置,2为有机玻璃铸型,3为引流漏斗,4为摄像机,5为计算机信息采集系统。
所述有机玻璃铸型2的侧视图如图2所示,图中6为第1层圆板,7为第2层圆板,10为第3层圆板,8为上圆形孔,9为下圆形孔,14为光粉铜版纸。
有机玻璃铸型2中第2层圆板的俯视图如图3所示,图中7为第2层圆板,9为下圆形孔,11为横浇道,12为微流道,13为溢流槽。
本实施方式的装置在使用时,通过离心动力装置1的控制面板设定转速,同时,打开摄像机4和计算机信息采集系统5内的数据采集软件,当离心动力装置1转动平稳时向引流漏斗3中倾倒模拟流体,同时点击采集软件开始系统,模拟流体在离心力的作用下开始充型,直至充型过程结束,最后对高速摄像机获得的图像数据进行观察分析。
本实施方式能够很清楚的借助高速摄像机拍摄到的照片观察模拟流体的充型流动行为,进而了解微尺度空间内液态金属的充型流动行为。通过观察分析,能够知道充型过程中离心转速,浇道尺寸,铸件分布等对液面形态,充填速度,充填方式的影响,根据这个结果可以优化浇注系统设计和工艺参数选择,保证微构件的完整成形。
为验证本实施方式的效果,进行以下实验:以Zn-4%Al合金作为被模拟对象,以添加增粘剂的水溶液作为模拟流体,理论分析表明,当Zn-4%Al合金的实际旋转速度与模拟流体的旋转速度之比为ω/ω′=1.54时,即可满足模型与原型相似。选取三种旋转速度500rpm,1000rpm,1500rpm,对应的模拟装置的旋转速度分别为324rpm、649rpm和974rpm。结果表明:随着转速的增大,充型时间急速变短,由324rpm时的4.2秒左右减小到974rpm时的0.31秒;充型过程中,模拟流体优先通过直径最大的流道,且转速达到649rpm,才会充填0.1mm×0.1mm的微流道;模拟流体在流道中的横截面积随转速增加而减小;充型速度随时间的增加而增大,先是迅速达到一个极值,随后变化逐渐趋于平缓。转速对于充型速度的影响十分显著,在不同转速时0.3mm×0.1mm微流道内模拟流体充型速度与时间的关系曲线如图4所示,图4中-■-表示转速为324rpm,-●-表示转速为649rpm,-▲-表示转速为974rpm。由图4可看出转速达到974rpm的时候,充型速度最大达到1.36m/sec。由此可以制定出实际生产的离心转速和充填时间等工艺参数,以保证在液态金属未凝固之前充填铸型。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述微流道12为3~5条,宽度为0.1~0.5mm,深度为0.1mm,每条微流道12之间平行。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:所述摄像机4的拍摄速度为500帧/s。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:所述离心动力装置1的最大转速为4000rpm。其它与具体实施方式一至三之一相同。

Claims (4)

1.一种微尺度空间内金属液体充型流动物理模拟装置,其特征在于微尺度空间内金属液体充型流动物理模拟装置包括包括离心动力装置(1)、有机玻璃铸型(2)、引流漏斗(3)、摄像机(4)和计算机信息采集系统(5);所述有机玻璃铸型(2)由4层透明有机玻璃圆板组成,第1层圆板(6)的中心开有上圆形孔(8),第2层圆板(7)的中心开有下圆形孔(9),上圆形孔(8)和下圆形孔(9)相连通,在第2层圆板(7)的上表面设置有横浇道(11)、微流道(12)和溢流槽(13),所述横浇道(11)与第2层圆板(7)中心的下圆形孔(9)连通且垂直于第2层圆板(7)的半径,每两条横浇道(11)组成一对且对称设置于下圆形孔(9)的两侧,所述横浇道(11)的圆周外侧设置有溢流槽(13),横浇道(11)与溢流槽(13)之间均匀分布有多条微流道(12);在第2层圆板(7)的下表面和第3层圆板(10)之间放置一张与圆板的圆表面面积相同的光粉铜版纸(14);所述有机玻璃铸型(2)的下表面中心固定安装于离心动力装置(1)上并与离心动力装置(1)同轴旋转;所述引流漏斗(3)设置在所述有机玻璃铸型(2)的上圆形孔(8)上方;所述摄像机(4)设置在所述有机玻璃铸型(2)的侧上方,使摄像机(4)的镜头对准有机玻璃铸型(2);所述摄像机(4)的视频信号输出端与所述计算机信息采集系统(5)的信号输入端连接。
2.根据权利要求1所述的一种微尺度空间内金属液体充型流动物理模拟装置,其特征在于所述微流道(12)为3~5条,宽度为0.1~0.5mm,深度为0.1mm,每条微流道(12)之间平行。
3.根据权利要求1或2所述的一种微尺度空间内金属液体充型流动物理模拟装置,其特征在于所述摄像机(4)的拍摄速度为500帧/s。
4.根据权利要求3所述的一种微尺度空间内金属液体充型流动物理模拟装置,其特征在于所述离心动力装置(1)的最大转速为4000rpm。
CN2012102290175A 2012-07-04 2012-07-04 一种微尺度空间内金属液体充型流动物理模拟装置 Pending CN102706776A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012102290175A CN102706776A (zh) 2012-07-04 2012-07-04 一种微尺度空间内金属液体充型流动物理模拟装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012102290175A CN102706776A (zh) 2012-07-04 2012-07-04 一种微尺度空间内金属液体充型流动物理模拟装置

Publications (1)

Publication Number Publication Date
CN102706776A true CN102706776A (zh) 2012-10-03

Family

ID=46899718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102290175A Pending CN102706776A (zh) 2012-07-04 2012-07-04 一种微尺度空间内金属液体充型流动物理模拟装置

Country Status (1)

Country Link
CN (1) CN102706776A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323184A (zh) * 2011-08-12 2012-01-18 哈尔滨理工大学 液态金属流动性可视化测试装置及基于该装置的测试方法
CN105302985A (zh) * 2015-11-12 2016-02-03 哈尔滨工业大学 一种基于fluent软件的合金微铸造成形过程的仿真方法
CN105699254A (zh) * 2016-03-25 2016-06-22 青岛科技大学 一种研究微尺度流场流动状态的方法及集成模板
CN106735043A (zh) * 2016-12-26 2017-05-31 河南工业大学 立式离心铸造的气泡运动物理模拟装置及其模拟铸型

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202024943U (zh) * 2011-02-24 2011-11-02 中国矿业大学 一种物理模拟立式离心力场下液态金属流动装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202024943U (zh) * 2011-02-24 2011-11-02 中国矿业大学 一种物理模拟立式离心力场下液态金属流动装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
任明星 等: "微尺度铸件充型过程的数值模拟", 《中国有色金属学报》 *
杨闯: "微熔模精铸过程微尺度成形及充型流动规律研究", 《中国博士学位论文全文数据库(电子期刊) 工程科技I辑》 *
袁芳: "离心力场下钛合金充型流动及铸造缺陷的研究", 《中国优秀硕士学位论文全文数据库(电子期刊) 工程科技1辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323184A (zh) * 2011-08-12 2012-01-18 哈尔滨理工大学 液态金属流动性可视化测试装置及基于该装置的测试方法
CN105302985A (zh) * 2015-11-12 2016-02-03 哈尔滨工业大学 一种基于fluent软件的合金微铸造成形过程的仿真方法
CN105302985B (zh) * 2015-11-12 2018-01-30 哈尔滨工业大学 一种基于fluent软件的合金微铸造成形过程的仿真方法
CN105699254A (zh) * 2016-03-25 2016-06-22 青岛科技大学 一种研究微尺度流场流动状态的方法及集成模板
CN106735043A (zh) * 2016-12-26 2017-05-31 河南工业大学 立式离心铸造的气泡运动物理模拟装置及其模拟铸型
CN106735043B (zh) * 2016-12-26 2018-12-21 河南工业大学 立式离心铸造的气泡运动物理模拟装置及其模拟铸型

Similar Documents

Publication Publication Date Title
CN202024943U (zh) 一种物理模拟立式离心力场下液态金属流动装置
CN102706776A (zh) 一种微尺度空间内金属液体充型流动物理模拟装置
CN104021277A (zh) 一种管涌现象的数值分析方法
CN102383783B (zh) 一种分析缝洞型油藏孔洞间油水流动特征的方法
Klaseboer et al. A force balance model for the motion, impact, and bounce of bubbles
Rátkai et al. Phase-field lattice Boltzmann model for dendrites growing and moving in melt flow
Lin et al. Advanced three-dimensional multiphase flow simulation in porous media reconstructed from X-ray Microtomography using the He–Chen–Zhang Lattice Boltzmann Model
CN105749994B (zh) 一种多层薄膜贴合的三维微流控芯片制作方法
CN102434151A (zh) 底水油藏开发中底水锥进动态模拟实验装置及模拟系统
CN104298797A (zh) 一种确定缝洞型油藏高导流通道圈闭剩余油的方法
CN103389649B (zh) 一种基于球面拼接网格的飞行器机动运动模拟方法
CN103954622A (zh) 一种人造微观仿真物理模型及制作方法
CN105945270A (zh) 一种定量浇铸曲线的获取方法及装置
CN103206203B (zh) 油井单一射孔出砂的分析方法
CN103147431A (zh) 一种垂直升船机机械同步系统的相似模拟方法
CN109215100A (zh) 一种混合流体相变动画生成方法及装置
CN103473385A (zh) 基于openGL图形标准的三维模型转换方法
CN108446422B (zh) 一种面向复杂微流控芯片的多尺度耦合仿真方法
CN104368800A (zh) 模拟铝铸件中的氧化物的方法
Ren et al. Similar physical simulation of microflow in micro-channel by centrifugal casting process
Bate et al. A Novel Approach to Visualize Liquid Aluminum Flow to Advance Casting Science
Hou et al. Circular band formation for incompressible viscous fluid–rigid-particle mixtures in a rotating cylinder
CN206270272U (zh) 一种铅铋合金消融实验装置
CN103077556A (zh) 油井出砂的三维数值模型设计
Aneesh Kumar et al. Computer Simulation of Centrifugal Casting Process Using FLOW-3D

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121003